Annals of Fuzzy Mathematics and Informatics Volume 5, No. 2, (March 2013), pp. 399–416

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

(c) Kyung Moon Sa Co. http://www.kyungmoon.com

Intuitionistic fuzzy G_{δ} - α -locally continuous functions

R. NARMADA DEVI, E. ROJA, M. K. UMA

Received 4 May 2012; Accepted 17 July 2012

ABSTRACT. The purpose of this paper is to introduce the concepts of an intuitionistic fuzzy G_{δ} set and intuitionistic fuzzy G_{δ} - α -locally closed sets. The concepts of an intuitionistic fuzzy εG_{δ} - α -locally quasi neighbourhood, intuitionistic fuzzy G_{δ} - α -locally continuous function, intuitionistic fuzzy G_{δ} - α -local Urysohn space, intuitionistic fuzzy G_{δ} - α -local connected space and intuitionistic fuzzy G_{δ} - α -local compact space are introduced and interesting properties are established.

2010 AMS Classification: 54A40, 03E72

Keywords: Intuitionistic fuzzy G_{δ} set, Intuitionistic fuzzy G_{δ} - α -locally closed set, Intuitionistic fuzzy ε G_{δ} - α -locally quasi neighbourhood, Intuitionistic fuzzy G_{δ} - α -locally continuous function, Intuitionistic fuzzy G_{δ} - α -local T_2 space, Intuitionistic fuzzy G_{δ} - α -local Urysohn space, Intuitionistic fuzzy G_{δ} - α -local connected space and intuitionistic fuzzy G_{δ} - α -local compact space.

Corresponding Author: R. Narmada Devi (narmadadevi23@gmail.com)

1. Introuction

The concept of fuzzy sets was introduced by Zadeh [8] and later Atanassov [1] generalized the idea to intuitionistic fuzzy sets. On the otherhand, Coker [3] introduced the notions of an intuitionistic fuzzy topological spaces, intuitionistic fuzzy continuity and some other related concepts. The concept of an intuitionistic fuzzy α -closed set was introduced by H. Gurcay and D. Coker [6]. Ganster and Relly used locally closed sets [5] to define LC-continuity and LC-irresoluteness. G. Balasubramanian [2] introduced and studied the concept of fuzzy G_{δ} set in a fuzzy topological space. In this paper, the concepts of an intuitionistic fuzzy G_{δ} - α -locally closed set, intuitionistic fuzzy ε G_{δ} - α -locally quasi neighbourhood, intuitionistic fuzzy G_{δ} - α -locally continuous function, intuitionistic fuzzy G_{δ} - α -local T_{2} space, intuitionistic

fuzzy G_{δ} - α -local Urysohn space are introduced and studied. Some interesting properties among continuous functions are discussed. We also investigate some interesting properties of an intuitionistic fuzzy G_{δ} - α -local connected space and intuitionistic fuzzy G_{δ} - α -local compact space.

The concept of fuzzy sets was introduced by Zadeh [8] and later Atanassov [1] generalized the idea to intuitionistic fuzzy sets. On the otherhand, Coker [3] introduced the notions of an intuitionistic fuzzy topological spaces, intuitionistic fuzzy continuity and some other related concepts. The concept of an intuitionistic fuzzy α -closed set was introduced by H. Gurcay and D. Coker [6]. Ganster and Relly used locally closed sets [5] to define LC-continuity and LC-irresoluteness. G.Balasubramanian [2] introduced and studied the concept of fuzzy G_{δ} set in a fuzzy topological space. In this paper, the concepts of an intuitionistic fuzzy G_{δ} - α -locally closed set, intuitionistic fuzzy ε G_{δ} - α -locally quasi neighbourhood, intuitionistic fuzzy G_{δ} - α -locally continuous function, intuitionistic fuzzy G_{δ} - α -local Urysohn space are introduced and studied. Some interesting properties among continuous functions are discussed. We also investigate some interesting properties of an intuitionistic fuzzy G_{δ} - α -local connected space and intuitionistic fuzzy G_{δ} - α -local compact space.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty fixed set and I be the closed interval [0,1]. An intuitionistic fuzzy set(IFS) A is an object of the following form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$, where the mappings $\mu_A : X \longrightarrow I$ and $\gamma_A : X \longrightarrow I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) for each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form, $A = \{\langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X\}$. For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$ for the intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$.

Definition 2.2 ([1]). Let X be a nonempty set and the IFSs A and B in the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$, $B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$. Then

- (i) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;
- (ii) $\overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \};$
- (iii) $A \cap B = \{ \langle x, \mu_A(x) \wedge \mu_B(x), \gamma_A(x) \vee \gamma_B(x) \rangle : x \in X \};$
- (iv) $A \cup B = \{ \langle x, \mu_A(x) \vee \mu_B(x), \gamma_A(x) \wedge \gamma_B(x) \rangle : x \in X \}.$

Definition 2.3 ([1]). The IFSs 0_{\sim} and 1_{\sim} are defined by $0_{\sim} = \{\langle x, 0, 1 \rangle : x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle : x \in X\}$.

Definition 2.4 ([3]). An intuitionistic fuzzy topology (IFT) in Coker's sense on a nonempty set X is a family τ of IFSs in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau$;
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$;
- (iii) $\cup G_i \in \tau$ for arbitrary family $\{G_i \mid i \in I\} \subseteq \tau$.

In this paper by (X, τ) or simply by X we will denote the Coker's intuitionistic fuzzy topological space (IFTS). Each IFS in τ is called intuitionistic fuzzy open set

(IFOS) in X. The complement \overline{A} of an IFOS A in X is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.5 ([3]). Let A be an IFS in IFTS X. Then

 $int(A) = \bigcup \{G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A\}$ is called an intuitionistic fuzzy interior of A;

 $clA = \bigcap \{G \mid G \text{ is an IFCS in } X \text{ and } G \supseteq A\}$ is called an intuitionistic fuzzy closure of A.

Proposition 2.6 ([1]). For any IFS A in (X, τ) we have

- (i) $cl(\overline{A}) = \overline{int(A)}$
- (ii) $int(\overline{A}) = \overline{cl(A)}$

Corollary 2.7 ([3]). Let $A, A_i (i \in J)$ be IFSs in $X, B, B_j (j \in K)$ IFSs in Y and $f: X \to Y$ a function. Then

- (i) $A \subseteq f^{-1}(f(A))$ (If f is injective, then $A = f^{-1}(f(A))$),
- (ii) $f(f^{-1}(B)) \subseteq B$ (If f is surjective, then $f(f^{-1}(B)) = B$), (iii) $f^{-1}(\bigcup B_j) = \bigcup f^{-1}(B_j)$,
- (iii) $f^{-1}(D_j) = Of^{-1}(D_j),$ (iv) $f^{-1}(\bigcap B_j) = \bigcap f^{-1}(B_j),$ (v) $f^{-1}(1_{\sim}) = 1_{\sim},$ (vi) $f^{-1}(0_{\sim}) = 0_{\sim},$ (vii) $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}.$

Definition 2.8 ([4]). Let X be a nonempty set and $x \in X$ a fixed element in X. If $r \in I_0$, $s \in I_1$ are fixed real numbers such that $r + s \leq 1$, then the IFS $x_{r,s} = \langle x, x_r, 1 - x_{1-s} \rangle$ is called an intuitionistic fuzzy point(IFP) in X, where r denotes the degree of membership of $x_{r,s}$, s denotes the degree of nonmembership of $x_{r,s}$ and $x \in X$ the support of $x_{r,s}$. The IFP $x_{r,s}$ is contained in the IFS $A(x_{r,s} \in A)$ if and only if $r < \mu_A(x), s > \gamma_A(x)$.

Definition 2.9 ([6]). Let A be an IFS of an IFTS X. Then A is called an intuitionistic fuzzy α -open set(IF α OS) if $A \subseteq int(cl(int(A)))$. The complement of an intuitionistic fuzzy α -open set is called an intuitionistic fuzzy α -closed set(IF α CS).

Definition 2.10 ([7]). An IFS U of an IFTS X is called

- (i) ε -nbd of an IFP c(a,b), if there exists an IFOS G in X such that $c(a,b) \in G \leq$
- (ii) εq -nbd of an IFP c(a,b), if there exists an IFOS G in X such that $c(a,b)qG \leq$ U.

Definition 2.11 ([3]). Let X and Y be two nonempty sets and $f: X \to Y$ be a

(i) If $B = \{\langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y\}$ is an IFS in Y, then the preimage of B under f (denoted by $f^{-1}(B)$) is defined by

$$f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \}.$$

(ii) If $A = \{\langle x, \lambda_A(x), \vartheta_A(x) \rangle : x \in X\}$ is an IFS in X, then the image of A under f (denoted by f(A)) is defined by

$$f(A) = \{ \langle y, f(\lambda_A(y)), (1 - f(1 - \vartheta_A))(y) \rangle : y \in Y \}.$$

Definition 2.12 ([3]). Let (X, τ) and (Y, ϕ) be two IFTSs and let $f: X \to Y$ be a function. Then f is said to be intuitionistic fuzzy continuous iff the preimage of each IFS in ϕ is an IFS in τ .

Definition 2.13 ([7]). Let $f: X \to Y$ be a function. The graph $g: X \to X \times Y$ of f is defined by: $g(x) = (x, f(x)) \ \forall x \in X$.

Definition 2.14 ([3]). An intuitionistic fuzzy topological space (X, ψ) is called IFT_2 space iff for every IFPs c(a,b) and d(m,n) in X and $c \neq d$, there exist $G = \langle x, \mu_G, \gamma_G \rangle$, $H = \langle x, \mu_H, \gamma_H \rangle \in \psi$ with $\mu_G(c) = 0$, $\gamma_G(c) = 1$, $\mu_H(d) = 1$, $\gamma_H(d) = 0$ and $G \wedge H = 0_{\sim}$.

Definition 2.15 ([3]). Let (X, τ) be an IFTS. If a family $\{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle : i \in J\}$ of IFOSs in X satisfies the condition $\bigcup \{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle : i \in J\} = 1_{\sim}$ then it is called a fuzzy open cover of X.

Definition 2.16 ([3]). An IFTS (X, τ) is called fuzzy compact iff every fuzzy open cover of X has a finite subcover.

Definition 2.17 ([2]). Let (X, T) be a fuzzy topological space and λ be a fuzzy set in X. Then λ is called fuzy G_{δ} if $\lambda = \wedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$. The complement of fuzzy G_{δ} is fuzzy F_{σ} .

Definition 2.18 ([5]). A subset A of a space (X, τ) is called locally closed (briefly lc) if $A = C \cap D$, where C is open and D is closed in (X, τ) .

3. Properties of an intuitionistic fuzzy G_{δ} - α -locally continuous functions

Definition 3.1. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said be an intuitionistic fuzzy locally closed set (in short, IFlcs) if $A = B \cap C$, where B is an intuitionistic fuzzy open set and C is an intuitionistic fuzzy closed set. The complement of an intuitionistic fuzzy locally closed set is said to be an intuitionistic fuzzy locally open set (in short, IFlos).

Definition 3.2. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said be an intuitionistic fuzzy G_{δ} set if $A = \bigcap_{i=1}^{\infty} A_i$, where $A_i = \langle x, \mu_{A_i}, \gamma_{A_i} \rangle$ is an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (X,T). The complement of an intuitionistic fuzzy G_{δ} set is said to be an intuitionistic fuzzy F_{σ} set.

Definition 3.3. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said be an intuitionistic fuzzy G_{δ} -locally closed set (in short, IFG_{δ} -lcs) if $A = B \cap C$, where B is an intuitionistic fuzzy G_{δ} set and C is an intuitionistic fuzzy closed set. The complement of an intuitionistic fuzzy G_{δ} -locally closed set is said to be an intuitionistic fuzzy G_{δ} -locally open set (in short, IFG_{δ} -loss).

Definition 3.4. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said be an intuitionistic fuzzy G_{δ} - α -locally closed set (in short, $IF \ G_{\delta}$ - α -lcs) if $A = B \cap C$, where B is an intuitionistic fuzzy G_{δ} set and C is an intuitionistic fuzzy α -closed set. The complement of an intuitionistic fuzzy G_{δ} - α -locally closed set is said to be an intuitionistic fuzzy G_{δ} - α -locally open set (in short, $IF \ G_{\delta}$ - α -los).

Definition 3.5. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). The intuitionistic fuzzy G_{δ} - α -locally closure of A is denoted and defined by IFG_{δ} - α - $lcl(A) = \bigcap \{B: B = \langle x, \mu_B, \gamma_B \rangle$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in X and $A \subseteq B\}$.

Definition 3.6. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). The intuitionistic fuzzy G_{δ} - α -locally interior of A is denoted and defined by IFG_{δ} - α -lint $(A) = \bigcup \{B: B = \langle x, \mu_B, \gamma_B \rangle \text{ is an intuitionistic fuzzy } G_{\delta}$ - α -locally open set in X and $B \subseteq A\}$.

Remark 3.7.

- (i) IFG_{δ} - α -lcl(A) = A if and only if A is an intuitionistic fuzzy G_{δ} - α -locally closed set.
 - (ii) IFG_{δ} - α - $lint(A) \subseteq A \subseteq IFG_{\delta}$ - α -lcl(A).
 - (iii) IFG_{δ} - α - $lint(1_{\sim}) = 1_{\sim}$
 - (iv) IFG_{δ} - α - $lint(0_{\sim}) = 0_{\sim}$
 - (v) IFG_{δ} - α - $lcl(1_{\sim}) = 1_{\sim}$

Definition 3.8. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Then A is said to be an intuitionistic fuzzy ε G_{δ} - α -locally neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ if there exists an intuitionistic fuzzy G_{δ} - α -locally open set B in an intuitionistic fuzzy topological space (X,T) such that $x_{r,s} \in B$, $B \subseteq A$. It is denoted by $IF \varepsilon G_{\delta}$ - α -lnbd.

Definition 3.9. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Then A is said to be an intuitionistic fuzzy ε G_{δ} - α -locally quasi neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ if there exists an intuitionistic fuzzy G_{δ} - α -locally open set B in an intuitionistic fuzzy topological space (X,T) such that $x_{r,s}qB, B \subseteq A$. It is denoted by $IF\varepsilon G_{\delta}$ - α -lqnbd.

Remark 3.10.

- (i) The family of all intuitionistic fuzzy ε G_{δ} - α -locally neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ is denoted by $N_{\varepsilon}^{IFG_{\delta}-\alpha-l}(x_{r,s})$.
- (ii) The family of all intuitionistic fuzzy ε G_{δ} - α -locally quasi neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ is denoted by $N_{\varepsilon}^{IFG_{\delta}-\alpha-lq}(x_{r,s})$.

Definition 3.11. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy mapping. Then f is said to

be an intuitionistic fuzzy G_{δ} - α -locally continuous function, if for each intuitionistic fuzzy point $x_{r,s}$ in X and $B \in N_{\varepsilon}f(x_{r,s})$, there exists $A \in N_{\varepsilon}^{IFG_{\delta}-\alpha-lq}(x_{r,s})$ such that $f(A) \subseteq B$.

Proposition 3.12. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy mapping. Then the following are equivalent.

- (i) f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.
- (ii) $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} - α -locally open set in an intuitionistic fuzzy topological space (X,T), for each intuitionistic fuzzy open set A in an intuitionistic fuzzy topological space (Y,S).
- (iii) $f^{-1}(B)$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T), for each intuitionistic fuzzy closed set B in an intuitionistic fuzzy topological space (Y,S).
- (iv) IFG_{δ} - α - $lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A))$, for each intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y, S).
- (v) $f^{-1}(IFint(A)) \subseteq IFG_{\delta}$ - α -lint $(f^{-1}(A))$, for each intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y, S).

Proof.

(i) \Rightarrow (ii) Let A be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (Y,S). Let $x_{r,s}$ be an intuitionistic fuzzy point in an intuitionistic fuzzy topological space (X,T) such that $x_{r,s}qf^{-1}(A)$. Since f is an intuitionistic fuzzy G_{δ} - α -locally continuous function, there exists $B \in N_{\varepsilon}^{IFG_{\delta}-\alpha-lq}(x_{r,s})$ such that $f(B) \subseteq A$. Then

$$(3.1) x_{r,s} \in B$$

$$(3.2) B \subseteq f^{-1}(f(B)).$$

Thus, $x_{r,s} \in B \subseteq f^{-1}(f(B)) \subseteq f^{-1}(A)$. This implies $x_{r,s} \in f^{-1}(A)$ which shows that $f^{-1}(A) \in N^{IFG_{\delta}-\alpha-lq}_{\varepsilon}(x_{r,s})$. Hence $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} - α -locally open set in an intuitionistic fuzzy topological space (X,T).

- (ii)⇒(i) This can be proved by taking complement of (i)
- (iii) \Rightarrow (iv) Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y, S). Since $A \subseteq IFcl(A)$, $f^{-1}(A) \subseteq f^{-1}(IFcl(A))$. By (iii), $f^{-1}(IFcl(A))$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X, T). Thus, IFG_{δ} - α - $lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A))$.
 - (iv) \Rightarrow (v) Using (iv), IFG_{δ} - α - $lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A))$. Then, IFG_{δ} - α - $lcl(f^{-1}(A)) \supseteq f^{-1}(IFcl(A))$ IFG_{δ} - α - $lint(f^{-1}(A)) \supseteq f^{-1}(IFint(A))$ IFG_{δ} - α - $lint(f^{-1}(A)) \supseteq f^{-1}(IFint(A))$

implies that $f^{-1}(IFint(\overline{A})) \subseteq IFG_{\delta}-\alpha-lint(\overline{f^{-1}(A)})$ putting $\overline{A} = A$, we have $f^{-1}(IFint(A)) \subseteq IFG_{\delta}-\alpha-lint(f^{-1}(A))$.

 $(\mathbf{v})\Rightarrow(\mathbf{i})$ Let A be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (Y,S). Then IFintA=A. Using $(\mathbf{v}),\ f^{-1}(IFint(A))\subseteq IFG_{\delta}-\alpha-lint(f^{-1}(A))$ implies that $f^{-1}(A)\subseteq IFG_{\delta}-\alpha-lint(f^{-1}(A))$. But, $IFG_{\delta}-\alpha-lint(f^{-1}(A))$.

 $lint(f^{-1}(A)) \subseteq f^{-1}(A)$ implies that $f^{-1}(A) = IFG_{\delta}$ - α - $lint(f^{-1}(A))$ that is, $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} - α -locally open set in an intuitionistic fuzzy topological space (X,T). Let $x_{r,s}$ be any intuitionistic fuzzy point in $f^{-1}(A)$. Then $x_{r,s} \in f^{-1}(A)$. We have $x_{r,s}qf^{-1}(A)$ implies that $f(x_{r,s})qf(f^{-1}(A))$. But $f(f^{-1}(A)) \subseteq A$. Thus, for any intuitionistic fuzzy point $x_{r,s}$ and $A \in N_{\varepsilon}f(x_{r,s})$, there exists $B = f^{-1}(A) \in N_{\varepsilon}^{IFG_{\delta}-\alpha-lq}(x_{r,s})$ such that $f^{-1}(f(A)) \subseteq A$. Therefore, $f(B) \subseteq A$. Thus, f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proposition 3.13. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy bijective function. Then f is an intuitionistic fuzzy G_{δ} - α -locally continuous function if and only if $IFint(f(A)) \subseteq f(IFG_{\delta}-\alpha-lint(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T).

Proof. Assume that f is an intuitionistic fuzzy G_{δ} - α -locally continuous function and A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Hence, $f^{-1}(IFint(f(A)))$ is an intuitionistic fuzzy G_{δ} - α -locally open set in an intuitionistic fuzzy topological space (X,T). From Proposition(v) of (3.1)

$$f^{-1}(IFintf(A)) \subseteq IFG_{\delta} - \alpha - lint(f^{-1}(f(A)))$$

 $f^{-1}(IFintf(A)) \subseteq IFG_{\delta} - \alpha - lint(A)$

Since f is an intuitionistic fuzzy surjective function,

$$f(f^{-1}(IFintf(A))) \subseteq f(IFG_{\delta} - \alpha - lint(A))$$

That is, $IFint(f(A)) \subseteq f(IFG_{\delta}-\alpha-lint(A))$.

Conversely, assume that $IFint(f(A)) \subseteq f(IFG_{\delta}-\alpha-lint(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T). Let B be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (Y,S). Then B = IFint(B). Since f is an intuitionistic fuzzy surjective function,

$$B = IFint(B) = IFint(f(f^{-1}(B))) \subset f(IFG_{\delta} - \alpha - lint(f^{-1}(B)))$$

Since f is an intuitionistic fuzzy injective function,

$$f^{-1}(B) \subseteq f^{-1}(f(IFG_{\delta} - \alpha - lint(f^{-1}(B))))$$

From the fact that, f is an intuitionistic fuzzy injective function, we have

(3.3)
$$f^{-1}(B) \subseteq IFG_{\delta} - \alpha - lint(f^{-1}(B))$$

But

(3.4)
$$IFG_{\delta}-\alpha-lint(f^{-1}(B)) \subseteq f^{-1}(B)$$

From (3.3) and (3.4) implies that $f^{-1}(B) = IFG_{\delta} - \alpha - lint(f^{-1}(B))$ That is, $f^{-1}(B)$ is an intuitionistic fuzzy G_{δ} - α -locally open set in an intuitionistic fuzzy topological space (X,T). Thus, f is an intuitionistic fuzzy $G_{\delta} - \alpha$ -locally continuous function.

Proposition 3.14. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy bijective function. Then

f is an intuitionistic fuzzy G_{δ} - α -locally continuous function if and only if $f(IFG_{\delta}$ - α -lcl(A)) $\subseteq IFcl(f(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T).

Proof. Assume that f is an intuitionistic fuzzy G_{δ} - α -locally continuous function and A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Hence, $f^{-1}(IFcl(f(A)))$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T). By Proposition(iv) of (3.1)

$$IFG_{\delta} - \alpha - lcl(f^{-1}(f(A))) \subseteq f^{-1}(IFclf(A))$$

Since f is an intuitionistic fuzzy injective function, IFG_{δ} - α - $lcl(A) \subseteq f^{-1}(IFclf(A))$ Taking f on both sides, $f(IFG_{\delta}$ - α - $lcl(A)) \subseteq f(f^{-1}(IFclf(A)))$

Since f is an intuitionistic fuzzy surjective function, $f(IFG_{\delta}\text{-}\alpha\text{-}lcl(A)) \subseteq IFcl(f(A))$ Conversely, assume that $f(IFG_{\delta}\text{-}\alpha\text{-}lcl(A)) \subseteq IFcl(f(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T). Let B be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y,S). Then B = IFcl(B). Since f is an intuitionistic fuzzy surjective function and by assumption,

$$B = IFcl(B) = IFcl(f(f^{-1}(B))) \supseteq f(IFG_{\delta} - \alpha - lcl(f^{-1}(B)))$$
$$f^{-1}(B) \supseteq f^{-1}(f(IFG_{\delta} - \alpha - lcl(f^{-1}(B))))$$

Since f is an intuitionistic fuzzy injective function,

(3.5)
$$f^{-1}(B) \supseteq IFG_{\delta} - \alpha - lcl(f^{-1}(B))$$

But

(3.6)
$$f^{-1}(B) \subseteq IFG_{\delta} - \alpha - lcl(f^{-1}(B))$$

From (3.5) and (3.6) implies that $f^{-1}(B) = IFG_{\delta} - \alpha - lcl(f^{-1}(B))$. That is, $f^{-1}(B)$ is an intuitionistic fuzzy $G_{\delta} - \alpha$ -locally closed set in an intuitionistic fuzzy topological space (X,T). Thus, f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proposition 3.15. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy bijective function. If f is an intuitionistic fuzzy G_{δ} - α -locally continuous function. Then if $A\in I^Y$ is an intuitionistic fuzzy closed set, then $f^{-1}(A)=IFG_{\delta}$ - α -lcl $(f^{-1}(A))$.

Proof. Let A be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y, S). By Proposition(iv)of (3.1)

(3.7)
$$IFG_{\delta}-\alpha - lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A)) = f^{-1}(A)$$

Since A = IFcl(A). But

$$(3.8) f^{-1}(A) \subset IFG_{\delta} - \alpha - lcl(f^{-1}(A))$$

From (3.7) and (3.8) implies that
$$f^{-1}(A)=IFG_{\delta}-\alpha-lcl$$
 ($f^{-1}(A)$

Proposition 3.16. Let (X,T), (Y,S) and (Z,R) be any three intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy G_{δ} - α -locally continuous function. If $f(X)\subset Z\subset Y$ then $g:(X,T)\to (Z,R)$ where R=S/Z restricting the range of f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proof. Let B be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Z,R). Then B=S/Z, for some intuitionistic fuzzy closed set A of an intuitionistic fuzzy topological space (Y,S). If $f(X) \subset Z \subset Y, f^{-1}(A) = g^{-1}(B)$. Since $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T). Hence, $g^{-1}(B)$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T). Therefore, g is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proposition 3.17. Let (X,T), (X_1,T_1) and (X_2,T_2) be any three intuitionistic fuzzy topological spaces and $P_i: X_1 \times X_2 \to X_i$ be an intuitionistic fuzzy projection of $X_1 \times X_2$ onto X_i . If $f: X \to X_1 \times X_2$ is an intuitionistic fuzzy G_{δ} - α -locally continuous function. Then $P_i \circ f: X \to X_i$ is also an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proof. Let A be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological spaces (X_i, T_i) (i = 1, 2), $(P_i \circ f)^{-1}(A) = f^{-1}(P_i^{-1}(A))$. Since P_i is an intuitionistic fuzzy mapping $P_i^{-1}(A)$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological spaces $X_1 \times X_2$. Hence, $f^{-1}(P_i^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X, T). Hence, $P_i \circ f$ is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proposition 3.18. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If intuitionistic fuzzy graph function $g: X \to X \times Y$ is an intuitionistic fuzzy G_{δ} - α -locally continuous function. Then $f: (X,T) \to (Y,S)$ is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proof. Let g be an intuitionistic fuzzy G_{δ} - α -locally continuous function and $x_{r,s}$ be any intuitionistic fuzzy point in an intuitionistic fuzzy topological space (X,T).

If $B \in N^{IFG_{\delta}-\alpha-lq}_{\varepsilon}f(x_{r,s})$ in an intuitionistic fuzzy topological space $(Y,S), X \times B \in N^{IFG_{\delta}-\alpha-lq}_{\varepsilon}g(x_{r,s})$ in an intuitionistic fuzzy topological space $X \times Y$. Since g is an intuitionistic fuzzy G_{δ} - α -locally continuous function, there exists $A \in N_{\varepsilon}(x_{r,s})$ such that $g(A) \subseteq X \times B$. By Definition 3.9, we have $f(A) \subseteq B$. Therefore, f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Definition 3.19. Let(X, T) and (Y, S) be two intuitionistic fuzzy topological spaces. Let $f: (X, T) \to (Y, S)$ be an intuitionistic fuzzy mapping. Then f is said to be an

- (i) intuitionistic fuzzy G_{δ} - α -locally irresolute function, if for each intuitionistic fuzzy G_{δ} - α -locally closed set A in an intuitionistic fuzzy topological space (Y, S), $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X, T).
- (ii) intuitionistic fuzzy weakly G_{δ} - α -locally continuous function, if for each intuitionistic fuzzy G_{δ} - α -locally closed set A in an intuitionistic fuzzy topological space (Y, S), $f^{-1}(A)$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (X, T).

Proposition 3.20. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy mapping. Then the following statements are equivalent

(i) f is an intuitionistic fuzzy G_{δ} - α -locally irresolute function.

- (ii) for every intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T), $f(IFG_{\delta}-\alpha-lcl(A)) \subseteq IFG_{\delta}-\alpha-lcl(f(A))$.
- (iii) for every intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y, S), IFG_{δ} - α - $lcl(f^{-1}(A)) \subseteq f^{-1}$ $(IFG_{\delta}$ - α -lcl(A)).

Proof.

(i) \Rightarrow (ii) Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Suppose f is an intuitionistic fuzzy G_{δ} - α -locally irresolute function. Now, IFG_{δ} - α -lcl(f(A)) is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Y,S). By hypothesis, f^{-1} (IFG_{δ} - α -lcl(f(A))) is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T) and hence,

$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(IFG_{\delta} - \alpha - lcl(f(A)))$$

Now, IFG_{δ} - α - $lcl(A) \subseteq f^{-1}$ $(IFG_{\delta}$ - α -lcl(f(A)))That is, $f(IFG_{\delta}$ - α - $lcl(A)) \subseteq IFG_{\delta}$ - α -lcl(f(A))

(ii) \Rightarrow (iii) Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y, S), then $f^{-1}(A)$ is an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X, T). By (ii),

$$f(IFG_{\delta} - \alpha - lcl(f^{-1}(A))) \subseteq IFG_{\delta} - \alpha - lcl(f(f^{-1}(A)))$$

Since f is an intuitionistic fuzzy bijective function,

$$IFG_{\delta} - \alpha - lcl(f^{-1}(A)) \subseteq f^{-1}(IFG_{\delta} - \alpha - lcl(A))$$

(iii) \Rightarrow (i) Suppose A is intuitionistic fuzzy IF G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Y, S). Then, IFG_{δ} - α -lcl(A) = A. By hypothesis,

$$IFG_{\delta} - \alpha - lcl(f^{-1}(A)) \subseteq f^{-1}(IFG_{\delta} - \alpha - lcl(A))$$

 $IFG_{\delta} - \alpha - lcl(f^{-1}(A)) \subseteq f^{-1}(A).$

Definition 3.21. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy mapping. Then f is said to be an

- (i) intuitionistic fuzzy G_{δ} - α -locally function, if for each intuitionistic fuzzy closed set A in an intuitionistic fuzzy topological space (X,T), f(A) is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Y,S).
- (ii) intuitionistic fuzzy strongly G_{δ} - α -locally function, if for each intuitionistic fuzzy G_{δ} - α -locally closed set A in an intuitionistic fuzzy topological space (X,T), f(A) is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Y,S).

Proposition 3.22. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy mapping. Then the following statements are equivalent

- (i) f is an intuitionistic fuzzy G_{δ} - α -locally function.
- (ii) for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y, S) and each intuitionistic fuzzy closed set B of an intuitionistic fuzzy topological

space (X,T) with $f^{-1}(A) \subseteq B$, there is an intuitionistic fuzzy G_{δ} - α -locally closed set C of an intuitionistic fuzzy topological space (Y,S) with $A \subseteq C$ such that $f^{-1}(C) \subseteq B$.

- (iii) $f^{-1}(IFG_{\delta}-\alpha-lcl(A)) \subseteq IFcl(f^{-1}(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y, S).
- (iv) $f(IFint(B)) \subseteq IFG_{\delta}$ - α -lint(f(B)), for each intuitionistic fuzzy set B of an intuitionistic fuzzy topological space (X,T).

Proof.

- (i) \Rightarrow (ii) Suppose f is an intuitionistic fuzzy G_{δ} - α -locally function. Let A be any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y, S). Let B be any intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (X, T) such that $f^{-1}(A) \subseteq B$. Let $C = \overline{f(\overline{B})}$. Then C is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Y, S) and $A \subseteq C$. We have, $f^{-1}(C) = f^{-1}(\overline{f(\overline{B})}) = \overline{f^{-1}(f(\overline{B}))} \subseteq B$. Therefore, $f^{-1}(C) \subseteq B$.
- (ii) \Rightarrow (i) Let D be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (X,T). Put $A = \overline{f(D)}$ and $B = \overline{D}$. Thus, $f^{-1}(A) = f^{-1}(\overline{f(D)}) = \overline{f^{-1}(f(D))} \subseteq \overline{D}$. By hypothesis, there exists an intuitionistic fuzzy topological space (Y,S) with $A \subseteq C$ such that $f^{-1}(C) \subseteq B = \overline{D}$. Then, $\overline{f^{-1}(C)} \supseteq D \Rightarrow D \subseteq f^{-1}(\overline{C})$. Hence,

(3.9)
$$f(D) \subseteq f(f^{-1}(\overline{C})) \subseteq \overline{C}$$

Also, since $A \subseteq C$, we have $\overline{f(D)} \subseteq C$. This implies

$$(3.10) f(D) \supseteq \overline{C}$$

From (3.9) and (3.10), we get $f(D) = \overline{C}$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Y, S). Hence, f is an intuitionistic fuzzy G_{δ} - α -locally function.

- (ii) \Rightarrow (iii) Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y, S). Since $IFcl(f^{-1}(A))$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (X, T) with $f^{-1}(A) \subseteq IFcl(f^{-1}(A))$. Then by (ii), there is an intuitionistic fuzzy G_{δ} - α -locally closed set C in an intuitionistic fuzzy topological space (Y, S) with $A \subseteq C$, $f^{-1}(IFG_{\delta}$ - α - $lcl(A)) \subseteq IFG_{\delta}$ - α - $lcl(C) \subseteq IFcl(f^{-1}(A))$. Therefore, $f^{-1}(IFG_{\delta}$ - α - $lcl(A)) \subseteq IFcl(f^{-1}(A))$.
- (iii) \Rightarrow (iv) $f^{-1}(IFG_{\delta}-\alpha-lcl(A)) \subseteq IFcl(f^{-1}(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y, S). Putting $A = \overline{f(B)}$,

$$f^{-1}(IFG_{\delta} - \alpha - lcl(\overline{f(B)}) \subseteq IFcl(f^{-1}(\overline{f(B)}))$$

$$\subseteq IFcl(f^{-1}(f(\overline{B}))) \subseteq IFcl(\overline{B})$$

$$\subseteq \overline{IFint(B)}$$

$$f^{-1}(\overline{IFG_{\delta}-\alpha - lint(f(B))}) \subseteq \overline{IFint(B)}$$

Taking complement on both sides.

$$\overline{f^{-1}(\overline{IFG_{\delta}-\alpha\text{-}lint(f(B))})} \supseteq \overline{\overline{IFint(B)}}$$

$$f^{-1}(\overline{IFG_{\delta}-\alpha-lint(f(B))}) \supseteq \overline{IFint(B)}$$

$$409$$

Therefore, $f(IFint(B)) \subseteq IFG_{\delta}-\alpha-lint(f(B))$. (iv) \Rightarrow (i). It is obvious.

Definition 3.23. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy mapping. Then f is said to be an intuitionistic fuzzy G_{δ} - α -locally homeomorphism if f is one to one, onto, intuitionistic fuzzy G_{δ} - α -locally irresolute function and intuitionistic fuzzy strongly G_{δ} - α -locally function.

Proposition 3.24. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ is an intuitionistic fuzzy G_δ - α -locally homeomorphism. Then the following statements are valid.

(i) For any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (X,T),

$$IFG_{\delta} - \alpha - lcl(f(A)) = f(IFG_{\delta} - \alpha - lcl(A))$$

(ii) For any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (X,T),

$$f(\overline{IFG_{\delta}-\alpha-lint(\overline{A})}) = \overline{IFG_{\delta}-\alpha-lint(f(\overline{A}))}$$

(iii) For any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y, S),

$$IFG_{\delta} - \alpha - lcl(f^{-1}(A)) = f^{-1}(IFG_{\delta} - \alpha - lcl(A))$$

(iv) For any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y, S),

$$f^{-1}(\overline{IFG_{\delta}-\alpha-lint(\overline{A})}) = \overline{IFG_{\delta}-\alpha-lint(f^{-1}(\overline{A}))}$$

Proof.

(i) Let A be any intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Since f is an intuitionistic fuzzy G_{δ} - α -locally irresolute function. By (ii) and (iii) of Proposition(3.8)

$$(3.11) f(IFG_{\delta}-\alpha-lcl(A)) \subset IFG_{\delta}-\alpha-lcl(f(A))$$

$$(3.12) IFG_{\delta} - \alpha - lclf(A) \subseteq f(IFG_{\delta} - \alpha - lcl(A))$$

From (3.11) and (3.12) implies that $IFG_{\delta}-\alpha-lclf(A)=f(IFG_{\delta}-\alpha-lcl(A))$

(ii) Let A be any intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Since f is an intuitionistic fuzzy G_{δ} - α -locally homeomorphism. Then by above condition (ii), IFG_{δ} - α - $lclf(A) = f(IFG_{\delta}$ - α -lcl(A)). Now,

$$\overline{IFG_{\delta}\text{-}\alpha\text{-}lint(\overline{f(A)})} = \overline{f(IFG_{\delta}\text{-}\alpha\text{-}lint(\overline{A}))}$$

$$f(\overline{IFG_{\delta}-\alpha\text{-}lint(\overline{A})}) = \overline{IFG_{\delta}-\alpha\text{-}lint(f(\overline{A}))}$$

(iii) Let A be any intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y, S). Since f is an intuitionistic fuzzy G_{δ} - α -locally homeomorphism. Since f is an intuitionistic fuzzy strongly G_{δ} - α -locally function. Also, f^{-1} is an intuitionistic fuzzy G_{δ} - α -locally irresolute function. By (ii) and (iii) of Proposition(3.8)

(3.13)
$$IFG_{\delta} - \alpha - lcl(f^{-1}(A)) \subseteq f^{-1}(IFG_{\delta} - \alpha - lcl(A))$$

$$410$$

$$(3.14) f^{-1}(IFG_{\delta}-\alpha-lcl(A)) \subseteq IFG_{\delta}-\alpha-lcl(f^{-1}(A))$$

From (3.13) and (3.14) implies that IFG_{δ} - α - $lcl(f^{-1}(A)) = f^{-1}(IFG_{\delta}$ - α -lcl(A))

(iv) Let A be any intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y, S). Since f is an intuitionistic fuzzy G_{δ} - α -locally homeomorphism. Then by above condition (iii), IFG_{δ} - α - $lcl(f^{-1}(A)) = f^{-1}(IFG_{\delta}$ - α -lcl(A)) Taking complement on both sides,

$$\overline{IFG_{\delta}-\alpha\text{-}lint(\overline{f^{-1}(A)})} = \overline{f^{-1}(IFG_{\delta}-\alpha\text{-}lint(\overline{A}))}$$
$$f^{-1}(\overline{IFG_{\delta}-\alpha\text{-}lint(\overline{A})}) = \overline{IFG_{\delta}-\alpha\text{-}lint(f^{-1}(\overline{A}))}$$

Proposition 3.25. Let (X,T), (Y,S) and (Z,R) be any three intuitionistic fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ and $g:(Y,S)\to (Z,R)$ be any two intuitionistic fuzzy mappings. Then the following statements are valid.

- (i) If f is an intuitionistic fuzzy G_{δ} - α -locally irresolute function and g is an intuitionistic fuzzy G_{δ} - α -locally continuous function, then $g \circ f$ is an intuitionistic fuzzy G_{δ} - α -locally continuous function.
- (ii) If f is an intuitionistic fuzzy G_{δ} - α -locally continuous function and g is an intuitionistic fuzzy weakly G_{δ} - α -locally continuous function, then $g \circ f$ is an intuitionistic fuzzy G_{δ} - α -locally irresolute function.

Proof.

- (i) Let A be any intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Z,R). Since g is an intuitionistic fuzzy G_{δ} - α -locally continuous function, $g^{-1}(A)$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Y,S). Since f is an intuitionistic fuzzy G_{δ} - α -locally irresolute function, $f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T). Now, $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T). Hence, $g \circ f$ is an intuitionistic fuzzy G_{δ} - α -locally continuous function.
- (ii) Let A be any intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (Z,R). Since g is an intuitionistic fuzzy weakly G_{δ} - α -locally continuous function, $g^{-1}(A)$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y,S). Since f is an intuitionistic fuzzy G_{δ} - α -locally continuous function, $f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T). Now, $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - α -locally closed set in an intuitionistic fuzzy topological space (X,T). Hence, $g \circ f$ is an intuitionistic fuzzy G_{δ} - α -locally irresolute function. \square

Definition 3.26. An intuitionistic fuzzy topological space (X,T) is said to be an intuitionistic fuzzy G_{δ} - α -local T_2 space if and only if for every intuitionistic fuzzy points $c_{r,s}$ and $d_{m,n}$ in an intuitionistic fuzzy topological space (X,T) and $c \neq d$ there exists an intuitionistic fuzzy G_{δ} - α -locally open sets $G = \langle x, \mu_G, \gamma_G \rangle$, $H = \langle x, \mu_H, \gamma_H \rangle$ with $\mu_G(c) = 0$, $\gamma_G(c) = 1$, $\mu_H(d) = 1$, $\gamma_H(d) = 0$ and $G \cap H = 0_{\sim}$.

Proposition 3.27. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy injective mapping and intuitionistic fuzzy G_{δ} - α -locally continuous function. If (Y,S) is an intuitionistic fuzzy T_2 space, then (X,T) is an intuitionistic fuzzy G_{δ} - α -local T_2 space.

Proof. Let $c_{r,s}$ and $d_{m,n}$ be an intuitionistic fuzzy points in an intuitionistic fuzzy topological space (X,T) and $c \neq d$. By intuitionistic fuzzy injective function of f, we have $f(c) \neq f(d)$. Since, (Y,S) is an intuitionistic fuzzy T_2 space, there exists an intuitionistic fuzzy open sets $G = \langle y, \mu_G, \gamma_G \rangle$, $H = \langle y, \mu_H, \gamma_H \rangle$ of S with $\mu_G(f(c)) = 0$, $\gamma_G(f(c)) = 1$, $\mu_H(f(d)) = 1$, $\gamma_H(f(d)) = 0$ and $G \cap H = 0$. Since f is an intuitionistic fuzzy G_δ - α -locally continuous function. This implies $f^{-1}(G) = \langle x, f^{-1}(\mu_G), f^{-1}(\gamma_G) \rangle$, $f^{-1}(H) = \langle x, f^{-1}(\mu_H), f^{-1}(\gamma_H) \rangle$ are $N_\varepsilon^{IFG_\delta - \alpha - lq}(c_{r,s})$ and $N_\varepsilon^{IFG_\delta - \alpha - lq}(d_{m,n})$ respectively. That is, $f^{-1}(G)$ and $f^{-1}(H)$ are intuitionistic fuzzy G_δ - α -locally open sets. Now,

$$f^{-1}(\mu_G)(c_{r,s}) = \mu_G(f(c)) = 0$$
$$f^{-1}(\gamma_G)(c_{r,s}) = \gamma_G(f(c)) = 1$$
$$f^{-1}(\mu_H)(d_{m,n}) = \mu_H(f(d)) = 1$$
$$f^{-1}(\gamma_H)(d_{m,n}) = \gamma_H(f(d)) = 0$$

and

$$f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(0_{\sim}) = 0_{\sim}.$$

Hence, (X,T) is an intuitionistic fuzzy G_{δ} - α -local T_2 space.

Proposition 3.28. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy injective mapping and intuitionistic fuzzy weakly G_{δ} - α -locally continuous function. If (Y,S) is an intuitionistic fuzzy G_{δ} - α -local T_2 space, then (X,T) is an intuitionistic fuzzy T_2 space.

Proof. Let $c_{r,s}$ and $d_{m,n}$ be an intuitionistic fuzzy points in an intuitionistic fuzzy topological space (X,T) and $c \neq d$. By intuitionistic fuzzy injective function of f, we have $f(c) \neq f(d)$. Since, (Y,S) is an intuitionistic fuzzy G_{δ} - α -local T_2 space, there exists an intuitionistic fuzzy G_{δ} - α -locally open sets $G = \langle y, \mu_G, \gamma_G \rangle$, $H = \langle y, \mu_H, \gamma_H \rangle$ of S with $\mu_G(f(c)) = 0$, $\gamma_G(f(c)) = 1$, $\mu_H(f(d)) = 1$, $\gamma_H(f(d)) = 0$ and $G \cap H = 0_{\sim}$. Since f is an intuitionistic fuzzy weakly G_{δ} - α -locally continuous function. This implies $f^{-1}(G) = \langle x, f^{-1}(\mu_G), f^{-1}(\gamma_G) \rangle$, $f^{-1}(H) = \langle x, f^{-1}(\mu_H), f^{-1}(\gamma_H) \rangle$ are $N_{\varepsilon}(c_{r,s})$ and $N_{\varepsilon}(d_{m,n})$ respectively. That is, $f^{-1}(G)$ and $f^{-1}(H)$ are intuitionistic fuzzy open sets. Now,

$$f^{-1}(\mu_G)(c_{r,s}) = \mu_G(f(c)) = 0$$

$$f^{-1}(\gamma_G)(c_{r,s}) = \gamma_G(f(c)) = 1$$

$$f^{-1}(\mu_H)(d_{m,n}) = \mu_H(f(d)) = 1$$

$$f^{-1}(\gamma_H)(d_{m,n}) = \gamma_H(f(d)) = 0$$

and

$$f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(0_{\sim}) = 0_{\sim}.$$

Hence, (X,T) is an intuitionistic fuzzy T_2 space.

Definition 3.29. An intuitionistic fuzzy topological space (X,T) is said to be an intuitionistic fuzzy G_{δ} - α -local Urysohn space if and only if for every intuitionistic fuzzy points $c_{r,s}$ and $d_{m,n}$ in an intuitionistic fuzzy topological space (X,T) and $c \neq d$ there exists an intuitionistic fuzzy G_{δ} - α -locally open sets $G = \langle x, \mu_G, \gamma_G \rangle$, $H = \langle x, \mu_H, \gamma_H \rangle$ with $\mu_G(c) = 0$, $\gamma_G(c) = 1$, $\mu_H(d) = 1$, $\gamma_H(d) = 0$ and IFG_{δ} - α - $lcl(G) \cap IFG_{\delta}$ - α - $lcl(H) = 0_{\sim}$.

Proposition 3.30. Every intuitionistic fuzzy G_{δ} - α -local Urysohn space is an intuitionistic fuzzy G_{δ} - α -local T_2 space.

Proof. Let (X,T) be an intuitionistic fuzzy G_{δ} - α -local Urysohn space. Then for every intuitionistic fuzzy points $c_{r,s}$ and $d_{m,n}$ in an intuitionistic fuzzy topological space (X,T) and $c \neq d$ there exists an intuitionistic fuzzy G_{δ} - α -locally open sets $G = \langle x, \mu_G, \gamma_G \rangle$, $H = \langle x, \mu_H, \gamma_H \rangle$ with $\mu_G(c) = 0$, $\gamma_G(c) = 1$, $\mu_H(d) = 1$, $\gamma_H(d) = 0$ and IFG_{δ} - α -lcl $(G) \cap IFG_{\delta}$ - α -lcl $(H) = 0_{\sim}$. Since $G \subseteq IFG_{\delta}$ - α -lcl(G) and $H \subseteq IFG_{\delta}$ - α -lcl(H). Then $G \cap H \subseteq IFG_{\delta}$ - α -lcl $(G) \cap IFG_{\delta}$ - α -lcl(H). This implies $G \cap H = 0_{\sim}$. Hence (X,T) is an intuitionistic fuzzy G_{δ} - α -local T_2 space.

4. Interrelation

Definition 4.1. Let(X, T) and (Y, S) be two intuitionistic fuzzy topological spaces. Let $f: (X, T) \to (Y, S)$ be an intuitionistic fuzzy mapping. Then f is said to be an

- (i) intuitionistic fuzzy locally continuous function, if for each intuitionistic fuzzy closed set A in an intuitionistic fuzzy topological space (Y, S), $f^{-1}(A)$ is an intuitionistic fuzzy locally closed set in an intuitionistic fuzzy topological space (X, T).
- (ii) intuitionistic fuzzy G_{δ} -locally continuous function, if for each intuitionistic fuzzy closed set A in an intuitionistic fuzzy topological space (Y, S), $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} -locally closed set in an intuitionistic fuzzy topological space (X, T).

Proposition 4.2. Let (X,T) and (Y,S) be two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy locally continuous function. Then f is an intuitionistic fuzzy G_{δ} -locally continuous function.

Proof. Let A be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y,S). Since f is an intuitionistic fuzzy locally continuous function, $f^{-1}(A)$ is an intuitionistic fuzzy locally closed set in an intuitionistic fuzzy topological space (X,T). Since every intuitionistic fuzzy closed set is an intuitionistic fuzzy G_{δ} -locally closed set, $f^{-1}(A)$ is also an intuitionistic fuzzy G_{δ} -locally closed set. Hence f is an intuitionistic fuzzy G_{δ} -locally continuous function.

Remark 4.3. The converse of the Proposition 4.1 need not true as shown in Example 4.1.

Example 4.4. Let $X=\{a\}$. Consider the intuitionistic fuzzy sets $A_n, n=0,1,2,...$ as follows. We define the intuitionistic fuzzy sets $A_n=\langle x,\mu_{A_n},\gamma_{A_n}\rangle, n=0,1,2...$ by $\mu_{A_n}(x)=\frac{n}{10n+1}$ and $\gamma_{A_n}(x)=1-\frac{n}{10n+1}$. Then the family $T=\{0_{\sim},1_{\sim},A_n:n=0,1,...\}$ is an intuitionistic fuzzy topology on X. Let $Y=\{a\}$ and $F=\langle y,\frac{a}{0.9},\frac{a}{0.1}\rangle$ be an intuitionistic fuzzy set in Y. Then the family $S=\{0_{\sim},1_{\sim},F\}$ is an intuitionistic fuzzy topology on Y. Define a function $f:(X,T)\to (Y,S)$ be an

identity function. Now, f is an intuitionistic fuzzy G_{δ} -locally continuous function. But f is not intuitionistic fuzzy locally continuous function.

Proposition 4.5. Let (X,T) and (Y,S) be two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy locally continuous function. Then f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proof. Let A be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y, S). Since f is an intuitionistic fuzzy locally continuous function, $f^{-1}(A)$ is an intuitionistic fuzzy locally closed set in an intuitionistic fuzzy topological space (X, T). Since every intuitionistic fuzzy closed set is an intuitionistic fuzzy G_{δ} - α -locally closed set, $f^{-1}(A)$ is also an intuitionistic fuzzy G_{δ} - α -locally closed set. Hence f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Remark 4.6. The converse of the Proposition 4.2 need not true as shown in Example 4.2.

Proposition 4.7. Let (X,T) and (Y,S) be two intuitionistic fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be an intuitionistic fuzzy G_{δ} -locally continuous function. Then f is an intuitionistic fuzzy G_{δ} - α -locally continuous function.

Proof. Let A be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y, S). Since f is an intuitionistic fuzzy G_{δ} -locally continuous function, $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} -locally closed set in an intuitionistic fuzzy topological space (X, T). Since every intuitionistic fuzzy G_{δ} -locally closed set is an intuitionistic fuzzy G_{δ} - α -locally closed set, $f^{-1}(A)$ is also an intuitionistic fuzzy G_{δ} - α -locally closed set. Hence f is an intuitionistic fuzzy G_{δ} - α -locally continuous function. \square

Remark 4.8. The converse of the Proposition 4.3 need not true as shown in Example 4.2.

Example 4.9. Let $X = \{a, b\}$ be a nonempty set. Let $A = \langle x, (\frac{a}{0.3}, \frac{b}{0.5}), (\frac{a}{0.2}, \frac{b}{0.3}) \rangle$ and $B = \langle x, (\frac{a}{0.5}, \frac{b}{0.6}), (\frac{a}{0.2}, \frac{b}{0.3}) \rangle$ be intuitionistic fuzzy sets of X. Then the family $T = \{0_{\sim}, 1_{\sim}, A, B\}$ is an intuitionistic fuzzy topology on X. Let $Y = \{a, b\}$ be a nonempty set. Let $F = \langle y, (\frac{a}{0.7}, \frac{b}{0.5}), (\frac{a}{0.3}, \frac{b}{0.2}) \rangle$ be an intuitionistic fuzzy set of Y. Then the family $S = \{0_{\sim}, 1_{\sim}, F\}$ is an intuitionistic fuzzy topology on Y. Define a function $f: (X, T) \to (Y, S)$ as f(a) = b and f(b) = a. Now, f is an intuitionistic fuzzy G_{δ} - α -locally continuous function. But f is not an intuitionistic fuzzy locally continuous function and intuitionistic fuzzy G_{δ} -locally continuous function.

Definition 4.10. An intuitionistic fuzzy topological space (X,T) is said to be intuitionistic fuzzy G_{δ} - α -local connected if and only if the only intuitionistic fuzzy sets which are both intuitionistic fuzzy G_{δ} - α -locally open set and intuitionistic fuzzy G_{δ} - α -locally closed set are 0_{\sim} and 1_{\sim} .

Proposition 4.11. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ is an intuitionistic fuzzy G_{δ} - α -locally continuous surjective function and (X,T) is an intuitionistic fuzzy G_{δ} - α -local connected space then (Y,S) is an intuitionistic fuzzy connected space.

Proof. Let (X,T) be an intuitionistic fuzzy G_{δ} - α -local connected space. Suppose that (Y,S) is not an intuitionistic fuzzy connected space. Then there exists a proper intuitionistic fuzzy set A such that A is both intuitionistic fuzzy open set and intuitionistic fuzzy closed set in (Y,S). Since f is an intuitionistic fuzzy G_{δ} - α -locally continuous surjective function, then $f^{-1}(A)$ is both intuitionistic fuzzy G_{δ} - α -locally open set and intuitionistic fuzzy G_{δ} - α -locally closed set in (X,T), which is contradiction. Hence, (Y,S) is an intuitionistic fuzzy connected space.

Definition 4.12. Let (X,T) be an intuitionistic fuzzy topological space. If a family $\{\langle x, \mu_{G_j}, \gamma_{G_j} \rangle : j \in J\}$ of an intuitionistic fuzzy G_{δ} - α -locally open sets in X satisfies the condition $\bigcup \{\langle x, \mu_{G_j}, \gamma_{G_j} \rangle : j \in J\} = 1_{\sim}$ then it is called as an intuitionistic fuzzy G_{δ} - α -locally open cover of an intuitionistic fuzzy topological space (X,T).

Definition 4.13. An intuitionistic fuzzy topological space (X,T) is said to be intuitionistic fuzzy G_{δ} - α -local compact if every intuitionistic fuzzy G_{δ} - α -locally open cover of $\{A_j: j \in J\}$ of an intuitionistic fuzzy topological space (X,T), there exists a finite subfamily $J_o \subset J$ such that $1_{\sim} = \bigcup \{A_j: j \in J_o\}$.

Proposition 4.14. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ is an intuitionistic fuzzy G_δ - α -locally continuous bijective function and (X,T) is an intuitionistic fuzzy G_δ - α -local compact space then (Y,S) is an intuitionistic fuzzy G_δ - α -local compact space.

Proof. Let $\{A_j : j \in J\}$ be an intuitionistic fuzzy open cover of an intuitionistic fuzzy topological space (Y, S) such that

$$(4.1) 1_{\sim} = \bigcup_{j \in J} A_j$$

Since f is an intuitionistic fuzzy G_{δ} - α -locally continuous bijective function, $\{f^{-1}(A_j): j \in J\}$ is an intuitionistic fuzzy G_{δ} - α -locally open cover of an intuitionistic fuzzy topological space (X,T). From (3.15),

$$f^{-1}(1_{\sim}) = f^{-1}(\bigcup_{j \in J} A_j)$$
$$1_{\sim} = \bigcup_{j \in J} f^{-1}(A_j)$$

Now, $\{f^{-1}(A_j): j \in J\}$ is an intuitionistic fuzzy G_{δ} - α -locally open cover of an intuitionistic fuzzy topological space (X,T). Since (X,T) is an intuitionistic fuzzy G_{δ} - α -local compact space, then there exist a finite subcover $\{f^{-1}(A_j): j=1,2,3,....n\}$ of $\{f^{-1}(A_j): j \in J\}$ is an intuitionistic fuzzy topological space (X,T). Then,

$$1_{\sim} = \bigcup_{j=1}^{n} f^{-1}(A_j)$$

Now,

$$f(1_{\sim}) = f(\bigcup_{\substack{j=1\\415}}^{n} f^{-1}(A_j))$$

Since f is an intuitionistic fuzzy surjective function,

$$1_{\sim} = \bigcup_{j=1}^{n} f(f^{-1}(A_j)) = \bigcup_{j=1}^{n} A_j$$

implies that (Y, S) is an intuitionistic fuzzy G_{δ} - α -local compact space.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [2] G. Balasubramanian, Maximal fuzzy topologies, Kybernetika 31 (1995) 459–464.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1) (1997) 81–89.
- [4] D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes IFS. 1(2) (1995) 79–84
- [5] M. Ganster and I. L. Relly, Locally closed sets and LC-continuous functions, Internat. J. Math. Math. Sci. 12 (1989) 417–424.
- [6] H. Gurcay and D. Coker, On fuzzy continuity in intuitiionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997) 365–378.
- [7] I. M. Hanafy, Completely continuous function in intuitionistic fuzzy topological space, Czechoslovak Math. J. 53 (2003) 793–803.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control 9(1965) 338–353.

R. NARMADA DEVI (narmadadevi23@gmail.com)

Department of mathemathics, Sri Saradha College for Women, Salem - 16, Tamil Nadu, India.

E. ROJA (arudhay@yahoo.co.in)

Department of mathemathics, Sri Saradha College for Women, Salem - 16, Tamil Nadu, India.

M. K. UMA (arudhay@yahoo.co.in)

Department of mathemathics, Sri Saradha College for Women, Salem - 16, Tamil Nadu, India.