Annals of Fuzzy Mathematics and Informatics Volume 5, No. 2, (March 2013), pp. 349–360 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Anti fuzzy ideal of a ring

F. A. AZAM, A. A. MAMUN, F. NASRIN

Received 3 October 2011; Accepted 1 August 2012

ABSTRACT. An anti fuzzy ideal and lower level ideals of a ring X are defined. The fuzzification of lower level subset of fuzzy set is redefined and some properties are proved. In addition, the set $\frac{X}{A} = \{y + A : y \in X\}$ is shown as a quotient ring induced by the anti fuzzy ideal A.

2010 AMS Classification: 20N25, 03E72

Keywords: Fuzzy ideal, Anti fuzzy ideal, Lower level subset, Isomorphism

Corresponding Author: F. A. Azam (faqruddinaliazam@gmail.com)

1. INTRODUCTION

Rosenfeld [13] first studied the fuzzy subgroup of a group and then the fuzzification of algebraic structures started to grow up. Afterward, Liu [11] introduced the notion of fuzzy ideal. This idea of fuzzy ideal motivated Kumbhojkar and Bapat [9], Dixit et al. [5] and Zaid [15] to investigate the concepts of fuzzy coset and fuzzy quotient ring. Furthermore, the idea of anti fuzzy subgroups was introduced by Biswas [3] which ultimately was extended by many researchers, e.g., [1, 6, 7, 8, 10, 12, 16].

Our work is an extension of the Biswas' [3] idea of anti fuzzy subgroup of a group. In our paper we apply this idea to the theory of ring. We introduce a notion of anti fuzzy ideal A of a ring X and some of its properties are discussed. We give a definition of lower level ideal of a ring in this paper. We prove that a fuzzy set A of a ring X is an anti fuzzy ideal of X if and only if the lower level subsets \bar{A}_t [3] of A are ideals of X. By giving an example, we show that Biswas' [3] idea of fuzzification of lower level subsets of fuzzy set is not valid in general. Accordingly, a modified definition is given to fuzzify the lower level subsets \bar{A}_t of the fuzzy set A and it is revealed that if A is an anti fuzzy ideal of X, then so is $\delta_{\bar{A}_t}$, the fuzzification of \bar{A}_t . In addition, the set $\frac{X}{A} = \{y + A : y \in X\}$ is proved as a factor ring of the ring X induced by the anti fuzzy ideal A of X and some isomorphism theorems are established.

Unless otherwise stated, X is considered as a ring associated with two binary operations '+' and '.' throughout this paper; negative of x, x + (-y) and x.y are written as -x, x - y and xy, respectively; the zero (respectively identity, if exist) element of X is denoted by **0** (respectively **1**). Thus $x + (-x) = \mathbf{0}$ and x - y = x + (-y). The characteristic function of a subset U of X is denoted by $\mathbf{1}_U$.

2. Preliminaries

In this section, some definitions are recalled that have been employed in our analysis.

Definition 2.1 ([14]). A fuzzy set A in a nonempty set X is a mapping $A : X \to [0,1]$. If A is a fuzzy set in X and $x \in X$, then A(x) represents the membership value of x. Also by A^c , we denote the complement of A which is defined as $A^c(x) = 1 - A(x), \forall x \in X$. For two fuzzy sets A and B in X. We define

(i) A = B if and only if $A(x) = B(x) \forall x \in X$. (ii) $A \le B$ if and only if $A(x) \le B(x) \forall x \in X$.

(iii) $(A \lor B)(x) = max\{A(x), B(x)\} \forall x \in X.$ (iv) $(A \land B)(x) = min\{A(x), B(x)\} \forall x \in X.$

Definition 2.2 ([4]). Let $f : X \to Y$ be a mapping between sets and A a fuzzy set in X. Then the image f(A) is a fuzzy set in Y which is defined as

$$f(A)(y) = \begin{cases} \sup \{A(x) : x \in f^{-1}(y)\}, & \text{if } f^{-1}(y) \neq \phi \\ 0, & \text{if } f^{-1}(y) = \phi \end{cases}$$

Definition 2.3 ([7]). Let $f: X \to Y$ be a mapping between sets and A a fuzzy set in X. Then $f_{-}(A)$ is a fuzzy set in Y which is defined as

$$f_{-}(A)(y) = \begin{cases} \inf\{A(x) : x \in f^{-1}(y)\}, & \text{if } f^{-1}(y) \neq \phi \\ 1, & \text{if } f^{-1}(y) = \phi \end{cases}$$

Definition 2.4 ([4]). Let $f: X \to Y$ be a mapping between sets and B a fuzzy set in Y. Then the inverse image $f^{-1}(B)$ is a fuzzy set in X which is defined as

$$f^{-1}(B)(x) = B(f(x)), \forall x \in X.$$

Definition 2.5 ([11]). A fuzzy set A in X is called a fuzzy left (respectively, right) ideal of X if

(i) $A(x-y) \ge \min\{A(x), A(y)\}$

(ii) $A(xy) \ge \min\{A(x), A(y)\}$ and

(iii) $A(xy) \ge A(y)$ (respectively, $A(xy) \ge A(x)$).

Definition 2.6 ([3]). For a fuzzy set A in X and for $t \in [0, 1]$, the set $\bar{A}_t = \{x \in X : A(x) \leq t\}$ is called the lower level subset of the fuzzy set A.

Definition 2.7 ([3]). A fuzzy set μ of a group G is an anti fuzzy subgroup of G if and only if $\forall x, y \in G, \ \mu(xy^{-1}) \leq max\{\mu(x), \mu(y)\}$.

Definition 2.8. Let R and S be two rings. A function $f : R \to S$ such that f(a+b) = f(a) + f(b) and $f(ab) = f(a)f(b) \forall a, b \in R$ is called a homomorphism; if f is onto, i.e., f(R) = S, then f is called an epimorphism.

350

3. Anti fuzzy ideal

In this section, an anti fuzzy ideal A of X is defined and some results on this are proved.

Definition 3.1. A fuzzy set A of X is called an anti fuzzy left (respectively, right) ideal of X if $\forall x, y \in X$,

(i) $A(x-y) \le max\{A(x), A(y)\},\$

(ii) $A(xy) \le max\{A(x), A(y)\}$ and

(iii) $A(xy) \le A(y)$ (respectively, $A(xy) \le A(x)$).

Definition 3.2. A fuzzy set A of X is called an anti fuzzy ideal of X if it is an anti fuzzy left ideal as well as an anti fuzzy right ideal of X.

Remark 3.3. (i) A fuzzy set A of X is an anti fuzzy left (respectively, right) ideal of X if and only if A^c is a fuzzy left (respectively, right) ideal of X. (ii) Every anti fuzzy (left or right) ideal of X is an additive anti fuzzy subgroup of X.

Remark 3.4. If A is an anti fuzzy ideal of X, then $\forall x, y \in X$,

(i) $A(x-y) \le max\{A(x), A(y)\}$ and

(ii) $A(xy) \le \min\{A(x), A(y)\}.$

For every anti fuzzy (left or right) ideal A of X and $\forall x \in X$, we have $A(\mathbf{0}) = A(x-x) \leq max\{A(x), A(x)\} = A(x)$,

 $A(-x) = A(\mathbf{0} - x) \le max\{A(\mathbf{0}), A(x)\} = A(x) \text{ and } A(x) = A(\mathbf{0} - (-x)) \le max\{A(\mathbf{0}), A(-x)\} = A(-x).$

Again if $x, y \in X$ and A is an anti fuzzy (left or right) ideal of X such that $A(x-y) = A(\mathbf{0})$, then $A(y) = A(x - (x - y)) \leq max\{A(x), A(x - y)\} = A(x)$ and $A(x) = A(y - (y - x)) \leq max\{A(y), A(y - x)\} = max\{A(y), A(x - y)\} = A(y)$. Thus we have the following proposition:

Proposition 3.5. For every anti fuzzy (left or right) ideal A of X,

- (i) $A(\mathbf{0}) \le A(x), \ \forall \ x \in X.$
- (ii) $A(x) = A(-x), \forall x \in X.$

(iii) $A(x-y) = A(\mathbf{0}) \Rightarrow A(x) = A(y), \forall x, y \in X.$

Theorem 3.6. Let A and B be two anti fuzzy left (respectively, right) ideals of X. Then $A \lor B$ is also an anti fuzzy left (respectively, right) ideal of X.

Proof. $\forall x, y \in X$, we have

(i) $(A \lor B)(x - y) = max\{A(x - y), B(x - y)\} \le max\{A(x), A(y), B(x), B(y)\}$ = $max\{(A \lor B)(x), (A \lor B)(y)\},$

(ii) $(A \lor B)(xy) = max\{A(xy), B(xy)\} \le max\{A(x), A(y), B(x), B(y)\}\$ = $max\{(A \lor B)(x), (A \lor B)(y)\}$ and

(iii) $(A \lor B)(xy) = max\{A(xy), B(xy)\} \le max\{A(y), B(y)\}$

(respectively, $max\{A(x), B(x)\}$) = $(A \lor B)(y)$ (respectively, $(A \lor B)(x)$).

Thus we see that $A \lor B$ is an anti fuzzy left (respectively, right) ideal of X. \Box

Corollary 3.7. The sup of any set of anti fuzzy left (respectively, right) ideals of X is an anti fuzzy left (respectively, right) ideal of X.

The intersection of two anti fuzzy ideals is not necessarily an anti fuzzy ideal, which is justified in the following example:

Example 3.8. Let $X = (\mathbf{Z}, +, .)$, where **Z** is the set of integers. Define two fuzzy sets A and B in X by

 $A(x) = \left\{ \begin{array}{ll} \frac{1}{2}, & \text{if } x \text{ is a multiple of } 3\\ 1, & \text{otherwise} \end{array} \right\} \text{ and } B(x) = \left\{ \begin{array}{ll} \frac{4}{5}, & \text{if } x \text{ is even} \\ \frac{5}{6}, & \text{otherwise} \end{array} \right\}.$ It can be verified that A and B are anti fuzzy ideals of X. Now, take x = 9 and

y = 4. We see that $A(x) = \frac{1}{2}$, A(y) = 1, A(x - y) = 1, $B(x) = \frac{5}{6}$, $B(y) = \frac{4}{5}$ and $B(x-y) = \frac{5}{6}$. Clearly $(A \wedge B)(x) = \frac{1}{2}$, $(A \wedge B)(y) = \frac{4}{5}$ and $(A \wedge B)(x-y) = \frac{5}{6}$. Readily $(A \wedge B)(x - y) > \max\{(A \wedge B)(x), (A \wedge B)(y)\}.$

Thus we see that, the intersection of two anti fuzzy (left or right) ideals of X need not to be an anti fuzzy (left or right) ideal of X.

Example 3.9. Let $X = (\mathbf{Z}, +, .)$, where **Z** is the set of integers. Define two fuzzy

Example 5.5. Let A and B in X by sets A and B in X by $A(x) = \left\{ \begin{array}{c} \frac{4}{5}, & \text{if } x \text{ is even} \\ \frac{5}{6}, & \text{otherwise} \end{array} \right\}$ and $B(x) = \left\{ \begin{array}{c} 0, & \text{if } x \text{ is even} \\ 1, & \text{otherwise} \end{array} \right\}$. Now, $A \wedge B(x) = \left\{ \begin{array}{c} 0, & \text{if } x \text{ is even} \\ 1, & \text{otherwise} \end{array} \right\}$. It can be verified that A, B and $A \wedge B$

Theorem 3.10. Let X be a skew field. Then for every anti fuzzy (left or right) ideal A of X and $\forall x \in X, x \neq 0, A(x) = A(1).$

Proof. Let $x \in X, x \neq 0$. Suppose A is an anti fuzzy left ideal of X. Now A(x) = 0 $A(x.\mathbf{1}) \le A(\mathbf{1}) = A(x^{-1}.x) \le A(x) \Rightarrow A(x) = A(\mathbf{1}).$

Again, let A be an anti fuzzy right ideal of X. Now $A(x) = A(\mathbf{1},x) \leq A(\mathbf{1}) =$ $A(x.x^{-1}) \le A(x) \Rightarrow A(x) = A(1).$ \square

Theorem 3.11. Let A be a fuzzy set in X such that $\forall x \in X, x \neq 0, A(x) = A(x_0)$, where x_0 is a fixed element of X. Then A is an anti fuzzy ideal of X.

Proof. Let $x, y \in X$. Now consider the following cases:

Case-1: $(x = \mathbf{0} \text{ and } y \neq \mathbf{0})$ or $(x \neq \mathbf{0} \text{ and } y = \mathbf{0})$. Clearly $A(x - y) = A(x_0) \geq 0$ $A(\mathbf{0})$ and $A(xy) = A(\mathbf{0})$, and so $(i)A(x-y) = max\{A(x), A(y)\}$ and $(ii)A(xy) = max\{A(x), A(y)\}$ $min\{A(x), A(y)\}.$

Case-2: x = y = 0. The proof is trivial.

Case-3: $x \neq \mathbf{0}, y \neq \mathbf{0}$. Clearly $A(x) = A(y) = A(x_0) \ge A(\mathbf{0})$. Now (i) $A(x-y) = \begin{cases} A(\mathbf{0}), & \text{if } x = y \\ A(x_0), & \text{if } x \neq y \end{cases} \le A(x_0) = max\{A(x), A(y)\}$

and

(ii)
$$A(xy) = \begin{cases} A(\mathbf{0}), & \text{if } xy = \mathbf{0} \\ A(x_0), & \text{if } xy \neq \mathbf{0} \end{cases} \leq A(x_0) = \min\{A(x), A(y)\}.$$

Thus we see that A is an anti fuzzy ideal of X.

Theorem 3.12. U is a left (respectively, right) ideal of X if and only if $\mathbf{1}_{U^c}$ is an anti fuzzy left (respectively, right) ideal of X.

 \square

Proof. First, let U be a left (respectively, right) ideal of X and $x, y \in X$. Now consider the following cases:

Case-1: $\{x, y\} \subseteq U$. Clearly $x-y, xy \in U$. Now $\mathbf{1}_{U^c}(x) = \mathbf{1}_{U^c}(y) = \mathbf{1}_{U^c}(x-y) =$ $\mathbf{1}_{U^c}(xy) = 0$, and therefore, $\mathbf{1}_{U^c}$ is an anti fuzzy ideal of X.

Case-2: $\{x, y\} \cap U = \emptyset$. Clearly $max\{\mathbf{1}_{U^c}(x), \mathbf{1}_{U^c}(y)\} = 1$, and so, (i) $\mathbf{1}_{U^c}(x - y) \leq max\{\mathbf{1}_{U^c}(x), \mathbf{1}_{U^c}(y)\}$ and (ii) $\mathbf{1}_{U^c}(xy) \leq max\{\mathbf{1}_{U^c}(x), \mathbf{1}_{U^c}(y)\}$. Moreover $y \in U \Rightarrow xy \in U$ (respectively, $yx \in U$) $\Rightarrow \mathbf{1}_{U^c}(xy)$ (respectively, $\mathbf{1}_{U^c}(yx)$) $= \mathbf{1}_{U^c}(y) = 0$. On the other hand, $y \notin U \Rightarrow \mathbf{1}_{U^c}(xy) \leq \mathbf{1}_{U^c}(y) = 1$ and $\mathbf{1}_{U^c}(yx) \leq \mathbf{1}_{U^c}(y) = 1$. Therefore $\mathbf{1}_{U^c}$ is an anti fuzzy left (respectively, right) ideal of X.

Conversely, let $\mathbf{1}_{U^c}$ be an anti fuzzy left (respectively, right) ideal of $X, x, y \in U$ and $z \in X$. Now $\mathbf{1}_{U^c}(x) = \mathbf{1}_{U^c}(y) = 0$. Consequently $\mathbf{1}_{U^c}(x-y) = 0$, $\mathbf{1}_{U^c}(xy) = 0$ and $\mathbf{1}_{U^c}(zx)$ (respectively, $\mathbf{1}_{U^c}(xz)$) = 0, and so x - y, xy and xz (respectively, $zx) \in U$. Thus we see that U is a left (respectively, right) ideal of X. Hence the theorem is proved.

Theorem 3.13. Let X be a commutative ring with **1** such that for each anti fuzzy ideal A of X, A(x) = A(1), $\forall x \in X, x \neq 0$. Then X is a field.

Proof. Let U be a nonzero ideal of X. Now $\mathbf{1}_{U^c}$ is an anti fuzzy ideal of X. Therefore $\mathbf{1}_{U^c}(x) = \mathbf{1}_{U^c}(\mathbf{1}), \ \forall x \in X, \ x \neq \mathbf{0}$. In particular, if $x \in U$, then $\mathbf{1}_{U^c}(\mathbf{1}) = \mathbf{1}_{U^c}(x) = 0$. This implies that $\mathbf{1} \in U$, and so U = X. Thus we see that X has no non-zero proper ideal. Therefore X is a field.

Theorem 3.14. Every homomorphic pre-image of an anti fuzzy left (respectively, right) ideal is also in an anti fuzzy left (respectively, right) ideal.

Proof. Consider a homomorphism $f: X \to Y$ between rings. Let B be an anti fuzzy left (respectively, right) ideal of Y. Now $\forall x_1, x_2 \in X$,

(i)
$$f^{-1}(B)(x_1 - x_2) = B(f(x - x_2)) = B(f(x_1) - f(x_2))$$

 $\leq max\{B(f(x_1)), B(f(x_2))\} = max\{f^{-1}(B)(x_1), f^{-1}(B)(x_2)\},\$

(ii) $f^{-1}(B)(x_1x_2) = B(f(x_1x_2)) = B(f(x_1)f(x_2))$

 $\leq \max\{B(f(x_1)), B(f(x_2))\} = \max\{f^{-1}(B)(x_1), f^{-1}(B)(x_2)\}$

and

(iii) $f^{-1}(B)(x_1x_2) = B(f(x_1x_2)) = B(f(x_1)f(x_2)) \le B(f(x_2))$

(respectively, $B(f(x_1))) = f^{-1}(B)(x_2)$ (respectively, $f^{-1}(B)(x_1)$).

Thus we see that, $f^{-1}(B)$ is an anti fuzzy left (respectively, right) ideal of X. \Box

Theorem 3.15. Let $f : X \to Y$ be an epimorphism between rings and A an anti fuzzy ideal of X. Then $f_{-}(A)$ is an anti fuzzy ideal of Y.

Proof. It can be verified that $(f_{-}(A))^{c} = f(A^{c})$. Now A^{c} is a fuzzy ideal of X and so $f(A^{c})$ is a fuzzy ideal of Y (cf. [9]). Therefore by the Remark 3.3, $f_{-}(A)$ is an anti fuzzy ideal of Y.

Theorem 3.16. Let A be a fuzzy set in X. Then A is an anti fuzzy left (respectively, right) ideal of X if and only if for each t with $A(\mathbf{0}) \leq t \leq 1$, the lower level subset \overline{A}_t is a left (respectively, right) ideal of X.

Proof. First, let A be an anti fuzzy left (respectively, right) ideal of X. Suppose $A(\mathbf{0}) \leq t \leq 1$, $\{a, b\} \subseteq \overline{A}_t$ and $x \in X$. Then $A(a) \leq t$ and $A(b) \leq t$. Now $A(a - b) \leq max\{A(a), A(b)\} \leq t$, $A(ab) \leq max\{A(a), A(b)\} \leq t$ and $A(xa) \leq A(a) \leq t$ (respectively, $A(ax) \leq A(a) \leq t$). Therefore, a - b, ab, ax (respectively, $xa) \in \overline{A}_t$ and so \overline{A}_t is a left (respectively, right) ideal of X.

Conversely, let $\forall t$ with $A(\mathbf{0}) \leq t \leq 1$, the lower level subset \bar{A}_t is a left (respectively, right) ideal of X. Suppose $x, y \in X$, $t = max\{A(x), A(y)\}$. Now $A(x) \leq t$ and $A(y) \leq t$, and so $x, y \in \bar{A}_t$. Consequently x - y, $xy \in \bar{A}_t$ and therefore, $A(x - y) \leq t = max\{A(x), A(y)\}$ and $A(xy) \leq t = max\{A(x), A(y)\}$.

Again $y \in \bar{A}_{A(y)}$. Consequently $xy \in \bar{A}_{A(y)}$ (respectively, $yx \in \bar{A}_{A(y)}$). This implies that $A(xy) \leq A(y)$ (respectively, $A(yx) \leq A(y)$). Hence the theorem is proved.

Definition 3.17. Let A be an anti fuzzy ideal of X. Then for $A(\mathbf{0}) \leq t \leq 1$, the lower level subsets \bar{A}_t are called lower level ideals of A. In particular, the set $\bar{A}_{A(\mathbf{0})} = \{x \in X : A(x) = A(\mathbf{0})\}$ is also an ideal of X which will be denoted later on by A_0 .

Theorem 3.18. Given $0 \le s < t \le 1$, and A is an anti fuzzy ideal of X. Then $\bar{A}_s = \bar{A}_t \Leftrightarrow \exists no \ x \in X$ such that $s < A(x) \le t$.

Proof. First, let $\bar{A}_s = \bar{A}_t$. Therefore $x \in \bar{A}_t \Rightarrow x \in \bar{A}_s$. That is, $A(x) \leq t \Rightarrow A(x) \leq s$. Thus \exists no $x \in X$ such that $s < A(x) \leq t$.

Conversely, let \exists no $x \in X$ such that $s < A(x) \le t$. Therefore $A(x) \le t \Rightarrow A(x) \le s$. That is, $x \in \bar{A}_t \Rightarrow x \in \bar{A}_s$. Thus $\bar{A}_t \subseteq \bar{A}_s$. Moreover $\bar{A}_s \subseteq \bar{A}_t$, since s < t. Therefore $\bar{A}_s = \bar{A}_t$.

Theorem 3.19. For every anti fuzzy ideal A of X, there exists an anti fuzzy ideal \widehat{A} of $\frac{X}{A_0}$ such that $\widehat{A}(x + A_0) = A(x)$. On the other hand, if U is an ideal of X and \widehat{B} is an anti fuzzy ideal of $\frac{X}{U}$ such that $\widehat{B}(x+U) = \widehat{B}(U) \Leftrightarrow x \in U$, then there exists an anti fuzzy ideal A of X such that $A_0 = U$ and $\widehat{A} = \widehat{B}$.

Proof. Let A be an anti fuzzy ideal of X. Define $\widehat{A} : \frac{X}{A_0} \to [0,1]$ by $\widehat{A}(x+A_0) = A(x)$. \widehat{A} is well defined since, $x + A_0 = y + A_0 \Rightarrow x - y \in A_0 \Rightarrow A(x - y) = A(0)$ $\Rightarrow A(x) = A(y) \Rightarrow \widehat{A}(x+A_0) = \widehat{A}(y+A_0)$. Also we see that \widehat{A} is an anti fuzzy ideal of $\frac{X}{A_0}$, since

(i) $\widehat{A}((x+A_0) - (y+A_0)) = \widehat{A}((x-y) + A_0) = A(x-y) \le \max\{A(x), A(y)\}$ = $\max\{\widehat{A}(x+A_0), \widehat{A}(y+A_0)\}$

and

(ii) $\widehat{A}((x+A_0)(y+A_0)) = \widehat{A}((xy)+A_0) = A(xy) \le \min\{A(x), A(y)\} = \min\{\widehat{A}(x+A_0), \widehat{A}(y+A_0)\}.$

Again, let U be an ideal of X and \widehat{B} an anti fuzzy ideal of $\frac{X}{U}$ such that $\widehat{B}(x+U) = \widehat{B}(U) \Leftrightarrow x \in U$.

Now, define $A: X \to [0,1]$ by $A(x) = \widehat{B}(x+U)$. We see that A is well defined, since $x = y \Rightarrow x + U = y + U \Rightarrow \widehat{B}(x+U) = \widehat{B}(y+U) \Rightarrow A(x) = A(y)$. Also, A is an anti fuzzy ideal of X as,

(i) $\begin{aligned} A(x-y) &= \widehat{B}((x-y)+U) = \widehat{B}((x+U)-(y+U)) \le \max\{\widehat{B}(x+U), \widehat{B}(y+U)\} \\ &= \max\{A(x), A(y)\} \end{aligned}$

and

(ii) $A(xy) = \widehat{B}((xy) + U) = \widehat{B}((x+U)(y+U)) \le \min\{\widehat{B}(x+U), \widehat{B}(y+U)\}\ = \min\{A(x), A(y)\}.$

Again $x \in U \Leftrightarrow \widehat{B}(x+U) = \widehat{B}(U) \Leftrightarrow A(x) = A(\mathbf{0}) \Leftrightarrow x \in A_0$, and so $U = A_0$. 354 Finally, $\widehat{B}(x+U) = A(x) = \widehat{A}(x+A_0) = \widehat{A}(x+U)$. Thus $\widehat{A} = \widehat{B}$.

4. Fuzzification of a lower level subset

According to Biswas [3], the fuzzification of the lower level set $\bar{\mu}_t$ of the fuzzy set μ_t is the fuzzy set $A_{\bar{\mu}_t}$ defined by

$$A_{\bar{\mu}_t}(x) = \left\{ \begin{array}{ll} \mu(x) & \text{if } x \in \bar{\mu}_t \\ 0 & \text{otherwise} \end{array} \right\}$$

Based on this definition it was claimed [in [3], Proposition 5.1] that if μ is an anti fuzzy subgroup of a group G, then $A_{\bar{\mu}_t}$ is also an anti fuzzy subgroup of G. But our analysis proves that this proposition is not valid in general. For, if it is possible to find $x, y \in G$ such that $x \notin \bar{\mu}_t, y \notin \bar{\mu}_t$ but $xy^{-1} \in \bar{\mu}_t$, then $A_{\bar{\mu}_t}(xy^{-1}) = \mu(xy^{-1}), A_{\bar{\mu}_t}(x) = 0$ and $A_{\bar{\mu}_t}(y) = 0$, and therefore, the condition $A_{\bar{\mu}_t}(xy^{-1}) \leq max\{A_{\bar{u}_t}(x), A_{\bar{u}_t}(y)\}$ is not satisfied, in general, unless $\mu(xy^{-1}) = 0$. As for example, let \mathbf{Z} denotes the set of integers and $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{Z} \right\}$. Clearly G is a group under matrix addition. Now, consider two subgroups S_1 and S_2 of G such that $S_1 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ and $S_2 = \left\{ \begin{pmatrix} 0 & 2m \\ 0 & 2n \end{pmatrix} : m, n \in \mathbf{Z} \right\}$. Define $\mu : G \to [0, 1]$ by

$$\mu(x) = \begin{cases} 0, & \text{if } x \in S_1 \\ \frac{1}{2}, & \text{if } x \in S_2 - S_1 \\ 1, & \text{if } x \in G - S_2 \end{cases}$$

It can be verified that μ is an (additive) anti fuzzy subgroup of G and $\bar{\mu}_{\frac{1}{2}} = S_2$. Now, take $x = \begin{pmatrix} 0 & 3 \\ 0 & 5 \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix}$. Then $x \notin \bar{\mu}_{\frac{1}{2}}$, $y \notin \bar{\mu}_{\frac{1}{2}}$ but $x - y \in \bar{\mu}_{\frac{1}{2}}$. Clearly $A_{\bar{\mu}_{\frac{1}{2}}}(x) = 0$, $A_{\bar{\mu}_{\frac{1}{2}}}(y) = 0$ and $A_{\bar{\mu}_{\frac{1}{2}}}(x - y) = \frac{1}{2}$. Thus we see that $A_{\bar{\mu}_{\frac{1}{2}}}$ is not an (additive) anti fuzzy subgroup of G.

Here we give a modified definition of fuzzification of lower level subset:

Definition 4.1. Let A be a fuzzy set in X. For $t \in [0, 1]$, the fuzzification of the lower level subset $\bar{A}_t = \{x \in X : A(x) \le t\}$ is a fuzzy set $\delta_{\bar{A}_t}$ and is defined by

$$\delta_{\bar{A}_t}(x) = \left\{ \begin{array}{ll} A(x) & \text{if } x \in \bar{A}_t \\ 1 & \text{if } x \notin \bar{A}_t \end{array} \right\}.$$

Theorem 4.2. For a lower level subset \bar{A}_t of a fuzzy set A in X, $\overline{(\delta_{\bar{A}_t})_t} = \bar{A}_t$.

Proof. Let $x \in \overline{(\delta_{\bar{A}_t})_t}$. Then $\delta_{\bar{A}_t}(x) \leq t$. Also it is clear that $A \leq \delta_{\bar{A}_t}$. Consequently, $A(x) \leq t$, and so, $x \in \bar{A}_t$. Thus $\overline{(\delta_{\bar{A}_t})_t} \subseteq \bar{A}_t$.

Conversely, let $x \in \overline{A}_t$. Then $\delta_{\overline{A}_t}(x) = A(x) \leq t$. Therefore $x \in \overline{(\delta_{\overline{A}_t})_t}$. Thus $\overline{A}_t \subseteq \overline{(\delta_{\overline{A}_t})_t}$. Hence the theorem is proved.

Theorem 4.3. Let A be an anti fuzzy left ideal of X. Then $\delta_{\bar{A}_t}$ is also an anti fuzzy left ideal of X.

Proof. Let $x, y \in X$. Now consider the following cases:

Case-1: Suppose $x, y \in \overline{A}_t$. Clearly $x - y, xy \in \overline{A}_t$, since \overline{A}_t is a left ideal of X. Now

(i) $\delta_{\bar{A}_t}(x-y) = A(x-y) \le \max\{A(x), A(y)\} = \max\{\delta_{\bar{A}_t}(x), \delta_{\bar{A}_t}(y)\}$ (ii) $\delta_{\bar{A}_t}(xy) = A(xy) \le \max\{A(x), A(y)\} = \max\{\delta_{\bar{A}_t}(x), \delta_{\bar{A}_t}(y)\}$

and

(iii) $\delta_{\bar{A}_t}(xy) = A(xy) \le A(y) = \delta_{\bar{A}_t}(y) \}.$

Case-2: Suppose $x \in \bar{A}_t, y \notin \bar{A}_t$. Now $x - y \notin \bar{A}_t$, otherwise $y = x - (x - y) \in \bar{A}_t$, a contradiction. Clearly $\delta_{\bar{A}_t}(x - y) = \delta_{\bar{A}_t}(y) = 1$ and $\delta_{\bar{A}_t}(x) = A(x)$. Now

(i) $\delta_{\bar{A}_t}(x-y) = max\{\delta_{\bar{A}_t}(x), \delta_{\bar{A}_t}(y)\}$

(ii) $\delta_{\bar{A}_t}(xy) \le \max\{\delta_{\bar{A}_t}(x), \delta_{\bar{A}_t}(y)\}$

and

(iii) $\delta_{\bar{A}_t}(xy) \leq \delta_{\bar{A}_t}(y).$

Case-3: Suppose $x \notin \bar{A}_t$, $y \in \bar{A}_t$. Now $x - y \notin \bar{A}_t$ and $xy \in \bar{A}_t$. Clearly $\delta_{\bar{A}_t}(x-y) = \delta_{\bar{A}_t}(x) = 1$, $\delta_{\bar{A}_t}(y) = A(y)$ and $\delta_{\bar{A}_t}(xy) = A(xy)$. Now (i) $\delta_{\bar{A}_t}(x-y) = max\{\delta_{\bar{A}_t}(x), \delta_{\bar{A}_t}(y)\}$ (ii) $\delta_{\bar{A}_t}(xy) = A(xy) \leq max\{A(x), A(y)\}$

$$\leq \max\{1, \delta_{\bar{A}_{t}}(y)\} = \max\{\delta_{\bar{A}_{t}}(x)\}, \delta_{\bar{A}_{t}}(y)\}$$

and

 $\begin{array}{l} (\mathrm{iii}) \ \delta_{\bar{A}_t}(xy) = A(xy) \leq A(y) = \delta_{\bar{A}_t}(y). \\ \mathrm{Case-4: \ Suppose } x \notin \bar{A}_t, y \notin \bar{A}_t. \ \mathrm{Clearly } \ \delta_{\bar{A}_t}(x) = \delta_{\bar{A}_t}(y) = 1 \ \mathrm{and \ therefore} \\ (\mathrm{i}) \ \delta_{\bar{A}_t}(x-y) \leq \max\{\delta_{\bar{A}_t}(x), \delta_{\bar{A}_t}(y)\} = 1 \\ (\mathrm{ii}) \ \delta_{\bar{A}_t}(xy) \leq \max\{\delta_{\bar{A}_t}(x), \delta_{\bar{A}_t}(y)\} = 1 \\ \mathrm{and} \end{array}$

and

(iii) $\delta_{\bar{A}_t}(xy) \leq \delta_{\bar{A}_t}(y) = 1$. Hence the theorem is proved.

In a similar way we can prove the following theorem:

Theorem 4.4. Let A be an anti fuzzy right ideal of X. Then $\delta_{\bar{A}_t}$ is also an anti fuzzy right ideal of X.

Corollary 4.5. If A is an anti fuzzy ideal of X, then so is $\delta_{\overline{A}_{\perp}}$.

5. QUOTIENT RING

In [2], Bingxue gave a concept of fuzzy quotient ring of the form $\frac{X}{E}$ considering E as a fuzzy semi-ideal of X. In this section, a concept of quotient ring of the form $\frac{X}{A}$, where A is an anti fuzzy ideal of X, is given and some isomorphism theorems are established.

Definition 5.1 ([2, 5, 9, 15]). Let $A: X \to [0, 1]$. $\forall y \in X, y + A$ is a fuzzy set in X which is defined as follows: $(y + A)(x) = A(x - y), \forall x \in X$.

Theorem 5.2. Let A be an anti fuzzy ideal of X. Then $\forall y_1, y_2 \in X, y_1 + A \leq y_2 + A \Rightarrow A(y_1) = A(y_2).$

Proof. We have $y_1 + A \leq y_2 + A \Rightarrow (y_1 + A)(x) \leq (y_2 + A)(x) \ \forall \ x \in X$. Now, $A(y_2 - y_1) = (y_1 + A)(y_2) \leq (y_2 + A)(y_2) = A(\mathbf{0}) \Rightarrow A(y_2 - y_1) = A(\mathbf{0}) \Rightarrow A(y_1) = A(y_2)$. **Theorem 5.3.** Let A be an anti fuzzy ideal of X. Then $A(y_2 - y_1) = A(\mathbf{0}) \Rightarrow y_1 + A = y_2 + A, \forall y_1, y_2 \in X.$

Proof. We have $(y_1 + A)(x) = A(x - y_1) = A((x - y_2) - (y_1 - y_2)) \le max\{A(x - y_2), A(y_1 - y_2)\} = max\{A(x - y_2), A(\mathbf{0})\} = A(x - y_2)(x) = (y_2 + A)(x), \forall x \in X.$ Therefore $y_1 + A \le y_2 + A$. Similarly we can show that $y_2 + A \le y_1 + A$. \Box

Corollary 5.4. Let A be an anti fuzzy ideal of X. Then $\forall y_1, y_2 \in X, y_1 + A = y_2 + A \Leftrightarrow A(y_1 - y_2) = A(\mathbf{0}).$

Theorem 5.5. Let A be an anti fuzzy ideal of X. Then $\forall x_1, x_2, x_3, x_4 \in X$,

$$\left\{\begin{array}{c} x_1 + A = x_2 + A\\ and\\ x_3 + A = x_4 + A\end{array}\right\} \Rightarrow \left\{\begin{array}{c} (x_1 + x_3) + A = (x_2 + x_4) + A\\ and\\ (x_1 x_3) + A = (x_2 x_4) + A\end{array}\right\}$$

 $\begin{array}{l} Proof. \ \text{Clearly} \ A(x_2 - x_1) = A(x_3 - x_4) = A(\mathbf{0}). \ \text{Now} \ A((x_2 + x_4) - (x_1 + x_3)) = \\ A((x_2 - x_1) - (x_3 - x_4)) \leq max\{A(x_2 - x_1), \ A(x_3 - x_4)\} = A(\mathbf{0}) \Rightarrow A((x_2 + x_4) - (x_1 + x_3)) = A(\mathbf{0}). \ \text{Therefore} \ (x_1 + x_3) + A = (x_2 + x_4) + A. \\ \text{Again} \ A(x_1x_3 - x_2x_4) = A((x_1 - x_2)x_3 - x_2(x_4 - x_3)) \\ \leq max\{A((x_1 - x_2)x_3), A(x_2(x_4 - x_3))\} \end{array}$

 $\leq max\{A(x_1 - x_2), A(x_4 - x_3)\} = A(\mathbf{0}) \Rightarrow A(x_1x_3 - x_2x_4) = A(\mathbf{0}).$ Therefore $x_1x_3 + A = x_2x_4 + A$.

The results obtained in Theorem 5.5 lead us to establish the following theorem:

Theorem 5.6. Let X be a ring and A be an anti fuzzy ideal of X. Then the set $\frac{X}{A} = \{x + A : x \in X\}$ is a quotient ring under the following operations:

$$(x + A) + (y + A) = (x + y) + A$$
 and $(x + A)(y + A) = xy + A$.

 $\begin{array}{l} Proof. \ \forall \ x, y, z \in X, \ \text{the following are obvious:} \\ (1) \ (x + A) + (y + A) = (x + y) + A \in \frac{X}{A}. \\ (2) \ (x + A)(y + A) = xy + A \in \frac{X}{A}. \\ (3) \ (x + A) + (y + A) = (y + A) + (x + A) = (x + y) + A. \\ (4) \ [(x + A) + (y + A)] + (z + A) = (x + A) + [(y + A) + (z + A)] = (x + y + z) + A. \\ (5) \ A + (x + A) = (x + A) + A = x + A. \\ (6) \ (x + A) + (-x + A) = A. \\ (7) \ (x + A)[(y + A) + (z + A)] = (x + A)(y + A) + (x + A)(z + A) = (xy + xz) + A. \\ (8) \ [(x + A) + (y + A)](z + A) = (x + A)(z + A) + (y + A)(z + A) = (xz + yz) + A. \\ \end{array}$ Hence the theorem is proved. \Box

Theorem 5.7. Let A be an anti fuzzy ideal X. Then $\frac{X}{A} \cong \frac{X}{A_0}$.

Proof. Define $f : X \to \frac{X}{A}$ by f(x) = x + A. Clearly f is an epimorphism. Now $\ker(f) = \{x \in X : x + A = A\} = \{x \in X : A(x) = A(\mathbf{0})\} = A_0$, and therefore by the 'fundamental theorem of homomorphism', $\frac{X}{A} \cong \frac{X}{A_0}$.

Theorem 5.8. Let A and B be two anti fuzzy ideals X. Then $\frac{B_0}{A}$ is an ideal of $\frac{X}{A}$. Proof. Clearly B_0 is an ideal of X. Let $b_1 + A$, $b_2 + A \in \frac{B_0}{A}$ and $x + A \in \frac{X}{A}$. Then $b_1 - b_2$, b_1b_2 , xb_1 , $b_1x \in B_0$. Therefore $(b_1 + A) - (b_2 + A)$, $(b_1 + A)(b_2 + A)$, $(b_1 + A)(x + A)$, $(x + A)(b_1 + A) \in \frac{B_0}{A}$. Hence $\frac{B_0}{A}$ is an ideal of $\frac{X}{A}$. **Theorem 5.9.** Consider an epimorphism $f: X \to Y$ between rings and let B be an anti fuzzy ideal of Y. Then $\frac{X}{f^{-1}(B)} \cong \frac{Y}{B}$.

Proof. Consider a map $g: \frac{X}{f^{-1}(B)} \to \frac{Y}{B}$ defined by $g(x+f^{-1}(B)) = f(x)+B$. Now, $\forall x_1, x_2 \in X, x_1+f^{-1}(B) = x_2+f^{-1}(B) \Leftrightarrow f^{-1}(B)(x_1-x_2) = f^{-1}(B)(\mathbf{0}) \Leftrightarrow B(f(x_1-x_2)) = B(\mathbf{0}) \Leftrightarrow B(f(x_1)) - B(f(x_2)) = B(\mathbf{0}) \Leftrightarrow f(x_1) + B = f(x_2) + B \Leftrightarrow g(x_1+f^{-1}(B)) = g(x_2+f^{-1}(B)) \Rightarrow g$ is well defined and one-one. Clearly g is onto as so is f.

Again $\forall x_1, x_2 \in X, g((x_1 + f^{-1}(B)) + (x_2 + f^{-1}(B))) = g((x_1 + x_2) + f^{-1}(B)) = f(x_1 + x_2) + B = (f(x_1) + f(x_2)) + B = (f(x_1) + B) + (f(x_2) + B) = g(x_1 + f^{-1}(B)) + g(x_2 + f^{-1}(B)).$

Similarly we can show that,

He

$$g((x_1 + f^{-1}(B)).(x_2 + f^{-1}(B))) = g(x_1 + f^{-1}(B)).g(x_2 + f^{-1}(B)).$$

nce g is an isomorphism and so $\frac{X}{f^{-1}(B)} \cong \frac{Y}{B}.$

Theorem 5.10. Let A and B be two anti fuzzy ideals of X such that $B \leq A$ and $A(\mathbf{0}) = B(\mathbf{0})$. Then $\frac{X}{B_0} \cong \frac{X}{B_0}$.

Proof. Define $f: \frac{X}{A} \to \frac{X}{B_0}$ by $f(x+A) = x + B_0$. Let $x_1, x_2 \in X$. Now $x_1 + A = x_2 + A \Rightarrow A(x_1 - x_2) = A(\mathbf{0})$. Since $B \leq A$, $B(x_1 - x_2) \leq A(x_1 - x_2) = A(\mathbf{0}) = B(\mathbf{0})$. Therefore $B(x_1 - x_2) = B(\mathbf{0})$, and so, $x_1 + B_0 = x_2 + B_0 \Rightarrow f$ is well defined. Clearly f is onto. Again

 $f((x_1+A)+(x_2+A))=f((x_1+x_2)+A)=(x_1+x_2)+B_0=(x_1+B_0)+(x_2+B_0)=f((x_1+A))+f((x_2+A))$ and

 $f((x_1 + A)(x_2 + A)) = f((x_1x_2) + A) = (x_1x_2) + B_0 = (x_1 + B_0)(x_2 + B_0) = f(x_1 + A)f(x_2 + A).$

Thus we see that f is an epimorphism.

Now $ker(f) = \{x + A : x + B_0 = B_0\} = \{x + A : x \in B_0\} = \frac{B_0}{A}$. Therefore $\frac{X}{B_0} \cong \frac{X}{B_0}$.

Theorem 5.11. Let A and B be two anti fuzzy ideals of a ring X such that $A(\mathbf{0}) = B(\mathbf{0})$. Then $\frac{A_0+B_0}{A} \cong \frac{B_0}{A \lor B}$.

Proof. Define $f: \frac{A_0+B_0}{A} \to \frac{B_0}{A \lor B}$ by $f(a+b+A) = b+A \lor B$, where $a \in A_0$ and $b \in B_0$. Let $(a_1+b_1)+A = (a_2+b_2)+A$, where $a_1, a_2 \in A_0$ and $b_1, b_2 \in B_0$. Then $A(a_1+b_1-a_2-b_2) = A(\mathbf{0}) = A(a_1-a_2)$. Now $A(b_1-b_2) = A((a_1+b_1-a_2-b_2)-(a_1-a_2)) \le max\{A(a_1+b_1-a_2-b_2), A(a_1-a_2)\} = A(\mathbf{0})$. Hence $A(b_1-b_2) = A(\mathbf{0})$. Therefore $(A \lor B)(b_1-b_2) = (A \lor B)(\mathbf{0})$, and so, $b_1 + A \lor B = b_2 + A \lor B \Rightarrow f$ is well defined.

Again, let $f((a_1 + b_1) + A) = f((a_2 + b_2) + A)$. Then $b_1 + A \lor B = b_2 + A \lor B$ and therefore, $(A \lor B)(b_2 - b_1) = (A \lor B)(\mathbf{0}) = A(\mathbf{0})$. This implies that $A(b_2 - b_1) = A(\mathbf{0})$. Now $A(a_1 + b_1 - a_2 - b_2) = A((a_1 - a_2) - (b_2 - b_1)) \le max\{A(a_1 - a_2), A(b_2 - b_1)\} = max\{A(\mathbf{0}), A(\mathbf{0})\} = A(\mathbf{0})$. Therefore $A(a_1 + b_1 - a_2 - b_2) = A(\mathbf{0})$. Readily $(a_1 + b_1) + A = (a_2 + b_2) + A$. Thus we see that f is one-one.

Moreover, it is clear that f is onto. Again,

358

 $f(((a_1+b_1)+A)+((a_2+b_2)+A))=f((a_1+b_1)+A)+f((a_2+b_2)+A)=(b_1+b_2)+A\vee B$ and

 $f(((a_1+b_1)+A)((a_2+b_2)+A)) = f((a_1+b_1)+A)f((a_2+b_2)+A) = (b_1b_2)+A \lor B.$ Thus we see that f is a homomorphism and so it is an isomorphism. Therefore $\frac{A_0+B_0}{A} \cong \frac{B_0}{A \lor B}.$

6. CONCLUSION

Biswas' [3] idea of anti fuzzy ideal of groups is extended and a notion of anti fuzzy ideal of rings is introduced in this paper. For any fuzzy set A of a ring X, it is found that the corresponding lower level subsets \bar{A}_t are ideals of X if and only if A is an anti fuzzy ideal of X. A modified definition of fuzzification of lower level subsets \bar{A}_t is given and it is observed that if A is an anti fuzzy ideal of X, then the fuzzification $\delta_{\bar{A}_t}$ of lower level subsets \bar{A}_t of A is also an anti fuzzy ideal of X. In addition, a concept of qoutient ring of the form $\frac{X}{A}$, where A is an anti fuzzy ideal of a ring Xis given and various isomorphism theorems are established.

Acknowledgements. The authors would like to be thankful to the anonymous reviewers for their valuable suggestions.

References

- M. Akram, Anti fuzzy Lie ideals of Lie algebras, Quasigroups Related Systems 14 (2006) 123–132.
- Y. Bingxue, Fuzzy semi-ideal and generalized fuzzy quotient ring, Iran. J. Fuzzy Syst. 5 (2008) 87–92.
- [3] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 44 (1990) 121–124.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [5] V. N. Dixit, R. Kumar and N. Ajmal, On fuzzy rings, Fuzzy Sets and Systems 49 (1992) 205–213.
- [6] S. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK-algebras, Kyungpook Math. J. 38 (1998) 145–150.
- [7] K. H. Kim, Y. B. Jun and Y. H. Yon, On anti fuzzy ideals in near-rings, Iran. J. Fuzzy Syst. 2(2) (2005) 71–80.
- [8] S. D. Kim and H. S. Kim, On fuzzy ideals of nearrings, Bull. Korean Math. Soc. 33(4) (1996) 593–601.
- [9] H. V. Kumbhojkar and M. S. Bapat, Correspondence theorem for fuzzy ideals, Fuzzy Sets and Systems 41 (1991) 213–219.
- [10] M. Li, Y. Feng and Y. Han, Existence and uniqueness of anti-fuzzy ideal, Fuzzy Information and Engineering, Advances in Soft Computing 54 (2009) 101–106.
- [11] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133–139.
 [12] K. C. Rao and V. Swaminathan, Anti-homomorphism in fuzzy ideals, Int. J. Comput. Math. Sci. 4(7) (2010) 319–322.
- [13] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
- [15] S. A. Zaid, On fuzzy ideals and fuzzy quotient rings of a ring, Fuzzy Sets and Systems 59 (1993) 205–210.
- [16] M. Zhou, D. Xiang and J. Zhan, On anti fuzzy ideals of Γ-rings, Ann. Fuzzy Math. Inform. 1(2) (2011) 197–205.

$\underline{F. A. AZAM}$ (faqruddinaliazam@gmail.com)

Institute of Natural Sciences, United International University, Dhaka-1209, Bangladesh.

<u>A. A. MAMUN</u> (mamun3213ssh@gmail.com) Institute of Natural Sciences, United International University, Dhaka-1209,

Bangladesh.

<u>F. NASRIN</u> (farzananasrin@ymail.com)

Institute of Natural Sciences, United International University, Dhaka-1209, Bangladesh.