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Abstract. In data envelopment analysis (DEA), performance evalua-
tion is generally assumed to be based on a set of quantitative data. But in
reality, many factors cannot be measured in a precise manner. In recent
years, in different applications of DEA, data have been observed whose
values are imprecise. Imprecise data can be fuzzy, interval, qualitative, or-
dinal or probabilistic. In many real world problem the qualitative factors
have an important roles. So attention to qualitative factors is essential.
The rankings are often provided from best to worst relative to particular
attributes. Such rank positions might better be presented in an ordinal,
rather than numerical sense. This paper introduces methods for solving
DEA models with qualitative factors and investigation the properties of
these models. Also we construct a two-level mathematical programming
model, that its optimal value represents the upper-bound of the efficiency
score.
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1. Introduction

In the data envelopment analysis (DEA) model of Charnes et al. [2], each member
of a set of decision making units (DMUs) can be evaluated relativly to its peers. The
standard data envelopment analysis method requires that the values for all inputs
and outputs be known exactly. However, this assumption may not be true. When
some outputs and inputs are unknown decision variables such as fuzzy, quantitative,
bounded data, ordinal data, and ratio bounded data, the DEA model becomes a non-
linear programming problem and is called imprecise DEA (IDEA). In real world
applications, however, there are cases where the data is described by qualitative
terms, which have only ordinal relations, without exact numerical values. Typical
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example is using the words excellent, good, fair, unsatisfactory, and poor to represent
performance. Linguistically, excellent is better than good, good is better than fair,
and so forth; however, to what degree the former is better than the latter is not
specified. Very often it is the case that for a factor such as management competence,
one can, at most, provide a ranking of the DMUs from best to worst relative to
this attribute. The capability of providing a more precise, quantitative measure
reflecting such a factor is generally beyond the realm of reality. In some situations
such factors can be legitimately ’quantified’, but very often such quantification may
be superficially forced as a modeling convenience. In such circumstances, ‘data’
for some certain factors (inputs and outputs) might be better represented as rank
positions in an ordinal data, rather than numerical values. In this regard, assigning
exact values to ordinal data distorts the original concept. The information available
may permit one only to put each DMU into one of L categories or groups (e.g. ‘high’,
‘medium’ and ‘low’ competence) [4].

How to properly represent qualitative data has been widely discussed in the lit-
erature. The research started with the work of Cook et al. [3]. with the basic idea
of using ordinal numbers to represent the precedence relationships of the qualita-
tive data. Cooper et al. [5] coined the name imprecise DEA (IDEA) for mixtures
of interval and ordinal data. Cooper et al. [5] apply a scale transformation tech-
nique accompanied with variable alterations and successfully transform the nonlinear
model to a linear one. Zhu [12] simplifies their approach to reduce the computational
burden. It will be shown in this paper that the efficiency scores calculated from their
method are the upper bound of the efficiency intervals. Here a problem arise from
Zhu’s approach, he used of too many zero inputs and outputs in the process of effi-
ciency evaluation. Cook et al.[4] presented a unified structure for embedding ordinal
(rank order) data into the DEA framework.

The structure of this paper is as follows. Section 2 presents standard DEA model
and IDEA approach for converting the ordinal data to interval data, also the deter-
mination suitable interval based on the point of decision maker is proposed. The
scale-transformation and variable-alternative approach is shown in section 3. The
two-level mathematical programming model indicate in Section 4, then the model
for calculating the upper-bound of efficiency score is proposed. Section 5 explains a
numerical example. The final section is allocated to conclusions.

2. Converting qualitative data to interval data in DEA

Data envelopment analysis (DEA) has been proved to be an useful tool in eval-
uating relative performance of homogeneous decision-making units (DMUs) in a
multiple-input and multiple-output setting. The traditional DEA estimates the ef-
ficiency index by calculating the ratio of weighted outputs to weighted inputs, and
the input and output weights are decided according to the best interests of the DMU
being evaluated.

Consider n decision making units, one DMU receives m different inputs to produce
s different outputs. Let xij and yrj denote the ith input and rth output, respectively,
of the jth decision making unit. Consider the multiplier form of the input-oriented
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CCR model (Charnes et al. [2]). The efficiency of DMUk, Ek, is calculated as:

(2.1)

max Ek =
s∑

r=1
µryrk

s.t.
m∑

i=1

vixik = 1,

s∑
r=1

µryrj −
m∑

i=1

vixij ≤ 0, all j,

µr, vi ≥ ε, all r, i.

where µr and vi are virtual multipliers and ε is a small non-Archimedean value.
It is assumed that all the input and output data xij and yrj (i=1,...,m; r=1,...,s;
j=1,...,n) cannot be exactly obtained due to the existence of uncertainty. They are
only known to lie within the upper and lower bounds represented by the interval
[xL

ij , x
U
ij ] and [yL

rj , y
U
rj ], where xL

ij > 0 and yL
rj > 0.

In order to deal with such an uncertain situation, the following pair of linear
programming models has been developed to generate the upper and lower bounds
of interval efficiency for each DMU [11]:

(2.2)

max EU
k =

s∑
r=1

µry
U
rk

s.t.
m∑

i=1

vix
L
ik = 1,

s∑
r=1

µry
U
rj −

m∑
i=1

vix
L
ij ≤ 0, all j,

µr, vi ≥ ε, all r, i.

(2.3)

max EL
k =

s∑
r=1

µry
L
rk

s.t.
m∑

i=1

vix
U
ik = 1,

s∑
r=1

µry
U
rj −

m∑
i=1

vix
L
ij ≤ 0, all j,

µr, vi ≥ ε, all r, i.

where EU
k stands for the best possible relative efficiency achieved by DMUk when

all the DMUs are in state of best production activity, while EL
k stands for the lower

bound of the best possible relative efficiency of DMUk.
Without loss of generality, assume rth output is qualitative factor, and a DMUj

can be assigned to one of L(L ≤ n) rank position. rank position values yr(`) (` =
1, ..., L) must satisfy in yr(`) > yr(` + 1). Therefore, the strong ordinal preference
information must satisfy as

(2.4) yr(1) > yr(2) > ... > yr(L)

Since DEA model has the property of unit-invariance, the use of scale transformation
to ordinal preference information does not change the original ordinal relationships
and has no effect on the efficiencies of DMUs. Therefore, it is possible to conduct a
scale transformation to every ordinal input and output index so that its best ordinal
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datum is less than or equal to unity and then give an interval estimate for each
ordinal datum.

For strong ordinal preference information yr(1) > yr(2) > ... > yr(L), we have
the following ordinal relationships of after scale transformation:

(2.5) 1 ≥ ỹr(1) > ỹr(2) > ... > ỹr(L) ≥ αr

where αr is a small positive number reflecting the ratio of the possible minimum of
{yr(`)| ` = 1, ..., L} to its possible maximum. It can be approximately estimated by
the decision maker. It is referred as the ratio parameter for convenience.

Strong ordinal preference information ỹr(`) > ỹr(`+1) can be expressed as ỹr(`) ≥
χrỹr(` + 1), where χr > 1 is the parameter on the degree of preference intensity
provided by decision maker and satisfying (χr)1−L ≥ αr. Therefore, for strong
ordinal preference information yr(1) > yr(2) > ... > yr(L), there is the following
ordinal relationships:

(2.6) 1 ≥ ỹr(1) ≥ χrỹr(2) ≥ ... ≥ (χr)`−1ỹr(`) ≥ ... ≥ (χr)L−1ỹr(L) ≥ (χr)L−1αr

The resultant permissible interval for each ỹr(`) can be derived as follows:

(2.7) ỹr(`) ∈ [αr(χr)L−`, (χr)1−`], ` = 1, .., L

Through the scale transformation above and the estimation of permissible intervals,
all the ordinal preference information is converted into interval data and can thus
be incorporated interval DEA models [11].

Note that wang et al. [11] utilized the following data for each ỹr(`) (` = 1, ..., L)
to evaluate the worst possible relative efficiency of DMUk:

ỹr(`1rk) = αr(χr)L−`1rk ,

ỹr(`) = (χr)1−` , (` 6= `1rk)

Lemma 2.1. Let ỹr(`1rk) = αr(χr)L−`1rk , ỹr(`) = (χr)1−` (` 6= `1rk). The ordinal re-
lationships (2.6) satisfies if and only if αr = (χr)1−L. (Note that (χr)1−L ≥ αr, χr >
1)

Proof. Assume that the ordinal relationships (2.6) holds. Then ỹr(`1rk) ≥ χrỹr(`1rk +
1), in other words αr(χr)L−`1rk ≥ χr(χr)1−(`1rk+1) therefore αr ≥ (χr)1−L. Since
(χr)1−L ≥ αr, it follows that αr = (χr)1−L.

Conversely, suppose that αr = (χr)1−L. Then ỹr(`) = (χr)1−` (∀`), that obvi-
ously the ordinal relationships (2.6) holds. ¤

3. Scale-transformation and variable-alternation approach

Consider the situation in which a set of n decision making units (DMUs), j =
1, ..., n are to be evaluated in terms of R1 quantitative outputs, R2 qualitative out-
puts, I1 quantitative inputs, I2 qualitative inputs. Let Y 1

j = (y1
rj) , Y 2

j = (y2
rj)

denote the R1-dimensional and R2-dimensional vectors of outputs, respectively. Sim-
ilarly, let X1

j = (x1
ij) and X2

j = (x2
ij) be the I1-and I2-dimensional vectors of inputs,

respectively.
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In the situation where all factors are quantitative and DMUk(k = 1, ..., n) is
under evaluation by the CCR model (Charnes et al. [2]), we have

(3.1)

Ek = max
∑

r∈R1

µ1
ry

1
rk +

∑
r∈R2

µ2
ry

2
rk

s.t.
∑

i∈I1

v1
i x1

ik +
∑

i∈I2

v2
i x2

ik = 1,
∑

r∈R1

µ1
ry

1
rj +

∑
r∈R2

µ2
ry

2
rj −

∑
i∈I1

v1
i x1

ij −
∑

i∈I2

v2
i x2

ij ≤ 0, all j,

µ1
r, µ

2
r, v

1
i , v2

i ≥ ε, all r, i.

where Ek is the efficiency score of DMUk , µ1
r, µ

2
r, v

1
i and v2

i are virtual multipliers
and ε is a small non-Archimedean value.

To place the problem in a general framework, assume that for each qualitative
factor (r ∈ R2, i ∈ I2), a DMUj can be assigned to one of L (L ≤ N) rank position.
We use the convention that for both outputs and inputs, a rating 1 is ‘best’, and L
‘worst’. For outputs, this means that a DMU ranked at position 1 generates more
output than a DMU in position 2, and so on. For inputs, a DMU in position 1
consumes less input than one in position 2.

One can view the allocation of a DMU to a rank position ` on an output r,
for example, as having assigned that DMU an output value or worth y2

r(`). The
implementation of the DEA model (3.1) thus involves determining two things:

(1) multiplier values µ2
r, v

2
i for outputs r ∈ R2 and inputs i ∈ I2;

(2) rank position values y2
r(`), r ∈ R2, and x2

i (`), i ∈ I2, all `.
To facilitate development herein, define the L-dimensional unit vectors γrj =

(γrj(`)), and δij = (δij(`)) where

γrj(`) =
{

1 if DMUj is ranked in `th position on output r,
0, otherwise,

δij(`) =
{

1 if DMUj is ranked in `th position on input i,
0, otherwise.

It is noted that y2
rj , x

2
ij can be represented in the form

y2
rj = y2

r(`1rj) =
L∑

`=1

y2
r(`)γrj(`),

x2
ij = x2

i (`
2
rj) =

L∑
`=1

x2
i (`)δij(`),

where `1rj and `2ij are the rank position occupied by DMUj on output r and input i,
respectively. Hence, model (3.1) can be rewritten in the more representative format:

(3.2)

Ek = max
∑

r∈R1

µ1
ry

1
rk +

∑
r∈R2

L∑
`=1

µ2
ry

2
r(`)γrk(`)

s.t.
∑

i∈I1

v1
i x1

ik +
∑

i∈I2

L∑
`=1

v2
i x2

i (`)δik(`) = 1,

∑
r∈R1

µ1
ry

1
rj +

∑
r∈R2

L∑
`=1

µ2
ry

2
r(`)γrj(`)−

∑
i∈I1

v1
i x1

ij +
∑

i∈I2

L∑
`=1

v2
i x2

i (`)δij(`) ≤ 0, all j,
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{Y 2
r = (y2

r(`)), X2
i = (x2

i (`))} ∈ Ψ, µ1
r, µ

2
r, v

1
i , v2

i ≥ ε, all r, i.
The values or worths {y2

r(`)}, {x2
i (`)}, attached to the ordinal rank position for

outputs r and inputs i, respectively, must satisfy the minimal requirement that it is
more important to be ranked in `th position than in the (` + 1)th position on any
such qualitative factor. Specifically, y2

r(`) > y2
r(`+1) and x2

i (`) < x2
i (`+1). That is,

for outputs, one places a higher weight on being ranked in `th place than in ` + 1th
place. For inputs, the opposite is true. Cook and Zhu [4] a set of linear conditions
that produce this realization is defined by the set Ψ, where

(3.3) Ψ = {(Y 2
r , X2

i )| y2
r(`)− y2

r(` + 1) ≥ δ, ` = 1, ..., L− 1, y2
r(L) ≥ δ, δ > 0 ,

x2
i (` + 1)− x2

i (`) ≥ σ, ` = 1, ..., L− 1, x2
i (1) ≥ σ, σ > 0}

Arguably, δ and σ could be made dependent upon ` (i.e. replace δ by δ`, σ by σ`).
It is noted that with the change of variables w1

r` = µ2
ry

2
r(`) and w2

i` = v2
i x2

i (`) the
model (3.2) can be converted to the following linear program:

(3.4)

Ek = max
∑

r∈R1

µ1
ry

1
rk +

∑
r∈R2

L∑
`=1

w1
r`γrk(`)

s.t.
∑

i∈I1

v1
i x1

ik +
∑

i∈I2

L∑
`=1

w2
i`δik(`) = 1,

∑
r∈R1

µ1
ry

1
rj +

∑
r∈R2

L∑
`=1

w1
r`γrj(`)−

∑
i∈I1

v1
i x1

ij +
∑

i∈I2

L∑
`=1

w2
i`δij(`) ≤ 0, all j,

w1
r` − w1

r,`+1 ≥ µ2
rδ, ` = 1, ..., L− 1, all r ∈ R2,

w1
rL ≥ µ2

rδ, all r ∈ R2,
w2

i` − w2
i,`+1 ≥ v2

i σ, ` = 1, ..., L− 1, all i ∈ I2,

w2
i1 ≥ v2

i σ, all i ∈ I2,
µ1

r, µ
2
r, v

1
i , v2

i ≥ ε, all r, i.

Theorem 3.1. For any positive values of δ, σ and adding (3.3) to model (3.2), this
model is equivalent with adding (12) to model (3.2). where

(3.5) Ψ′ = {(Y 2
r , X2

i )| y2
r(`)− y2

r(` + 1) ≥ δ′, ` = 1, ..., L− 1, y2
r(L) ≥ δ′,

x2
i (` + 1)− x2

i (`) ≥ σ′, ` = 1, ..., L− 1, x2
i (1) ≥ σ′}

and σ′, δ′ ≈ 0.

Proof. For any positive values δ, σ select a large enough number ρ, ω such that δ
ρ = δ′,

σ
ω = σ′. Now, for r ∈ R2 and i ∈ I2, define

ỹ2
r(`) =

y2
r(`)
ρ

, x̃2
i (`) =

x2
i (`)
ω

, µ̃2
r = ρµ2

r , ṽ2
i = ωv2

i .

Then model (3.2) with (3.3) is equivalent to model (3.2) with (3.5). This completes
the proof. ¤

Theorem 3.1 indicates that when (3.3) is imposed, model (3.2) is unable to dis-
criminate efficiency values based on y2

r(`) > y2
r(`+1), x2

i (`) < x2
i (`+1) from the ones

based on y2
r(`) ≥ y2

r(` + 1), x2
i (`) ≤ x2

i (` + 1), i.e., expression (3.3) cannot replace
y2

r(`) > y2
r(`+1), x2

i (`) < x2
i (`+1) in computation. In other words, expression (3.3)
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is not a valid and functional modification to y2
r(`) > y2

r(` + 1), x2
i (`) < x2

i (` + 1).
Thus we define
(3.6)

Ψ = {(Y 2
r , X2

i )| y2
r(`) ≥ χry

2
r(` + 1), ` = 1, ..., L− 1, y2

r(L) ≥ χr,
ηix

2
i (`) ≤ x2

i (` + 1), ` = 1, ..., L− 1, x2
i (1) ≥ ηi, χr , ηi > 1}

where χr, ηi can be approximately estimated by the decision maker. Hence, model
(3.2) rewritten as follows:

(3.7)

Ek = max
∑

r∈R1

µ1
ry

1
rk +

∑
r∈R2

L∑
`=1

w1
r`γrk(`)

s.t.
∑

i∈I1

v1
i x1

ik +
∑

i∈I2

L∑
`=1

w2
i`δik(`) = 1,

∑
r∈R1

µ1
ry

1
rj +

∑
r∈R2

L∑
`=1

w1
r`γrj(`)−

∑
i∈I1

v1
i x1

ij +
∑

i∈I2

L∑
`=1

w2
i`δij(`) ≤ 0, all j,

w1
r` − χrw

1
r,`+1 ≥ 0, ` = 1, ..., L− 1, all r ∈ R2,

w1
rL ≥ χrµ

2
r, all r ∈ R2,

w2
i,`+1 − ηiw

2
i` ≥ 0, ` = 1, ..., L− 1, all i ∈ I2,

w2
i1 ≥ ηiv

2
i , all i ∈ I2,

µ1
r, µ

2
r, v

1
i , v2

i ≥ ε, all r, i.

4. The two-level mathematical programming model

Consider the situation in which a set of n decision making units are to be evaluated
in terms of R1 quantitative outputs, R2 qualitative outputs, I1 quantitative inputs,
I2 qualitative inputs. Without loss of generality, we assume

(4.1)
1 ≥ y2

r(1) ≥ y2
r(2) ≥ ... ≥ y2

r(L) ≥ αr, (r ∈ R2)
βi ≤ x2

i (1) ≤ x2
i (2) ≤ ... ≤ x2

i (L) ≤ 1, (i ∈ I2)

where αr, βi are small positive numbers. Each set of pair (y2
r(`), x2

i (`)) (` = 1, ..., L; r
∈ R2; i ∈ I2) that satisfies the ordinal relationships (4.1), with other exact values,
can apply model (3.1) to calculate an efficiency score. Different (y2

r(`), x2
i (`)) sets

have different efficiency scores. The set of (y2
r(`), x2

i (`)) that attains the highest effi-
ciency score for DMUk can be determined from the following two-level mathematical
programming model:
(4.2)

EU
k = max imize

1≥y2
r(1)≥y2

r(2)≥...≥y2
r(L)≥br,

ai≤x2
i (1)≤x2

i (2)≤...≤x2
i (L)≤1,





Ẽk = max
∑

r∈R1

µ1
ry

1
rk +

∑
r∈R2

µ2
ry

2
r(`1rk)

s.t.
∑

i∈I1

v1
i x1

ik +
∑

i∈I2

v2
i x2

i (`
2
ik) = 1,

∑
r∈R1

µ1
ry

1
rj +

∑
r∈R2

µ2
ry

2
r(`1rj)−

∑
i∈I1

v1
i x1

ij −
∑

i∈I2

v2
i x2

i (`
2
ij) ≤ 0, all j,

µ1
r, µ

2
r, v

1
i , v2

i ≥ ε, all r, i.

The inner program, i.e., the second-level program, calculates the efficiency score for
each set of (y2

r(`), x2
i (`)) defined by the outer program, i.e., the first-level program,
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while the outer program determines the set of (y2
r(`), x2

i (`)) that produces the highest
efficiency score. The optimal value EU

k is the upper bound of the efficiency score for
DMUk.

Proposition 4.1. The highest efficiency score for DMUk is attained by setting its
qualitative outputs at the upper bounds and the qualitative inputs at the lower bounds,
meanwhile, the qualitative outputs of all other DMUs at their corresponding lowest
levels and the qualitative inputs at their corresponding highest levels. in other words,
the optimal value of following model is equals EU

k .

(4.3)

E∗
k = max

∑
r∈R1

µ1
ry

1
rk +

∑
r∈R2

µ2
rζ

1
rk

s.t.
∑

i∈I1

v1
i x1

ik +
∑

i∈I2

v2
i ζ2

ik = 1,
∑

r∈R1

µ1
ry

1
rj +

∑
r∈R2

µ2
rζ

1
rj −

∑
i∈I1

v1
i x1

ij −
∑

i∈I2

v2
i ζ2

ij ≤ 0, all j,

µ1
r, µ

2
r, v

1
i , v2

i ≥ ε, all r, i.

where ζ1
rj , ζ

2
ij define as follows:

ζ1
rj =

{
1 `1rj = 1, ..., `1rk,
br `1rj = `1rk + 1, ..., L,

ζ2
ij =

{
ai `2ij = 1, ..., `2ik,
1 `2ij = `2ik + 1, ..., L.

Proof. Obviously, E∗
k ≤ EU

k . Let set of (y2
r(`), x2

i (`)) (` = 1, ..., L; r ∈ R2; i ∈ I2)
is arbitrary and satisfies the ordinal relationships (4.1). Denote (µ̃1

r, µ̃
2
r, ṽ

1
i , ṽ2

i ) and
Ẽk as the optimal solution and the optimal value for the second-level program (4.2),
respectively. Also suppose E∗

k is optimal value to model (4.3), then can decrease µ̃2
r

to µ̄2
r so that µ̃2

ry
2
r(`1rk) = µ̄2

r and increase ṽ2
i to v̄2

i so that ṽ2
i x2

i (`
2
ik) = v̄2

i ai. So

(4.4)
∑

i∈I1

ṽ1
i x1

ik +
∑

i∈I2

v̄2
i ζ2

ik =
∑

i∈I1

ṽ1
i x1

ik +
∑

i∈I2

ṽ2
i x2

i (`
2
ik) = 1,

(4.5) µ̃2
ry

2
r(`1rj) ≥ µ̃2

ry
2
r(`1rk) = µ̄2

r = µ̄2
rζ

1
rj , (`1rj = 1, ..., `1rk; r ∈ R2)

(4.6) µ̃2
ry

2
r(`1rj) ≥ µ̄2

rbr = µ̄2
rζ

1
rj , (`1rj = `1rk + 1, ..., L; r ∈ R2)

(4.7) ṽ2
i x2

i (`
2
ij) ≤ ṽ2

i x2
i (`

2
ik) = v̄2

i ai = v̄2
i ζ2

ij , (`2ij = 1, ..., `2ik; i ∈ I2)

(4.8) ṽ2
i x2

i (`
2
ij) ≤ v̄2

i = v̄2
i ζ2

ij , (`2ij = `2ik + 1, ..., L; i ∈ I2)

The conditions (4.5)-(4.8) imply that:

(4.9)

∑
r∈R1

µ̃1
ry

1
rj +

∑
r∈R2

µ̄2
rζ

1
rj −

∑
i∈I1

ṽ1
i x1

ij −
∑

i∈I2

v̄2
i ζ2

ij ≤
∑

r∈R1

µ̃1
ry

1
rj +

∑
r∈R2

µ̃2
ry

2
r(`1rj)−

∑
i∈I1

ṽ1
i x1

ij −
∑

i∈I2

ṽ2
i x2

i (`
2
ij) ≤ 0, all j
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The conditions (4.4) and (4.9) imply that (µ̃1
r, µ̄

2
r, ṽ

1
i , v̄2

i ) is a feasible solution to
model (4.3). Also

Ẽk =
∑

r∈R1

µ̃1
ry

1
rk +

∑

r∈R2

µ̃2
ry

2
r(`1rk) =

∑

r∈R1

µ̃1
ry

1
rk +

∑

r∈R2

µ̄2
rζ

1
rk,

Then it holds that E∗
k ≥ Ẽk therefore E∗

k ≥ EU
k . This completes the proof. ¤

In this study, the basic idea is to find the values for the qualitative data and the
associated weights which yield the most favorable efficiency score for the DMU in
concern. As a result, in calculating the efficiency of a DMU, different values may be
assigned to the same ordinal rank position, e.g. `th position, from different DMUs.
Another case is that a smaller value is assigned to the `th position for output r from
one DMU than that assigned to the (` + 1)th position from another DMU. There-
fore we propose to adopt variable production frontiers to measure the efficiency of
different DMUs. Moreover, in this method the values for two consecutive ordinal
variables distinguished by a small value of δ. Mathematically, the small difference
of δ reflects the precedence relationship. In reality, however, this small difference
is not meaningful. Therefore this method only superficially reflect the precedence
relationship of the ordinal data. Kao and Lin [8] representing the qualitative levels
by fuzzy numbers and uses the opinion obtained from the DMUs being evaluated to
construct the membership function of the qualitative level. To deal quantitatively
with imprecise data, Bellman and Zadeh [1] introduced the notion of fuzziness, and
this approach has been successfully applied to solving many real world problems.
Under the framework of DEA, different models have also been developed for mea-
suring fuzzy efficiencies (Dia [6]; Guo and Tanaka [7]; Kao and Liu [9]; Leon et
al. [10]). However, these approaches are not appropriate for dealing with quali-
tative data, because they treat all fuzzy observations independently in calculating
efficiency. Therefore Kao and Lin [8], developed a new model. For more discussions
on their method, please refer to Kao and Lin [8]. Consider 12 DMUs with two in-
puts and two outputs as shown by Table 1. In this table, each DMU has two inputs
x1, x2 (columns 2 and 3) and two outputs y1, y2 (columns 4 and 5). Note that y2

is qualitative indicator. We consider the qualitative indicator (y2) with “1” for the
best and “5” for the worst.

5. Numerical example

Consider 12 DMUs with two inputs and two outputs as shown by Table 1. In this
table, each DMU has two inputs x1, x2 (columns 2 and 3) and two outputs y1, y2

(columns 4 and 5). Note that y2 is qualitative indicator. We consider the qualitative
indicator (y2) with “1” for the best and “5” for the worst.

The columns 2 and 3 in Table 2 indicated the efficiency scores by means of model
(3.4) when δ equal to 0.01 and 200, respectively. It can be seen that approach yields
the same efficiency scores. (according to Theorem 3.1)
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Table 1. The data for 12 DMU
DMUs Input x1 Input x2 Output y1 Output y2

1 4 51 90 1
2 31 46 97 3
3 152 24 54 2
4 83 56 83 2
5 74 75 104 3
6 26 25 36 4
7 1 3 2 3
8 2 33 49 5
9 51 7 70 3
10 28 289 26 4
11 401 179 630 2
12 241 233 384 3

We set χ = 1.5 and α = 0.01 for output y2. Based upon (2.7), we obtain the set
of interval data y2(`) ∈ [0.01(1.5)5−`, (1.5)1−`] (` = 1, ..., 5). The interval efficiency
shown in column 4. The efficiency scores obtained from (4.3) are presented in final
column.

Table 2
The result of hypothetical data for 12 DMU
DMUs Efficiency score Efficiency score Efficiency Highest

for δ = 0.01 for δ = 200 interval efficiency score
1 1 1 [1,1] 1
2 0.862 0.862 [0.862,0.862] 0.862
3 1 1 [0.252,0.312] 0.258
4 0.747 0.747 [0.438,0.439] 0.439
5 0.495 0.495 [0.495,0.495] 0.495
6 0.535 0.535 [0.503,0.503] 0.503
7 1 1 [0.327,1] 0.443
8 1 1 [1,1] 1
9 1 1 [1,1] 1
10 0.065 0.065 [0.0503,0.0504] 0.0504
11 0.831 0.831 [0.831,0.831] 0.831
12 0.577 0.577 [0.577,0.577] 0.577

There are the highest efficiency score in efficiency interval, but their scores aren’t
always the most value in efficiency interval for all DMUs. In the results of model
(4.3), DMU3 has efficiency score equal 0.258 but this unit is efficient in model (2.4),
it can be seen that DMU3 uses large inputs , therefore, this unit can not be efficient.

6. Conclusions

This paper reviews the two approaches for solving DEA with ordinal data. One
is based on converting ordinal data to interval data and the other is based on scale-
transformation and variable-alternation approach. The correction of intervals in
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converting ordinal data to interval data is proposed on the point of decision maker.
It is also shown that the strong ordinal relations are not correctly dealt in the
approach of scale-transformation and variable-alternation. We provide the improved
and corrected approach for imposing strong ordinal relations. In this paper is used
a two-level mathematical programming model, such as the calculated optimal value
represents the upper-bound of the efficiency; Also its equivalent model as a linear
programming is presented. The numerical example illustrate the weaknesses of the
old approaches, also shows the results of corrected approaches.
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