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1. Introduction

The notion of fuzzy sets introduced by Zadeh [18] proved a turning point in the
development of mathematics. This notion laid the foundation of fuzzy mathematics.
Fuzzy set theory has applications in applied sciences such as neural network theory,
stability theory, mathematical programming, modelling theory, engineering sciences,
medical sciences (medical genetics, nervous system), image processing, control the-
ory, communication etc. Kramosil and Michalek [10] introduced the notion of a
fuzzy metric space by generalizing the concept of the probabilistic metric space to
the fuzzy situation. George and Veeramani [3] modified the concept of fuzzy metric
spaces introduced by Kramosil and Michalek [10]. There are many view points of
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the notion of the metric space in fuzzy topology for instance one can refer to Kaleva
and Seikkala [9], Kramosil and Michalek [10] and George and Veeramani [3].

We can divide them into following two groups as follows:
The first group involves those results in which a fuzzy metric on a set X is treated

as a map d : X×X → R+ where X represents the totality of all fuzzy points of a set
and satisfy some axioms which are analogous to the ordinary metric axioms. Thus,
in such an approach numerical distances are set up between fuzzy objects. On the
other hand in second group, we keep those results in which the distance between
objects is fuzzy and the objects themselves may or may not be fuzzy. This proved
a milestone in fixed point point theory of fuzzy metric space and afterwards a flood
of papers appeared for fixed point theorems in fuzzy metric space.

Bhaskar and Lakshmikantham [1], Lakshmikantham and Ćirić [11] gave some cou-
pled fixed point theorems. Coupled fixed point theorem under contraction conditions
given by Sedghi et al. [15] are of great importance in the theory of fixed points in
fuzzy metric spaces. Fang [2] proved a result for compatible and weakly compatible
mappings under φ-contractive conditions in fuzzy metric spaces which provide a tool
to Xin-Qi Hu [6] to prove a result, which is actually a generalization of the result of
Sedghi [15].

In this paper, first we introduce the notion of common coupled coincidence point
for pairs of mappings. Secondly, we introduce the concept of weakly commuting
and variants of weakly commuting mappings in coupled fixed point theory (R-
weakly commuting, R-weakly commuting of type (Af ), type (Ag), type (P ) map-
pings). Thirdly, we introduce the notion of weakly f -compatible maps and weakly
g-compatible maps to obtain common coupled coincidence points in fuzzy metric
spaces. At the end, we prove common fixed point theorems for pairs of weakly com-
patible mappings and their variants, which generalize the results of various authors
present in fixed point theory literature.

2. Preliminaries

Before we give our main result we need the following definitions:

Definition 2.1 ([18]). A fuzzy set A in X is a function with domain X and values
in [0, 1].

Definition 2.2 ([16]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if ([0, 1], ∗) is a topological abelian monoid with unit 1 s.t. a ∗ b ≤ c ∗ d
whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1]. Some examples are below:

(1) ∗(a, b) = ab,
(2) ∗(a, b) = min(a, b).

Definition 2.3 ([5]). Let sup
0<t<1

∆(t, t) = 1. A t-norm ∆ is said to be of H-type if

the family of functions {∆m(t)}∞m=1 is equicontinuous at t = 1, where

∆1(t) = t, ∆m+1(t) = t(∆m(t)), m = 1, 2, . . . , t ∈ [0, 1].

A t-norm ∆ is a H-type t-norm iff for any λ ∈ (0, 1), there exists δ(λ) ∈ (0, 1) such
that ∆m(t) > (1− λ) for all m ∈ N , when t > (1− δ).
The t-norm ∆M = min. is an example of t-norm of H-type.

322



Manish Jain et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 321–336

Definition 2.4 ([3]). The 3-tuple (X, M, ∗) is called a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2× [0,∞) satisfying
the following conditions:

(FM-1)M(x, y, 0) > 0,
(FM-2) M(x, y, t) = 1 iff x = y,
(FM-3) M(x, y, t) = M(y, x, t),
(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
(FM-5) M(x, y, ·) : (0,∞) → [0, 1] is continuous, for all x, y, z ∈ X and s, t > 0.
In present paper, we consider (X, M, ∗) to be fuzzy metric space with condition:
(FM-6) lim

t→∞
M(x, y, t) = 1, for all x, y ∈ X.

Definition 2.5 ([3]). Let (X, M, ∗) be fuzzy metric space. A sequence {xn} in X
is said to be

(i) Convergent to a point x ∈ X, if lim
n→∞

M(xn, x, t) = 1, for all t > 0;

(ii) Cauchy sequence if lim
n→∞

M(xn+p, xn, t) = 1, for all t > 0 and p > 0.

Definition 2.6 ([3]). A fuzzy metric space (X,M, ∗) is said to be complete if and
only if every Cauchy sequence in X is convergent.

Lemma 2.1 ([4]). M(x, y, .) is non-decreasing for all x, y ∈ X.

Lemma 2.2 ([4]). Let xn → x and yn → y, then
(i) lim

n→∞
M(xn, yn, t) ≥ M(x, y, t), for all t > 0,

(ii) lim
n→∞

M(xn, yn, t) = M(x, y, t), for all t > 0, if M(x, y, t) is continuous.

Definition 2.7 ([6]). Define Φ = {φ : R+ → R+}, where R+ = [0,+∞) and each
φ ∈ Φ satisfies the following conditions:

(φ-1) φ is non-decreasing;
(φ-2) φ is upper semicontinuous from the right;

(φ-3)
∞∑

n=0
φn(t) < +∞ for all t > 0, where φn+1(t) = φ(φn(t)), n ∈ N .

Clearly, if φ ∈ Φ, then φ(t) < t for all t > 0.

Definition 2.8 ([2]). An element x ∈ X is called a common fixed point of the
mappings f : X ×X → X and g : X → X if

x = f(x, x) = g(x).

Definition 2.9 ([11]). An element (x, y) ∈ X ×X is called
(i) a coupled fixed point of the mapping f : X ×X → X if

f(x, y) = x, f(y, x) = y.

(ii) a coupled coincidence point of the mappings f : X ×X → X and g : X → X
if

f(x, y) = g(x), f(y, x) = g(y).

(iii) a common coupled fixed point of the mappings f : X×X → X and g : X → X
if

x = f(x, y) = g(x), y = f(y, x) = g(y).
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In 1994, Mishra [12] introduced the concept of compatible mappings in fuzzy
metric spaces akin to the concept of compatible mapping in metric spaces, see [8].

In 1994, Pant [13] introduced the concept of R-weakly commuting maps in metric
spaces. Later on, Vasuki [17] initiated the concept of non compatible of mapping
in fuzzy metric spaces and introduced the notion of R-weakly commuting mappings
in fuzzy metric spaces and proved some common fixed point theorems for R-weakly
commuting maps in the fuzzy metric space. Further, Pathak et al. [14] generalized
the concept of R-weakly commuting maps of type (Ag) and type (Af ) as follows.

Definition 2.10. A pair of self-mappings (f, g) of a fuzzy metric space (X, M, ∗) is
said to be

(i) weakly commuting if M(fgx, gfx, t) ≥ M(fx, gx, t).
(ii) R-weakly commuting if there exists some R > 0 such that

M(fgx, gfx, t) ≥ M(fx, gx, t/R).

(iii) R-weakly commuting mappings of type (Af ) if there exists some R > 0 such
that

M(fgx, ggx, t) ≥ M(fx, gx, t/R).

(iv) R-weakly commuting mappings of type (Ag) if there exists some R > 0 such
that

M(gfx, ffx, t) ≥ M(fx, gx, t/R).

Notice that Definition 2.10(iii) and Definition 2.10(iv) are embarked by Imdad
and Ali [7] with inspiration from Pathak et al. [14].

In 2006, Imdad and Javid Ali [7] introduced the definition of R-weakly commuting
mappings of type (P ) as follow.

A pair of self-mappings (f, g) of a fuzzy metric space (X, M, ∗) is said to be
R-weakly commuting mappings of type (P ) if there exists some R > 0 such that

M(ffx, ggx, t) ≥ M(fx, gx, t/R), for all x ∈ X and t > 0.

Definition 2.11 ([2]). The mappings f : X × X → X and g : X → X are called
commutative if

gf(x, y) = f(gx, gy), for all x, y ∈ X.

Now we introduce the following notions in coupled fixed point theory of fuzzy
metric spaces.

Definition 2.12. The mappings f : X × X → X and g : X → X are said to be
weakly commuting if

M(f(gx, gy), gf(x, y), t) ≥ M(f(x, y), gx, t),

M(f(gy, gx), gf(y, x), t) ≥ M(f(y, x), gy, t)
for all x, y in X and t > 0.

Definition 2.13. The mappings f : X ×X → X and g : X → X are said to be
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(i) R-weakly commuting if there exists some R > 0 such that

M(f(gx, gy), gf(x, y), t) ≥ M(f(x, y), gx, t/R),

M(f(gy, gx), gf(y, x), t) ≥ M(f(y, x), gy, t/R)
for all x, y in X and t > 0.

(ii) R-weakly commuting maps of type (Af ) if there exists some R > 0 such that

M(f(gx, gy), ggx, t) ≥ M(f(x, y), gx, t/R),

M(f(gy, gx), ggy, t) ≥ M(f(y, x), gy, t/R)
for all x, y ∈ X and t > 0.

(iii) R-weakly commuting maps of type (Ag) if there exists some R > 0 such that

M(gf(x, y), f(f(x, y), f(y, x)), t) ≥ M(f(x, y), gx, t/R),

M(gf(y, x), f(f(y, x), f(x, y)), t) ≥ M(f(y, x), gy, t/R)
for all x, y in X and t > 0.

(iv) R-weakly commuting maps of type (P ) if there exists some R > 0 such that

M(f(f(x, y), f(y, x)), ggx, t) ≥ M(f(x, y), gx, t/R),

M(f(f(y, x), f(x, y)), ggy, t) ≥ M(f(y, x), gy, t/R)
for all x, y in X and t > 0.

Definition 2.14 ([2]). The mappings f : X ×X → X and g : X → X are said to
be compatible if

lim
n→∞

M(gf(xn, yn), f(g(xn), g(yn)), t) = 1,

lim
n→∞

M(gf(yn, xn), f(g(yn), g(xn)), t) = 1,

for all t > 0 whenever {xn} and {yn} are sequences in X, such that

lim
n→∞

f(xn, yn) = lim
n→∞

g(xn) = x,

lim
n→∞

f(yn, xn) = lim
n→∞

g(yn) = y, for all x, y ∈ X.

Definition 2.15. The maps f : X × X → X and g : X → X are called weakly
compatible if

f(x, y) = g(x), f(y, x) = g(y)

implies

gf(x, y) = f(gx, gy), gf(y, x) = f(gy, gx), for all x, y ∈ X.

Definition 2.16. The mappings f : X × X → X and g : X → X are said to be
weakly f -compatible if
either

lim
n→∞

gf(xn, yn) = f(x, y), lim
n→∞

gf(yn, xn) = f(y, x)

or

lim
n→∞

ggxn = f(x, y), lim
n→∞

ggyn = f(y, x)
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whenever {xn} and {yn} are sequences in X such that

lim
n→∞

f(xn, yn) = lim
n→∞

g(xn) = x, lim
n→∞

f(yn, xn) = lim
n→∞

g(yn) = y

and

lim
n→∞

f(gxn, gyn) = lim
n→∞

f(f(xn, yn), f(yn, xn)) = f(x, y),

lim
n→∞

f(gyn, gxn) = lim
n→∞

f(f(yn, xn)) = f(y, x) for some x, y ∈ X.

Definition 2.17. The mappings f : X × X → X and g : X → X are said to be
weakly g-compatible if
either

lim
n→∞

f(gxn, gyn) = gx, lim
n→∞

f(gyn, gxn) = gy

or

lim
n→∞

f(f(xn, yn), f(yn, xn)) = gx, lim
n→∞

f(f(yn, xn), f(xn, yn)) = gy

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

f(xn, yn) = lim
n→∞

g(xn) = x, lim
n→∞

f(yn, xn) = lim
n→∞

g(yn) = y

and

lim
n→∞

gf(xn, yn) = lim
n→∞

gg(xn) = gx,

lim
n→∞

gf(yn, xn) = lim
n→∞

gg(yn) = gy for some x, y ∈ X.

Definition 2.18. Let A : X×X → X, B : X×X → X, S : X → X, T : X → X be
four mappings. Then, the pair of maps (B, S) and (A, T ) are said to have common
coupled coincidence point if there exists a, b in X such that

B(a, b) = S(a) = T (a) = A(a, b) and B(b, a) = S(b) = T (b) = A(b, a).

Now we show that the various kinds of above mentioned ’R-weakly commutativ-
ity’ notions are independent of each other. We demonstrate this in the following
discussion.

Example 2.1. Let X = (0,∞). Define a ∗ b = ab and M(x, y, t) = t
t+|x−y| , for all

x, y ∈ X and t > 0.
Then (X,M, ∗) is a FM-space. Define f : X ×X → X as f(x, y) = x + y for all x, y
in X and g : X → X as g(x) = x for all x in X. Then, clearly for all x, y in X and
t > 0,

M(f(gx, gy), gf(x, y), t) = 1 >
t

t + y
= M(f(x, y), gx, t),

M(f(gy, gx), gf(y, x), t) = 1 >
t

t + x
= M(f(y, x), gy, t),
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which shows that the pair (f, g) is weakly commuting.
Moreover, for all x, y in X and t > 0,

M(f(gx, gy), gf(x, y), t) = 1 >
t

t + Ry
= M

(
f(x, y), gx,

t

R

)
,

M(f(gy, gx), gf(y, x), t) = 1 >
t

t + Rx
= M

(
f(y, x), gy,

t

R

)
for each R > 0,

which shows that the pair (f, g) is R-weakly commuting for each R > 0.
We note the followings:
For R ≥ 1, the pair (f, g) are R-weakly commuting of type (Af )

M(f(gx, gy), ggx, t) =
t

t + y
≥ t

t + Ry
= M

(
f(x, y), gx,

t

R

)
,

M(f(gy, gx), ggy, t) =
t

t + x
≥ t

t + Rx
= M

(
f(y, x), gy,

t

R

)
.

For R ≥ 2, and x = y, shows that the pair (f, g) is R-weakly commuting of type
(Ag).

M(gf(x, y), f(f(x, y), f(y, x)), t) =
t

t + (x + y)
≥ t

t + Ry
= M

(
f(x, y), gx,

t

R

)
,

M(gf(y, x), f(f(y, x), f(x, y)), t) =
t

t + (x + y)
≥ t

t + Rx
= M

(
f(y, x), gy,

t

R

)
.

Finally, we proceed towards R-commutativity of type(P ).
For R ≥ 3, x = y, shows that the pair (f, g) is R-weakly commuting of type (P )

M(f(f(x, y), f(y, x)), ggx, t) =
t

t + (x + 2y)
≥ t

t + Ry
= M

(
f(x, y), gx,

t

R

)
,

M(f(f(y, x), f(x, y)), ggy, t) =
t

t + (2x + y)
≥ t

t + Rx
= M

(
f(y, x), gy,

t

R

)
.

In the above example, the maps f and g are weakly f-compatible and weakly
g-compatible.

For this, the consideration of sequences {xn} and {yn} in X with lim
n→∞

f(xn, yn) =

lim
n→∞

g(xn) = x, lim
n→∞

f(yn, xn) = lim
n→∞

g(yn) = y implies x = 0, y = 0 and lim
n→∞

=
0, lim

n→∞
yn = 0. Then, it can be easily seen that the maps f and g are weakly

f -compatible and weakly g-compatible.
Now, we shall give our main results.

3. Main results.

Let (X, M, ∗) be a Complete Fuzzy Metric Space, ∗ being continuous t-norm of
H-type. Let A : X ×X → X, B : X ×X → X, S : X → X, T : X → X be four
mappings satisfying the following conditions:

A(X ×X) ⊆ T (X), B(X ×X) ⊆ S(X),(3.1)

there exists φ ∈ Φ such that(3.2)
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M(A(x, y), B(u, v), φ(t))≥M(Sx, Tu, t)∗M(Sy, Tv, t), for all x, y, u, v ∈ X and t>0.

Then for arbitrary points x0, y0 in X, by (3.1), we can choose x1, y1 in X such that
T (x1) = A(x0, y0), T (y1) = A(y0, x0).
Again, by (3.1), we can choose x2, y2 in X such that S(x2) = B(x1, y1) and S(y2) =
B(y1, x1).
Continuing in this way, we can construct two sequences {zn} and {z′n} in X such
that

z2n+1 = A(x2n, y2n) = T (x2n+1), z2n+2 = B(x2n+1, y2n+1) = S(x2n+2)(3.3)

and

z′2n+1 = A(y2n, x2n) = T (y2n+1), z′2n+2 = B(y2n+1, x2n+1) = S(y2n+2),(3.4)
for all n ≥ 0.

Xin-Qi Hu [6] proved the following result.

Theorem 3.1. Let (X, M, ∗) be a complete FM-Space, ∗ being continuous t-norm
of H-type. Let F : X ×X → X and g : X → X be two mappings and there exists
φ ∈ Φ such that

M(F (x, y), F (u, v), φ(t))≥M(gx, gu, t)∗M(gy, gv, t), for all x, y, u, v in X and t>0.

Suppose that F (X ×X) ⊆ g(X) and g is continuous, F and g are compatible. Then
there exits a unique x in X such that x = g(x) = F (x, x).

Now we prove the following result which generalizes Theorem 3.1 for two pairs of
weakly compatible maps:

Theorem 3.2. Let (X, M, ∗) be a Fuzzy Metric Space, ∗ being continuous t-norm
of H-type. Let A : X ×X → X, B : X ×X → X, S : X → X, T : X → X be four
mappings satisfying (3.1), (3.2) and the following conditions:
(3.5) the pairs (A,S) and (B, T ) are weakly compatible,
(3.6) one of the subspaces A(X ×X) or T (X) and one of B(X ×X) or S(X) are

complete.
Then there exists a unique point a in X such that

A(a, a) = S(a) = a = T (a) = B(a, a).

We need the following Lemma to prove our main result.

Lemma 3.1. The sequences {zn} and {z′n} defined by (3.3) and (3.4) respectively
are Cauchy in X.

Proof. Since ∗ is a t-norm of H-type, for any ε > 0, there exists δ > 0 such that

(1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
p

≥ (1− ε), for all p ∈ N.(3.7)

Since lim
t→∞

M(x, y, t) = 1, for all x, y in X, there exists t0 > 0 such that

M(Sx0, Tx1, t0) ≥ (1− δ) and M(Sy0, T y1, t0) ≥ (1− δ).(3.8)
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Also, since φ ∈ Φ, using condition (φ-3), we have
∞∑

n=1
φn(t0) < ∞. Then for any

t > 0, there exists n0 ∈ N such that

t >

∞∑

k=n0

φk(t0).(3.9)

Using condition (3.2), we have

M(z1, z2, φ(t0)) = M(A(x0, y0), B(x1, y1), φ(t0))

≥ M(Sx0, Tx1, t0) ∗M(Sy0, T y1, t0),

M(z′1, z
′
2, φ(t0)) = M(A(y0, x0), B(y1, x1), φ(t0))

≥ M(Sy0, T y1, t0) ∗M(Sx0, Tx1, t0).

Similarly, we can also get

M(z2, z3, φ
2(t0)) = M(B(x1, y1), A(x2, y2), φ2(t0))

= M(A(x2, y2), B(x1, y1), φ2(t0))

≥ M(Sx2, Tx1, φ(t0)) ∗M(Sy2, T y1, φ(t0))

= M(z2, z1, φ(t0)) ∗M(z′2, z
′
1, φ(t0))

≥ [M(Sx0, Tx1, t0)]2 ∗ [M(Sy0, T y1, t0)]2,

M(z′2, z
′
3, φ

2(t0)) ≥ [M(Sy0, T y1, t0)]2 ∗ [M(Sx0, Tx1, t0)]2.

Continuing in this way, we can get

M(zn, zn+1, φ
n(t0)) ≥ [M(Sx0, Tx1, t0)]2

n−1 ∗ [M(Sy0, T y1, t0)]2
n−1

,

M(z′n, z′n+1, φ
n(t0)) ≥ [M(Sy0, T y1, t0)]2

n−1 ∗ [M(Sx0, Tx1, t0)]2
n−1

.

So, from (3.7), (3.8) and (3.9), for m > n ≥ n0, we have

M(zn, zm, t)

≥ M

(
zn, zm,

∞∑

k=n0

φk(t0)
)

≥ M

(
zn, zm,

m−1∑

k=n

φk(t0)
)

≥ M(zn, zn+1, φ
n(t0)) ∗M(zn+1, zn+2, φ

n+1(t0)) ∗ . . . ∗M(zm−1, zm, φm−1(t0))

≥ {[M(Sx0, Tx1, t0)]2
n−1 ∗ [M(Sy0, T y1, t0)]2

n−1}∗
∗ {[M(Sx0, Tx1, t0)]2

n ∗ [M(Sy0, T y1, t0)]2
n}∗

∗ {[M(Sx0, Tx1, t0)]2
m−2 ∗ [M(Sy0, Ty1, t0)]2

m−2}
= [M(Sx0, Tx1, t0)]2

n−1(2m−n−1) ∗ [M(Sy0, T y1, t0)]2
n−1(2m−n−1)

≥ (1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
2n(2m−n−1)

≥ (1− ε), which implies that
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M(zn, zm, t) ≥ (1− ε), for all m,n ∈ N with m > n > n0 and t > 0.

So {zn} is a Cauchy sequence. Similarly, we can get that {z′n} is a Cauchy sequence.
¤

Now we come to the main proof of Theorem 3.2.

Proof. By Lemma 3.1, the sequences {zn} and {z′n} defined by (3.3) and (3.4) re-
spectively are both Cauchy.
Step 1: We show that T (a) = B(a, b), T (b) = B(b, a) and S(a) = A(a, b), S(b) =
A(b, a).
Without loss of generality, assume that T (X) and S(X) are complete. Now, {z2n+1},
{z2n+2} and {z′2n+1}, {z′2n+2} being respective subsequences of Cauchy sequences
{zn} and {z′n} are also Cauchy.
Since T (X) is complete, so there exists a, b in X such that

{z2n+1} → a and {z′2n+1} → b.

Again convergence of the subsequences {z2n+1} and {z′2n+1} implies the convergence
of original Cauchy sequences {zn} and {z′n} respectively such that {zn} a and {z′n} →
b.
It follows that the sequences {zn}, {z2n+1}, {z2n+2} converges to a and {z′n},
{z′2n+1}, {z′2n+2} converges to b.
Now a, b ∈ T (X) implies the existence of p, q ∈ X such that T (p) = a, T (q) = b, so
that we have

lim
n→∞

z2n+1 = lim
n→∞

A(x2n, y2n) = lim
n→∞

T (x2n+1) = a = T (p),

lim
n→∞

z2n+2 = lim
n→∞

B(x2n+1, y2n+1) = lim
n→∞

S(x2n+2) = a = T (p)

and

lim
n→∞

z′2n+1 = lim
n→∞

A(y2n, x2n) = lim
n→∞

T (y2n+1) = b = T (q),

lim
n→∞

z′2n+2 = lim
n→∞

B(y2n+1, x2n+1) = lim
n→∞

S(y2n+2) = b = T (q).

From condition (3.2),

M(A(x2n, y2n), B(p, q), φ(t)) ≥ M(Sx2n, T (p), t) ∗M(Sy2n, T (q), t)

Letting n →∞, we get

M(T (p), B(p, q), φ(t)) ≥ 1, this implies T (p) = B(p, q) = a.

Similarly T (q) = B(q, p) = b.
Since the pair (B, T ) is weakly compatible, so that T (p) = B(p, q) = a implies
T (a) = B(a, b). Similarly, T (b) = B(b, a).
Again, since S(X) is complete, so that a, b ∈ S(X), which implies the existence of
r, s in X so that S(r) = a, S(s) = b.
Now,

M(A(r, s), B(x2n+1, y2n+1, φ(t)) ≥ M(S(r), Tx2n+1, t) ∗M(S(s), T y2n+1, t)

Letting n →∞, we get

M(A(r, s), a, φ(t)) ≥ 1, this implies A(r, s) = a = S(r).

330



Manish Jain et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 321–336

Similarly, A(s, r) = b = S(s).
Since the pair (A,S) is weakly compatible, it follows that A(a, b) = S(a) and
A(b, a) = S(b).

Step 2: Next we show that S(a) = T (a) and S(b) = T (b).
Since ∗ is a t-norm of H-type, for any ε > 0, there exists δ > 0 such that

(1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
p

≥ (1− ε), for all p ∈ N.

Since lim
t→∞

M(x, y, t) = 1, for all x, y in X, there exists t0 > 0 such that

M(S(a), T (a), t0) ≥ (1− δ) and M(S(b), T (b), t0) ≥ (1− δ).

Also, since φ ∈ Φ, using condition (φ-3), we have
∞∑

n=1
φn(t0) < ∞. Then for any

t > 0, there exists n0 ∈ N such that

t >

∞∑

k=n0

φk(t0).

Form condition (3.2), we have

M(S(a), T (a), φ(t0)) = M(A(a, b), B(a, b), φ(t0))

≥ M(S(a), T (a), t0) ∗M(S(b), T (b), t0)

In general, we can get

M(S(a), T (a), φn(t0)) ≥ [M(S(a), T (a), (t0)]2
n−1 ∗ [MS(b), T (b), (t0)]2

n−1
,

for all n ≥ 1.

Thus, we have

M(S(a), T (a), t) ≥ M

(
S(a), T (a),

∞∑

k=n0

φk(t0)
)

≥ M(S(a), T (a), φn0(t0))

≥ [M(S(a), T (a), t0)]2
n0−1 ∗ [M(S(b), T (b), t0)]2

n0−1

≥ (1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
2n0

≥ (1− ε),

for all t > 0 and for any ε > 0.

Hence, S(a) = T (a). Similarly, S(b) = T (b).
Therefore, S(a) = A(a, b) = B(a, b) = T (a) and S(b) = A(b, a) = B(b, a) = T (b).

Step 3: We next show that S(a) = a and S(b) = b.
Since ∗ is a t-norm of H-type, for any ε > 0, there exists δ > 0 such that

(1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
p

≥ (1− ε) for all p ∈ N.
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Since lim
t→∞

M(x, y, t) = 1, for all x, y in X, there exists t0 > 0 such that

M(a, S(a), t0) ≥ (1− δ) and M(b, S(b), t0) ≥ (1− δ).

Also, since φ ∈ Φ, using condition (φ-3), we have
∞∑

n=1
φn(t0) < ∞. Then for any

t > 0, there exists n0 ∈ N such that

t >

∞∑

k=n0

φk(t0).

Form condition (3.2), we have

M(A(a, b), B(x2n+1, y2n+1), φ(t0)) ≥ M(S(a), T (x2n+1), t0) ∗M(S(b), T (y2n+1), t0)

Letting n →∞, we get

M(A(a, b), a, φ(t0)) ≥ M(S(a), a, t0) ∗M(S(b), b, t0)

or

M(S(a), a, φ(t0)) ≥ M(S(a), a, t0) ∗M(S(b), b, t0)

Similarly,

M(S(b), b, φ(t0)) ≥ M(S(b), b, t0) ∗M(S(a), a, t0).

Now,

M(S(a), a, t) ≥ M

(
S(a), a,

∞∑

k=n0

φk(t0)
)

≥ M(S(a), a, φn0(t0))

≥ [M(S(a), a, t0)]2
n0−1 ∗ [M(S(b), b, t0)]2

n0−1

(1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
2n0

≥ (1− ε), for all t > 0 and for any ε > 0.

Hence, S(a) = a. Similarly, S(b) = b.
Thus, B(a, b) = S(a) = a = T (a) = A(a, b) and B(b, a) = S(b) = b = T (b) = A(b, a).

Step 4: We shall that a = b.
Since ∗ is a t-norm of H-type, for any ε > 0, there exists δ > 0 such that

(1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
p

≥ (1− ε), for all p ∈ N.

Since lim
t→∞

M(x, y, t) = 1, for all x, y in X, there exists t0 > 0 such that

M(a, b, t0) ≥ (1− δ).

Also, since φ ∈ Φ, using condition (φ-3), we have
∞∑

n=1
φn(t0) < ∞. Then for any

t > 0, there exists n0 ∈ N such that

t >

∞∑

k=n0

φk(t0).
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Using condition (3.2), we have

M(Tx2n+1, Sy2n+2, φ(t0)) = M(A(x2n, y2n), B(y2n+1, x2n+1), φ(t0))

≥ M(Sx2n, T y2n+1, t0) ∗M(Sy2n, Tx2n+1, t0)

Letting n →∞,

M(a, b, φ(t0)) ≥ M(a, b, t0) ∗M(b, a, t0)

Then,

M(a, b, t) ≥ M

(
a, b,

∞∑

k=n0

φk(t0)
)

≥ M(a, b, φn0(t0))

≥ [M(a, b, t0)]2
n0−1 ∗ [M(b, a, t0)]2

n0−1

≥ (1− δ) ∗ (1− δ) ∗ . . . ∗ (1− δ)︸ ︷︷ ︸
2n0

≥ (1− ε),

for all t > 0 and for any ε > 0.

This implies a = b. Hence, there exists some point a in X such that A(a, a) = T (a) =
a = S(a) = B(a, a). Uniqueness of point a follows immediately from (3.2). ¤

On putting φ(t) = kt, where 0 < k < 1, we have the following result:

Corollary 3.1. Let (X,M, ∗) be a Fuzzy Metric Space, ∗ being continuous t-norm
of H-type. Let A : X ×X → X, B : X ×X → X, S : X → X, T : X → X be four
mappings satisfying (3.1), (3.5), (3.6) with the following condition:

there exists k, 0 < k < 1, such that(3.10)

M(A(x, y), B(u, v), kt) ≥ M(Sx, Tu, t) ∗M(Sy, Tv, t),
for all x, y, u, v in X and t > 0.

Then there exists a unique point a in X such that

A(a, a) = S(a) = a = T (a) = B(a, a).

Taking A = B = F and S = T = g in Theorem 3.2 we have the following result:

Corollary 3.2. Let (X,M, ∗) be a Fuzzy Metric Space, ∗ being continuous t-norm
of H-type. Let F : X ×X → X and g : X → X be two mappings and there exists
φ ∈ Φ such that

M(F (x, y), F (u, v), φ(t)) ≥ M(gx, gu, t) ∗M(gy, gv, t),
for all x, y, u, v in X and t > 0.

Suppose that F (X × X) ⊆ g(X) and F and g are weakly compatible. If one of
the range spaces of F or g is complete, then there exits a unique x in X such that
x = g(x) = F (x, x).

Taking A = B = F and S = T = I in Theorem 3.2 we have the following result:
333



Manish Jain et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 321–336

Corollary 3.3. Let (X,M, ∗) be a Fuzzy Metric Space, ∗ being continuous t-norm
of H-type. Let F : X ×X → X and there exists φ ∈ Φ such that

M(F (x, y), F (u, v), φ(t)) ≥ M(x, u, t) ∗M(y, v, t), for all x, y, u, v in X and t > 0.

If F (X ×X) is complete, then F has a unique fixed point in X.

Theorem 3.3. Theorem 3.2 remains true if the ’weakly compatible property’ is
replaced by any one (retaining the rest of the hypothesis) of the following:

(i) weakly commuting property,
(ii) R-weakly commuting property,
(iii) R-weakly commuting property of type (Af ),
(iv) R-weakly commuting property of type (Ag),
(v) R-weakly commuting property of type (P ).

Proof. Let a, b be two points in X so that A(a, b) = Sa and A(b, a) = Sb. Taking
xn = a, yn = b it is easy to show that A(Sa, Sb) = SA(a, b) and A(Sb, Sa) =
SA(b, a). Similarly, (B, T ) commutes at all of its coincidence points. Now applying
Theorem 3.2, we can conclude that A,B, S, T have a unique common fixed point.

In case if (A,S) satisfies R-weakly commuting property, then there exists some
R > 0 such that

M(A(Sx, Sy), SA(x, y), t) ≥ M(A(x, y), Sx, t/R),

M(A(Sy, Sx), SA(y, x), t) ≥ M(A(y, x), Sy, t/R) for all x, y in X and t > 0.

Let there exists a, b in X such that A(a, b) = Sa and A(b, a) = Sb, then it is easy to
see that A and S commutes at a and b.
Similarly, (B, T ) commutes at all of its coincidence points. Now applying Theorem
3.2, we can conclude that A,B, S, T have a unique common fixed point.

Similarly, if pair (A,S) is weakly commuting, R-weakly commuting of type (Af ),
type (Ag), type (P ) then it commutes at their points of coincidence. Now, in view
of Theorem 3.2, in all the cases A,B, S, T have a unique common fixed point in X.
This completes our proof. ¤

In the following theorem, we shall see that Theorem 3.2 holds true under the
variants of weakly compatible mappings.

Theorem 3.4. Theorem 3.2 remains true if the ‘weakly compatible property’ is
replaced by any one (retaining the rest of the hypothesis) of the following:

(i) weakly f-compatible,
(ii) weakly g-compatible.

Proof. In case if the pair (A, S) satisfies weakly f -compatible property, then
either

lim
n→∞

SA(xn, yn) = A(x, y), lim
n→∞

SA(yn, xn) = A(y, x)

or

lim
n→∞

SSxn = A(x, y), lim
n→∞

SSyn = A(y, x)

334



Manish Jain et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 321–336

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

A(xn, yn) = lim
n→∞

S(xn) = x, lim
n→∞

A(yn, xn) = lim
n→∞

S(yn) = y

and

lim
n→∞

A(Sxn, Syn) = lim
n→∞

A(A(xn, yn), A(yn, xn)) = A(x, y),

lim
n→∞

A(Syn, Sxn) = lim
n→∞

A(A(yn, xn), A(xn, yn)) = A(y, x) for some x, y ∈ X.

Let a, b be two points in X so that A(a, b) = Sa and A(b, a) = Sb. Taking xn =
a, yn = b it is easy to show that A(Sa, Sb) = SA(a, b) and A(Sb, Sa) = SA(b, a).
Similarly, (B, T ) commutes at all of its coincidence points. Now applying Theo-
rem 3.2, we can conclude that A,B, S, T have a unique common fixed point.

Similarly, the theorem holds good if the pairs (A,S) and (B, T ) are weakly f -
compatible. ¤

4. An application

Theorem 4.1. Let (X,M, ∗) be a fuzzy metric space, ∗ being continuous t-norm
defined by a ∗ b = min{a, b} for all a, b in X. Let f, g be weakly compatible self maps
on X satisfying the following conditions:

(4.1) f(X) ⊆ g(X),
(4.2) there exists φ ∈ Φ such that

M(fx, fy, φ(t)) ≥ M(gx, gy, t) for all x, y in X and t > 0.

If range space of any one of the maps f or g is complete, then f and g have a unique
common fixed point in X.

Proof. By taking A(x, y) = B(x, y) = f(x) and S(x) = T (x) = g(x) for all x, y ∈ X
in Theorem 3.2, we get the desired result. Next, we give an example in support of
Theorem 4.1. ¤

Example 4.1. Let X = (0, 1]. For each x, y in X and t in [0,∞) define

M(x, y, t) =





(
t

t + |x− y|
)

if t > 0

0 if t = 0,

Then (X,M, ∗) is a fuzzy metric space, with ∗ being a continuous t-norm defined by
a ∗ b = ab for all a, b in X. Define self maps f and g on X by f(x) = x

3 , g(x) = x
2 .

Then f(X) = [0, 1
3 ] ⊆ [0, 1

2 ] = g(X) i.e., condition (4.1) holds, also for k ∈ [ 23 , 1)
condition (4.2) is satisfied. However, maps are weakly compatible at x = 0 which is
the unique common fixed of f and g.
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