Annals of Fuzzy Mathematics and Informatics Volume 5, No. 2, (March 2013), pp. 309–320 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Intuitionistic fuzzy prime bi- Γ -ideals of Γ -semigroups

Muhammad Akram

Received 24 April 2012; Revised 30 May 2012; Accepted 19 June 2012

ABSTRACT. In this paper, we introduce the notion of intuitionistic fuzzy prime, strongly prime, semiprime, irreducible and strongly irreducible bi- Γ -ideals in a Γ -semigroup. Also, we investigate some of the properties related to these Γ -ideals.

2010 AMS Classification: 03E72, 03F55, 20M12, 20M99

Keywords: Γ -semigroup, Intuitionistic Fuzzy bi- Γ -ideal, Intuitionistic Fuzzy Prime (strongly prime, semiprime) bi- Γ -ideals.

Corresponding Author: Muhammad Akram (makram_69@yahoo.com)

1. INTRODUCTION

In 1965, Zadeh [16] introduced the concept of fuzzy sets. After that a lot of work has been done on various aspects of fuzzy sets by several researchers and it is still in progress. In 1986, Atanassov [1] introduced the notion of intuitionistic fuzzy sets, which is a generalization of fuzzy sets. Fuzzy sets give the degree of membership of an element in a given set, but the intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership. Both, the degree of membership and degree of non-membership are real numbers between 0 and 1, having sum not greater than 1. For more details on intuitionistic fuzzy sets, we refer to [1, 2, 3]. Fuzzy sets are intuitionistic fuzzy sets but the converse is not necessarily true [14].

Kim and Jun [5, 6] introduced the concept of intuitionistic fuzzification of several ideals of semigroups. In [7] Kim and Lee gave the notion of intuitionistic fuzzy biideals of semigroups. Sen and Saha [12] defined the Γ -semigroup and established a relation between regular Γ -semigroup and Γ -group (see also [9, 10]. In 2007, Mustafa et al. [15] introduced the notion of intuitionistic fuzzy Γ -ideals in Γ -semigroups. Sardar et al. [11] gave the concept of intuitionistic fuzzy prime ideals, semiprime ideals and also intuitionistic fuzzy ideal extension in a Γ -semigroup. The concept of intuitionistic fuzzy bi- Γ -ideals of Γ -semigroup was introduced by Lekkoksung [8]. In this paper, we introduce the notion of the prime, semiprime, strongly prime, irreducible and strongly irreducible intuitionistic fuzzy bi- Γ -ideals in Γ -semigroup.

2. Preliminaries

Let $S = \{x, y, z, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two non-empty sets. Then S is called a Γ -semigroup if it satisfies

(i) $x\gamma y \in S$

(ii) $(x\beta y)\gamma z = x\beta(y\gamma z)$, for all $x, y, z \in S$ and $\beta, \gamma \in \Gamma$.

A non-empty subset A of a Γ -semigroup S is called Γ -subsemigroup of S, if $A\Gamma A \subseteq$ A. A left (right) Γ -ideal of a Γ -semigroup S is a non-empty subset I of S such that $S\Gamma I \subseteq I$ ($I\Gamma S \subseteq I$). A two sided Γ -ideal or simply a Γ -ideal is that, which is both a left and a right Γ -ideal of S. A Γ -subsemigroup B of a Γ -semigroup S is called a bi- Γ -ideal of S if $B\Gamma S\Gamma B \subseteq B$. Every left(right, two sided) Γ -ideal of a Γ -semigroup S is a bi- Γ -ideal of S but the converse is not true in general. Also the intersection of any number of bi- Γ -ideals of S is a bi- Γ -ideal of S. For any $a \in S$, the intersection of all bi- Γ -ideals of S which contains "a" is a bi- Γ -ideal of S. This is the smallest bi- Γ -ideal of S containing a and is called the bi- Γ -ideal generated by a. It is denoted by B(a) clearly $B(a) = \{a\} \cup a\Gamma a \cup a\Gamma S\Gamma a$. A bi- Γ -ideal B of S is called prime(strongly prime) if $B_1 \Gamma B_2 \subseteq B$ $(B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B)$ implies that $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi- Γ -ideals B_1 and B_2 of S. A bi- Γ -ideal B of S is called semiprime if $B_1 \Gamma B_1 \subseteq B$ implies $B_1 \subseteq B$ for any bi- Γ -ideal B_1 of S. A bi- Γ -ideal B of S is said to be irreducible(strongly irreducible) if $B_1 \cap B_2 = B$ $(B_1 \cap B_2 \subseteq B)$ implies that $B_1 = B$ or $B_2 = B$ $(B_1 \subseteq B$ or $B_2 \subseteq B)$ for any bi- Γ -ideals B_1 and B_2 of S. Above definitions are due to [4] and [13].

A fuzzy set μ in a non-empty set X is a function, $\mu : X \to [0,1]$ and the compliment of μ , denoted by $\overline{\mu}$ is the fuzzy set in X given by $\overline{\mu} = 1 - \mu(x)$ for all $x \in X$.

An intuitionistic fuzzy set (briefly, IFS), A in a non-empty set X is an object having the form

$$A = \{ (x, \mu_A(x), \gamma_A(x)) \mid x \in X \},\$$

where the functions $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denotes the degree of membership and the degree of non-membership respectively, and for all $x \in X$

$$0 \le \mu_A(x) + \gamma_A(x) \le 1$$

An intuitionistic fuzzy set $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$ in X can be identified by an ordered pair (μ_A, γ_A) in $I^X \times I^X$. For simplicity, we shall use IFS for intuitionistic fuzzy set and $A = (\mu_A, \gamma_A)$ for IFS $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$.

For any two intuitionistic fuzzy sets $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ of a Γ -semigroup S, we define, $A\Gamma B = (\mu_{A\Gamma B}, \gamma_{A\Gamma B})$ where,

$$\mu_{A\Gamma B}(x) = \begin{cases} \bigvee_{\substack{x=a\beta b \\ 0}} \min\left[\mu_A(a), \mu_B(b)\right] & \text{if } x = a\beta b \\ 0 & \text{otherwise} \end{cases}$$

and

$$\gamma_{A\Gamma B}(x) = \begin{cases} \bigwedge_{\substack{x=a\beta b}} \max\left[\gamma_A(a), \gamma_B(b)\right] & \text{if } x = a\beta b\\ 1 & \text{otherwise.} \end{cases}$$

Also if $B \subseteq C$, then $A\Gamma B \subseteq A\Gamma C$ and $B\Gamma A \subseteq C\Gamma A$. If $\{A_i, i \in I\}$ be a collection of intuitionistic fuzzy subsets of a Γ -semigroup S then their intersection $\bigcap_{i \in I} A_i = (\bigwedge_{i \in I} \mu_{A_i}, \bigvee_{i \in I} \gamma_{A_i})$ is an intuitionistic fuzzy subset of S, where $\bigwedge_{i \in I} \mu_{A_i}(x) = \inf_{i \in I} \{\mu_{A_i}(x) \mid i \in I, x \in S\}$ and $\bigvee_{i \in I} \gamma_{A_i}(x) = \sup_{i \in I} \{\gamma_{A_i}(x) \mid i \in I, x \in S\}$.

3. Intuitionistic fuzzy $BI-\Gamma$ -ideals

In what follows, let S denote a Γ -semigroup unless otherwise specified.

Definition 3.1. Let A be a non-empty subset of a Γ -semigroup S, the *intuitionistic* characteristic function of A is defined as $\chi_A = (\mu_{\chi_A}, \gamma_{\chi_A})$, where,

$$\mu_{\chi_A}(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A, \end{cases} \text{ and } \gamma_{\chi_A}(x) = \begin{cases} 0 & \text{if } x \in A, \\ 1 & \text{if } x \notin A. \end{cases}$$

Lemma 3.2. Let A and B be subsets of a Γ -semigroup S then,

(i) $A \subseteq B$ if and only if $\chi_A \subseteq \chi_B$ (ii) $\chi_A \Gamma \chi_B = \chi_{A \Gamma B}$ (iii) $\chi_A \cap \chi_B = \chi_{A \cap B}$.

Definition 3.3. An IFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic fuzzy Γ -subsemigroup of S if

 $\mu_A(x\alpha y) \ge \min\{\mu_A(x), \mu_A(y)\}$

and

$$\gamma_A(x\alpha y) \leq \max\{\gamma_A(x), \gamma_A(y)\}, \text{ for all } x, y \in S, \ \alpha \in \Gamma$$

Definition 3.4. An IFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic fuzzy left (right) Γ -ideal of S if

$$\mu_A(x\alpha y) \ge \mu_A(y) \qquad (\mu_A(x\alpha y) \ge \mu_A(x))$$

and

$$\gamma_A(x\alpha y) \le \gamma_A(y) \quad (\gamma_A(x\alpha y) \le \gamma_A(x)), \text{ for all } x, y \in S, \alpha \in \Gamma.$$

Definition 3.5. An IFS $A = (\mu_A, \gamma_A)$ in a Γ - semigroup S is called an intuitionistic fuzzy Γ - ideal of S if it is both an intuitionistic fuzzy left Γ -ideal and an intuitionistic fuzzy right Γ - ideal.

It is clear that an intuitionistic fuzzy left (right) Γ -ideal of S is an intuitionistic fuzzy Γ -subsemigroup of S but the converse is not true.

Definition 3.6. An intuitionistic fuzzy Γ -subsemigroup $A = (\mu_A, \gamma_A)$ of S is called an intuitionistic fuzzy bi- Γ -ideal of S if

 $\mu_A(x\alpha z\beta y) \ge \min\{\mu_A(x), \mu_A(y)\}$

and

 $\gamma_A(x\alpha z\beta y) \leq \max\{\gamma_A(x), \gamma_A(y)\}, \text{ for all } x, y, z \in S, \alpha, \beta \in \Gamma.$

Lemma 3.7 ([15]). Every intuitionistic fuzzy Γ -ideal of a Γ -semigroup S is an intuitionistic fuzzy bi- Γ -ideal of S but the converse is not true.

Lemma 3.8. Let A be a non-empty subset of a Γ -semigroup S, then A is Γ -subsemigroup of S if and only if, $\chi_A = (\mu_{\chi_A}, \gamma_{\chi_A})$ is an intuitionistic fuzzy Γ -subsemigroup of S.

Proof. We suppose that A is a Γ -subsemigroup of S then $A\Gamma A \subseteq A$. Let $x, y \in S$ and $\alpha \in \Gamma$.

Case I. If $x, y \in A$ then $x \alpha y \in A$. Also $\mu_{\chi_A}(x) = 1$ and $\mu_{\chi_A}(y) = 1$ implies that, $\min\{\mu_{\chi_A}(x), \mu_{\chi_A}(y)\} = 1 = \mu_{\chi_A}(x \alpha y)$. Also $\gamma_{\chi_A}(x) = 0$ and $\gamma_{\chi_A}(y) = 0$ implies that, $\max\{\gamma_{\chi_A}(x), \gamma_{\chi_A}(y)\} = 0 = \gamma_{\chi_A}(x \alpha y)$.

Case II. If $x \notin A$ or $y \notin A$ then $\mu_{\chi_A}(x) = 0$ or $\mu_{\chi_A}(y) = 0$ implies that, $\min\{\mu_{\chi_A}(x), \mu_{\chi_A}(y)\} = 0 \le \mu_{\chi_A}(x\alpha y)$. Also $\gamma_{\chi_A}(x) = 1$ or $\gamma_{\chi_A}(y) = 1$ implies that $\max\{\gamma_{\chi_A}(x), \gamma_{\chi_A}(y)\} = 1 \ge \gamma_{\chi_A}(x\alpha y)$. Hence $\chi_A = (\mu_{\chi_A}, \gamma_{\chi_A})$ is an intuitionistic fuzzy Γ -subsemigroup of S.

Conversely, we suppose that $\chi_A = (\mu_{\chi_A}, \gamma_{\chi_A})$ is an intuitionistic fuzzy Γ - subsemigroup of S. Let $x, y \in A$ and $\alpha \in \Gamma$ then $\mu_{\chi_A}(x\alpha y) \ge \min\{\mu_{\chi_A}(x), \mu_{\chi_A}(y)\} = 1$ but $\mu_{\chi_A}(x\alpha y) \le 1$. This gives $\mu_{\chi_A}(x\alpha y) = 1$ that is $x\alpha y \in A$ implies that $A\Gamma A \subseteq A$. Hence A is a Γ -subsemigroup of S. \Box

Lemma 3.9. Let A be a non-empty subset of a Γ -semigroup S, then A is a left (right,two sided) Γ -ideal of S if and only if $\chi_A = (\mu_{\chi_A}, \gamma_{\chi_A})$ is an intuitionistic fuzzy left (right,two sided) Γ -ideal of S.

Proof. Straightforward.

Lemma 3.10. Let B be a non-empty subset of a Γ -semigroup S, then B is a bi- Γ -ideal of S if and only if $\chi_B = (\mu_{\chi_B}, \gamma_{\chi_B})$ is an intuitionistic fuzzy bi- Γ -ideal of S.

Proof. Let B be a bi- Γ -ideal of S then by lemma 3.8, $\chi_B = (\mu_{\chi_B}, \gamma_{\chi_B})$ is a Γ -subsemigroup of S. Let $x, y, z \in S$ and $\alpha, \beta \in \Gamma$. If $x, y \in B$ then $x\alpha z\beta y \in B$ and $\mu_{\chi_B}(x) = 1, \gamma_{\chi_B}(x) = 0$ and $\mu_{\chi_B}(y) = 1, \gamma_{\chi_B}(y) = 0$. Also $\mu_{\chi_B}(x\alpha z\beta y) = 1$ and $\gamma_{\chi_B}(x\alpha z\beta y) = 0$. Hence $\mu_{\chi_B}(x\alpha z\beta y) = 1 = \min\{\mu_{\chi_B}(x), \mu_{\chi_B}(y)\}$ and $\gamma_{\chi_B}(x\alpha z\beta y) = 0 = \max\{\gamma_{\chi_B}(x), \gamma_{\chi_B}(y)\}$. If $x \notin B$ or $y \notin B$ then $\mu_{\chi_B}(x) = 0$ or $\mu_{\chi_B}(y) = 0$ and $\gamma_{\chi_B}(x) = 1$ or $\gamma_{\chi_B}(y) = 1$. Then $\min\{\mu_{\chi_B}(x), \mu_{\chi_B}(y)\} = 0 \leq \mu_{\chi_B}(x\alpha z\beta y)$ and $\max\{\gamma_{\chi_B}(x), \gamma_{\chi_B}(y)\} = 1 \geq \gamma_{\chi_B}(x\alpha z\beta y)$. Hence, $\chi_B = (\mu_{\chi_B}, \gamma_{\chi_B})$ is an intuitionistic fuzzy bi- Γ -ideal of S.

Conversely, we suppose that $\chi_B = (\mu_{\chi_B}, \gamma_{\chi_B})$ is an intuitionistic fuzzy bi- Γ -ideal of S then by lemma 3.8, B is an intuitionistic fuzzy Γ -subsemigroup of S. For all $x, y \in B, z \in S$ and $\alpha, \beta \in \Gamma$, we have $\mu_{\chi_B}(x\alpha z\beta y) \geq \min\{\mu_{\chi_B}(x), \mu_{\chi_B}(y)\}$, because $\chi_B = (\mu_{\chi_B}, \gamma_{\chi_B})$ is an intuitionistic fuzzy bi- Γ -ideal of S. Since, $x, y \in B$ then $\mu_{\chi_B}(x) = \mu_{\chi_B}(y) = 1$, and

 $\mu_{\chi_B}(x\alpha z\beta y) \ge \min\{\mu_{\chi_B}(x), \mu_{\chi_B}(y)\} = 1 \text{ but } \mu_{\chi_B}(x\alpha z\beta y) \le 1.$

This gives $\mu_{\chi_B}(x\alpha z\beta y) = 1$, which implies that $x\alpha z\beta y \in B$, for all $x, y \in B, z \in S$ and $\alpha, \beta \in \Gamma$. Hence $B\Gamma S\Gamma B \subseteq B$ implies that B is a bi- Γ -ideal of S. \Box

Lemma 3.11. Let $\{A_i, i \in I\}$ be a collection of intuitionistic fuzzy bi- Γ -ideals of S, then their intersection $\bigcap_{i \in I} A_i = (\bigwedge_{i \in I} \mu_{A_i}, \bigvee_{i \in I} \gamma_{A_i})$ is an intuitionistic fuzzy bi- Γ -ideal of S, where

$$\bigwedge_{i\in I} \mu_{A_i}(x) = \inf\{\mu_{A_i}(x) \mid i \in I, \ x \in S\}$$

and

 $\bigvee_{i \in I} \gamma_{A_i}(x) = \sup\{\gamma_{A_i}(x) \mid i \in I, x \in S\}.$

Proof. As $\bigcap_{i \in I} A_i = (\bigwedge_{i \in I} \mu_{A_i}, \bigvee_{i \in I} \gamma_{A_i})$, where $\bigwedge_{i \in I} \mu_{A_i}(x) = \inf \{ \mu_{A_i}(x) \mid i \in I, x \in S \}$ and $\bigvee_{i \in I} \gamma_{A_i}(x) = \sup \{ \gamma_{A_i}(x) \mid i \in I, x \in S \}$. For $x, y \in S, \alpha \in \Gamma$, we have

$$\bigwedge_{i \in I} \mu_{A_i}(x \alpha y) = \inf \left\{ \mu_{A_i}(x \alpha y) \mid i \in I, x \alpha y \in S \right\}$$

$$\geq \inf \left\{ \min \left\{ \mu_{A_i}(x), \mu_{A_i}(y) \right\} \mid i \in I, x, y \in S \right\}$$

$$\geq \min \left\{ \inf \left\{ \mu_{A_i}(x) \mid i \in I, x \in S \right\}, \inf \left\{ \mu_{A_i}(y) \mid i \in I, y \in S \right\}$$

$$\bigwedge_{i \in I} \mu_{A_i}(x \alpha y) \geq \min \left\{ \bigwedge_{i \in I} \mu_{A_i}(x), \bigwedge_{i \in I} \mu_{A_i}(y) \right\}$$

Also

$$\begin{array}{ll} \bigvee\limits_{i\in I} \gamma_{A_i}(x\alpha y) &= & \sup\left\{\gamma_{A_i}(x\alpha y) \mid i\in I, x\alpha y\in S\right\} \\ &\leq & \sup\{\max\left\{\gamma_{A_i}(x), \gamma_{A_i}(y)\right\} \mid i\in I, x, y\in S\} \\ &\leq & \max\{\sup\{\gamma_{A_i}(x) \mid i\in I, x\in S\}, \sup\{\gamma_{A_i}(y) \mid i\in I, y\in S\} \\ &\bigvee\limits_{i\in I} \gamma_{A_i}(x\alpha y) &\leq & \max\{\bigcup\limits_{i\in I} \gamma_{A_i}(x), \bigcup\limits_{i\in I} \gamma_{A_i}(y)\}. \end{array}$$

So
$$\bigcap_{i\in I} A_i = (\bigwedge_{i\in I} \mu_{A_i}, \bigvee_{i\in I} \gamma_{A_i}) \text{ is a } \Gamma \text{-subsemigroup. Now for } x, y, z \in S, \alpha, \beta \in \Gamma,$$

$$\bigwedge_{i\in I} \mu_{A_i}(x\alpha z\beta y) = \inf \{\mu_{A_i}(x\alpha z\beta y) \mid i \in I, x\alpha z\beta y \in S\}$$

$$\geq \inf \{\min \{\mu_{A_i}(x), \mu_{A_i}(y)\} \mid i \in I, x, y \in S\}$$

$$\geq \min \{\inf \{\mu_{A_i}(x) \mid i \in I, x \in S\}, \inf \{\mu_{A_i}(y) \mid i \in I, y \in S\}$$

$$\bigwedge_{i\in I} \mu_{A_i}(x\alpha z\beta y) \geq \min \{\bigwedge_{i\in I} \mu_{A_i}(x), \bigwedge_{i\in I} \mu_{A_i}(y)\}.$$

Also

$$\begin{array}{lll} \bigvee_{i\in I} \gamma_{A_i}(x\alpha z\beta y) &=& \sup\left\{\gamma_{A_i}(x\alpha z\beta y) \mid i\in I, x\alpha z\beta y\in S\right\} \\ &\leq& \sup\{\max\left\{\gamma_{A_i}(x), \gamma_{A_i}(y)\right\} \mid i\in I, x, y\in S\} \\ &\leq& \max\{\sup\{\gamma_{A_i}(x) \mid i\in I, x\in S\}, \sup\{\gamma_{A_i}(y) \mid i\in I, y\in S\} \\ &\bigvee_{i\in I} \gamma_{A_i}(x\alpha z\beta y) &\leq& \max\{\bigvee_{i\in I} \gamma_{A_i}(x), \bigvee_{i\in I} \gamma_{A_i}(y)\}. \\ & \text{Hence } \bigcap_{i\in I} A_i = (\bigwedge_{i\in I} \mu_{A_i}, \bigvee_{i\in I} \gamma_{A_i}) \text{ is an intuitionistic fuzzy bi-} \Gamma\text{-ideal of } S. \\ \Box \end{array}$$

4. Intuitionistic fuzzy prime $\text{Bi-}\Gamma\text{-ideals}$

Definition 4.1. An intuitionistic fuzzy bi- Γ -ideal $A = (\mu_A, \gamma_A)$ of a Γ -semigroup S is called an intuitionistic fuzzy prime bi- Γ -ideal of S, if for any intuitionistic fuzzy bi- Γ -ideals $B = (\mu_B, \gamma_B)$ and $C = (\mu_C, \gamma_C)$ of S, $B\Gamma C \subseteq A$ implies that $B \subseteq A$ or $C \subseteq A$.

Definition 4.2. An intuitionistic fuzzy bi- Γ -ideal $A = (\mu_A, \gamma_A)$ of a Γ -semigroup S is called an intuitionistic fuzzy strongly prime bi- Γ -ideal of S if for any intuitionistic fuzzy bi- Γ -ideals $B = (\mu_B, \gamma_B)$ and $C = (\mu_C, \gamma_C)$ of S, $B\Gamma C \cap C\Gamma B \subseteq A$ implies that $B \subseteq A$ or $C \subseteq A$.

Definition 4.3. An intuitionistic fuzzy bi- Γ -ideal $A = (\mu_A, \gamma_A)$ of a Γ -semigroup S is called an intuitionistic fuzzy semiprime bi- Γ -ideal of S if for any intuitionistic fuzzy bi- Γ -ideal $B = (\mu_B, \gamma_B)$ of $S, B\Gamma B \subseteq A$ implies that $B \subseteq A$.

Definition 4.4. An intuitionistic fuzzy bi- Γ -ideal $A = (\mu_A, \gamma_A)$ of a Γ -semigroup S is called an idempotent if $A = A\Gamma A$ that is $\mu_{A\Gamma A} = \mu_A \Gamma \mu_A = \mu_A$ and $\gamma_{A\Gamma A} = \gamma_A \Gamma \gamma_A = \gamma_A$.

Theorem 4.5. A non-empty subset P of S is a prime bi- Γ -ideal of S if and only if the intuitionistic characteristic function $\chi_P = (\mu_{\chi_P}, \gamma_{\chi_P})$ of P is an intuitionistic fuzzy prime bi- Γ -ideal of S.

Proof. Suppose P is a prime bi- Γ -ideal of S. Then by Lemma 3.10, χ_B is an intuitionistic fuzzy bi- Γ -ideal of S. Let $A = (\mu_A, \gamma_A)$ and $C = (\mu_C, \gamma_C)$ be any intuitionistic fuzzy bi- Γ -ideals of S such that $A\Gamma C \subseteq \chi_B$ but $A \nsubseteq \chi_B$ and $C \nsubseteq \chi_B$. Then there exist $x, y \in S$ such that

$$\mu_A(x) \neq 0, \gamma_A(x) \neq 1 \text{ and } \mu_C(y) \neq 0, \gamma_C(y) \neq 1$$

but
$$\mu_{\chi_P}(x) = 0, \gamma_{\chi_P}(x) = 1$$
 and $\mu_{\chi_P}(y) = 0, \gamma_{\chi_P}(y) = 1$.

Hence $x \notin P$ and $y \notin P$. Since P is a prime bi- Γ -ideal of S, then for bi- Γ -ideals B(x)and B(y), we have $B(x) \Gamma B(y) \notin P$. Since $\mu_A(x) \neq 0$, $\gamma_A(x) \neq 1$ and $\mu_C(y) \neq 0$, $\gamma_C(y) \neq 1$ therefore, min $\{\mu_A(x), \mu_C(y)\} \neq 0$ and max $\{\gamma_A(x), \gamma_C(y)\} \neq 1$.

As $B(x) \Gamma B(y) \notin P$, therefore there exists $s \in S$ such that $s \in B(x) \Gamma B(y)$ but $s \notin P$ then $\mu_{\chi_P}(s) = 0$, $\gamma_{\chi_P}(s) = 1$. Hence $\mu_{A\Gamma C}(s) = 0$ and $\gamma_{A\Gamma C}(s) = 1$. Since $s \in B(x) \Gamma B(y)$ then $s = b_1 \alpha b_2$ for some $b_1 \in B(x)$ and $b_2 \in B(y)$ and $\alpha \in \Gamma$. So we have

$$\mu_{A\Gamma C}(s) = \bigvee_{s=b_1 \alpha b_2} \min\{\mu_A(b_1), \mu_C(b_2)\} \ge \min\{\mu_A(b_1), \mu_C(b_2)\}$$

and

$$\gamma_{A\Gamma C}(s) = \bigwedge_{s=b_1 \alpha b_2} \max\{\gamma_A(b_1), \gamma_C(b_2)\} \le \max\{\gamma_A(b_1), \gamma_C(b_2)\}.$$

Since $b_1 \in B(x)$, which is a bi- Γ -ideal generated by x and $B(x) = \{x\} \cup x\Gamma x \cup x\Gamma S\Gamma x$, we have $b_1 = x$ or $b_1 = x\beta x$ or $b_1 = x\theta r\phi x$ for some $r \in S$ and $\beta, \theta, \phi \in \Gamma$.

If $b_1 = x$ then $\mu_A(b_1) = \mu_A(x)$ and $\gamma_A(b_1) = \gamma_A(x)$. If $b_1 = x\beta x$ then $\mu_A(b_1) = \mu_A(x\beta x) \ge \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$ and $\gamma_A(b_1) = \gamma_A(x\beta x) \le \max\{\gamma_A(x), \gamma_A(x)\} = \gamma_A(x)$. If $b_1 = x\theta r\phi x$ then $\mu_A(b_1) = \mu_A(x\theta r\phi x) \ge \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$ and $\gamma_A(b_1) = \gamma_A(x\theta r\phi x) \le \max\{\gamma_A(x), \gamma_A(x)\} = \gamma_A(x)$. Also as $b_2 \in B(y) = \{y\} \cup y\Gamma y \cup y\Gamma S\Gamma y$, then $b_2 = y$ or $b_2 = y\delta y$ or $b_2 = y\eta t\pi y$ for some $t \in S$, and $\delta, \eta, \pi \in \Gamma$. If $b_2 = y$ then $\mu_C(b_2) = \mu_C(y)$ and $\gamma_C(b_2) = \gamma_C(y)$. If $b_2 = y\delta y$ then $\mu_C(b_2) = \mu_C(y\delta y) \ge \min\{\mu_C(y), \mu_C(y)\} = \mu_C(y)$ and $\gamma_C(b_2) = \gamma_C(y\delta y) \le \max\{\gamma_C(y), \gamma_C(y)\} = \gamma_C(y)$. If $b_2 = y\eta t\pi y$ then $\mu_C(b_2) = \mu_C(y\eta t\pi y) \ge \min\{\mu_C(y), \mu_C(y)\} = \mu_C(y)$ and $\gamma_C(b_2) = \gamma_C(y\eta t\pi y) \le \max\{\gamma_C(y), \gamma_C(y)\} = \gamma_C(y)$.

From above we can write

 $\mu_{A\Gamma C}(s) \geq \min\{\mu_A(b_1), \mu_C(b_2)\} \geq \min\{\mu_A(x), \mu_C(y)\} \neq 0,$ because $\mu_A(x) \neq 0, \mu_C(y) \neq 0,$

and

$$\gamma_{A\Gamma C}(s) \leq \max\{\gamma_A(b_1), \gamma_C(b_2)\} \leq \max\{\gamma_A(x), \gamma_C(y)\} \neq 1,$$

because $\gamma_A(x) \neq 1, \gamma_C(y) \neq 1.$

Which is a contradiction that $\mu_{A\Gamma C}(s) = 0$ and $\gamma_{A\Gamma C}(s) = 1$. Thus for any intuitionistic fuzzy bi- Γ -ideals A and C of S, $A\Gamma C \subseteq \chi_P$ implies that $A \subseteq \chi_P$ or $C \subseteq \chi_P$. Hence $\chi_P = (\mu_{\chi_P}, \gamma_{\chi_P})$ is an intuitionistic fuzzy prime bi- Γ -ideal of S.

Conversely, we suppose that $\chi_P = (\mu_{\chi_P}, \gamma_{\chi_P})$ is an intuitionistic fuzzy prime bi- Γ ideal of S and let B_1 and B_2 be any bi- Γ -ideals of S such that $B_1 \Gamma B_2 \subseteq P$, then by *Lemma* 3.10, χ_{B_1} and χ_{B_2} are intuitionistic fuzzy bi- Γ -ideals of S also $\chi_{B_1 \Gamma B_2} \subseteq \chi_P$ but we know $\chi_{B_1 \Gamma B_2} = \chi_{B_1} \Gamma \chi_{B_2}$ implies $\chi_{B_1} \Gamma \chi_{B_2} \subseteq \chi_P$. As by supposition χ_P is prime so we have, $\chi_{B_1} \subseteq \chi_P$ or $\chi_{B_2} \subseteq \chi_P$. Hence by Lemma 3.2, $B_1 \subseteq P$ or $B_2 \subseteq P$ implies that P is a prime bi- Γ -ideal of S.

Theorem 4.6. A non-empty subset P of S is a strongly prime bi- Γ -ideal of S if and only if the intuitionistic characteristic function $\chi_P = (\mu_{\chi_P}, \gamma_{\chi_P})$ of P is an intuitionistic fuzzy strongly prime bi- Γ -ideal of S.

Proof. Let *P* be a bi- Γ -ideal of *S* then by *Lemma* 3.10, χ_P is an intuitionistic fuzzy bi- Γ -ideal of *S*. We suppose that *P* is a strongly prime. Let $A = (\mu_A, \gamma_A)$ and $C = (\mu_C, \gamma_C)$ be any intuitionistic fuzzy bi- Γ -ideal of *S* such that $A\Gamma C \cap C\Gamma A \subseteq \chi_P$ but $A \nsubseteq \chi_p$ and $C \nsubseteq \chi_P$. Then there exist $x, y \in S$ such that $\mu_A(x) \neq 0$, $\gamma_A(x) \neq 1$ and $\mu_C(y) \neq 0$, $\gamma_C(y) \neq 1$ but $\mu_{\chi_P}(x) = 0$, $\gamma_{\chi_P}(x) = 1$ and $\mu_{\chi_P}(y) = 0$, $\gamma_{\chi_P}(y) = 1$. Hence $x \notin P$ and $y \notin P$. Since *P* is a strongly prime bi- Γ -ideal of *S*, then for bi- Γ -ideals B(x) and B(y), we have $B(x)\Gamma B(y)\cap B(y)\Gamma B(x) \nsubseteq P$. Since $\mu_A(x) \neq 0$, $\gamma_A(x) \neq 1$ and $\mu_C(y) \neq 0$, $\gamma_C(y) \neq 1$ therefore, min $\{\mu_A(x), \mu_C(y)\} \neq 0$ and max $\{\gamma_A(x), \gamma_C(y)\} \neq 1$.

As $B(x) \Gamma B(y) \cap B(y) \Gamma B(x) \notin P$, then there exists $s \in S$ such that $s \in B(x) \Gamma B(y) \cap B(y) \Gamma B(x)$ but $s \notin P$ then $\mu_{\chi_P}(s) = 0$ and $\gamma_{\chi_P}(s) = 1$ and hence $\mu_{A\Gamma C}(s) \wedge \mu_{C\Gamma A}(s) = 0$ and $\gamma_{A\Gamma C}(s) \vee \gamma_{C\Gamma A}(s) = 1$. Since $s \in B(x) \Gamma B(y)$ and $s \in B(y) \Gamma B(x)$.

When $s \in B(x) \Gamma B(y)$, we can write $s = b_1 \alpha b_2$, for some $b_1 \in B(x)$, $b_2 \in B(y)$ and $\alpha \in \Gamma$. So we have

$$\mu_{A\Gamma C}(s) = \bigvee_{s=b_1 \alpha b_2} \min\{\mu_A(b_1), \mu_C(b_2)\} \ge \min\{\mu_A(b_1), \mu_C(b_2)\}$$

and

$$\gamma_{A\Gamma C}(s) = \bigwedge_{s=b_1 \alpha b_2} \max\{\gamma_A(b_1), \gamma_C(b_2)\} \le \max\{\gamma_A(b_1), \gamma_C(b_2)\}$$

Since $b_1 \in B(x)$, which is a bi- Γ -ideal generated by x and $B(x) = \{x\} \cup x\Gamma x \cup x\Gamma S\Gamma x$, then $b_1 = x$ or $b_1 = x\beta x$ or $b_1 = x\theta r\phi x$, for some $r \in S$ and $\beta, \theta, \phi \in \Gamma$. If $b_1 = x$ then $\mu_A(b_1) = \mu_A(x)$ and $\gamma_A(b_1) = \gamma_A(x)$.

If
$$b_1 = x$$
 then $\mu_A(b_1) = \mu_A(x)$ and $\gamma_A(b_1) = \gamma_A(x)$.
If $b_1 = x\beta x$ then $\mu_A(b_1) = \mu_A(x\beta x) \ge \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$
315

and $\gamma_A(b_1) = \gamma_A(x\beta x) \le \max\{\gamma_A(x), \gamma_A(x)\} = \gamma_A(x).$

If $b_1 = x\theta r\phi x$ then $\mu_A(b_1) = \mu_A(x\theta r\phi x) \ge \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$

and $\gamma_A(b_1) = \gamma_A(x\theta r\phi x) \le \max\{\gamma_A(x), \gamma_A(x)\} = \gamma_A(x).$

Also as $b_2 \in B(y) = \{y\} \cup y\Gamma y \cup y\Gamma S\Gamma y$, then $b_2 = y$ or $b_2 = y\delta y$ or $b_2 = y\eta t\pi y$, for some $t \in S$, δ , η , $\pi \in \Gamma$.

If $b_2 = y$ then $\mu_C(b_2) = \mu_C(y)$ and $\gamma_C(b_2) = \gamma_C(y)$.

If $b_2 = y\delta y$ then $\mu_C(b_2) = \mu_C(y\delta y) \ge \min\{\mu_C(y), \mu_C(y)\} = \mu_C(y)$ and $\gamma_C(b_2) = \gamma_C(y\delta y) \le \max\{\gamma_C(y), \gamma_C(y)\} = \gamma_C(y).$

If $b_2 = y\eta t\pi y$ then $\mu_C(b_2) = \mu_C(y\eta t\pi y) \ge \min\{\mu_C(y), \mu_C(y)\} = \mu_C(y)$ and $\gamma_C(b_2) = \gamma_C(y\eta t\pi y) \le \max\{\gamma_C(y), \gamma_C(y)\} = \gamma_C(y).$

From above we can write,

$$\mu_{A\Gamma C}(s) \geq \min\{\mu_A(b_1), \mu_C(b_2)\} \geq \min\{\mu_A(x), \mu_C(y)\} \neq 0,$$

since $\mu_A(x) \neq 0$ and $\mu_C(y) \neq 0$,

and

$$\begin{array}{rcl} \gamma_{A\Gamma C}(t) &\leq & \max\{\gamma_A(b_1), \gamma_C(b_2)\} \leq \max\{\gamma_A(x), \gamma_C(y)\} \neq 1,\\ \text{since } \gamma_A(x) &\neq & 1 \text{ and } \gamma_C(y) \neq 1. \end{array}$$

Similarly, by taking $s \in B(y) \Gamma B(x)$, we can prove that $\mu_{C\Gamma A}(s) \neq 0$ and $\gamma_{C\Gamma A}(s) \neq 1$. This implies that $\mu_{A\Gamma C}(s) \wedge \mu_{C\Gamma A}(s) \neq 0$ and $\gamma_{A\Gamma C}(s) \vee \gamma_{C\Gamma A}(s) \neq 1$, which is a contradiction as we have $\mu_{A\Gamma C}(s) \wedge \mu_{C\Gamma A}(s) = 0$ and $\gamma_{A\Gamma C}(s) \vee \gamma_{C\Gamma A}(s) = 1$. Thus for any intuitionistic fuzzy bi- Γ -ideals A and C of S, $A\Gamma C \cap C\Gamma A \subseteq \chi_P$ implies that $A \subseteq \chi_P$ or $C \subseteq \chi_P$. Hence χ_P is an intuitionistic fuzzy strongly prime bi- Γ -ideal of S.

Conversely, we suppose that χ_P is an intuitionistic fuzzy strongly prime bi- Γ -ideal of S and let B_1 and B_2 , be any bi- Γ -ideals of S such that $B_1\Gamma B_2 \cap B_2\Gamma B_1 \subseteq P$, then by Lemma 3.10, χ_{B_1} and χ_{B_2} are intuitionistic fuzzy bi- Γ -ideal of S and also $\chi_{B_1\Gamma B_2} \cap \chi_{B_2\Gamma B_1} \subseteq \chi_P$ but we know $\chi_{B_1\Gamma B_2} = \chi_{B_1}\Gamma\chi_{B_2}$. Which implies that $\chi_{B_1}\Gamma\chi_{B_2} \cap \chi_{B_2}\Gamma\chi_{B_1} \subseteq \chi_P$. As by supposition χ_P is strongly prime so we have, $\chi_{B_1} \subseteq \chi_P$ or $\chi_{B_2} \subseteq \chi_P$. Hence by Lemma 3.2, $B_1 \subseteq P$ or $B_2 \subseteq P$ implies that Pis a strongly prime bi- Γ -ideal of S.

Similarly, we can prove the following:

Theorem 4.7. A non-empty subset P of S is a semiprime bi- Γ -ideal of S if and only if the intuitionistic characteristic function $\chi_P = (\mu_{\chi_P}, \gamma_{\chi_P})$ of P is an intuitionistic fuzzy semiprime bi- Γ -ideal of S.

Remark 4.8. Obviously every intuitionistic fuzzy strongly prime bi- Γ -ideal of S is an intuitionistic fuzzy prime bi- Γ -ideal of S and every intuitionistic fuzzy prime bi- Γ -ideal of S.

Note that the converse of above is not true.

Example 4.9. Consider $S = \{a, b, c\}$ be a semigroup with following multiplication table and Γ be a non-empty set. Define $S \times \Gamma \times S \to S$ by $x\gamma y = x * y$ for all $x, y \in S$ and $\gamma \in \Gamma$. Then S is a Γ -semigroup.

*	a	b	c
a	a	a	a
b	a	b	b
c	a	c	c

The bi- Γ -ideals of S are $\{a\}, \{a, b\}, \{a, c\}$ and S. Here $\{a\}$ is a prime bi- Γ -ideal of S but it is not strongly prime as $(\{a, b\}\Gamma\{a, c\}) \cap (\{a, c\}\Gamma\{a, b\}) = \{a\} \subseteq \{a\}$ but $\{a, b\} \notin \{a\}$, and $\{a, c\} \notin \{a\}$. Hence by Theorem 4.5 and 4.6, $\chi_{\{a\}}$ is an intuitionistic fuzzy prime bi- Γ -ideal of S but not an intuitionistic fuzzy strongly prime bi- Γ -ideal of S.

Example 4.10. Let $0 \in S$ and |S| > 3 and Γ be any set. Then S is a Γ -semigroup with zero, under the operation defined by

$$x\gamma y = \begin{cases} x & \text{if } x = y, \\ 0 & \text{otherwise,} \end{cases} \text{ for all } x, y \in S, \alpha \in \Gamma.$$

Since for all subsets A and B of S containing $\{0\}$, we have $A\Gamma S\Gamma A = A$ and $A\Gamma B = A \cap B$. All these subsets are semiprime bi- Γ -ideals of S. Let C be a semiprime bi- Γ -ideal of S such that $|S \setminus C| \geq 3$. Then for distinct $a, b \in S \setminus C$, we have $(C \cup \{a\})\Gamma(C \cup \{b\}) = (C \cup \{a\})\cap (C \cup \{b\}) = C$, but $(C \cup \{a\}) \nsubseteq C$ and $(C \cup \{b\}) \nsubseteq C$, implies that C is not a prime bi- Γ -ideal of S. Hence by Theorem 4.5 and 4.7, χ_C is an intuitionistic fuzzy semiprime bi- Γ -ideal of S but not an intuitionistic fuzzy prime bi- Γ -ideal of S.

Proposition 4.11. The intersection of any family of intuitionistic fuzzy prime bi- Γ -ideals of S is an intuitionistic fuzzy semiprime bi- Γ -ideal of S.

Proof. Let {*A_i* : *i* ∈ *I*} be a collection of intuitionistic fuzzy prime bi-Γ-ideals of *S*, where *A_i* = (μ_{A_i}, γ_{A_i}) for *i* ∈ *I*. Then by Lemma 3.11, $\bigcap_{i \in I} A_i = (\bigwedge_{i \in I} \mu_{A_i}, \bigvee_{i \in I} \gamma_{A_i})$ is an intuitionistic fuzzy bi-Γ-ideal of *S*. Let *B* = (μ_B, γ_B) be any intuitionistic fuzzy bi-Γ-ideal of *S* such that $B \Gamma B \subseteq \bigcap_{i \in I} A_i$, which implies that $B \Gamma B \subseteq A_i$ for all *i* ∈ *I*. But each *A_i* is an intuitionistic fuzzy prime bi-Γ-ideal of *S*, so *B* ⊆ *A_i*, for all *i* ∈ *I* implies that $B \subseteq \bigcap_{i \in I} A_i$. Hence $\bigcap_{i \in I} A_i = (\bigwedge_{i \in I} \mu_{A_i}, \bigvee_{i \in I} \gamma_{A_i})$ is an intuitionistic fuzzy semiprime bi-Γ-ideal of *S*.

Definition 4.12. An intuitionistic fuzzy bi- Γ -ideal $A = (\mu_A, \gamma_A)$ of a Γ -semigroup S is called an intuitionistic fuzzy irreducible bi- Γ -ideal of S if for any intuitionistic fuzzy bi- Γ -ideals $B = (\mu_B, \gamma_B)$ and $C = (\mu_C, \gamma_C)$ of $S, B \cap C = A$ implies that B = A or C = A.

Definition 4.13. An intuitionistic fuzzy bi- Γ -ideal, $A = (\mu_A, \gamma_A)$ of a Γ -semigroup S is called an intuitionistic fuzzy strongly irreducible bi- Γ -ideal of S if for any intuitionistic fuzzy bi- Γ -ideals $B = (\mu_B, \gamma_B)$ and $C = (\mu_C, \gamma_C)$ of $S, B \cap C \subseteq A$ implies that $B \subseteq A$ or $C \subseteq A$.

Lemma 4.14. A non-empty subset Q of S is an irreducible (strongly irreducible) bi- Γ -ideal of S if and only if the intuitionistic characteristic function $\chi_Q = (\mu_{\chi_Q}, \gamma_{\chi_Q})$ of Q is an intuitionistic fuzzy irreducible (strongly irreducible) bi- Γ -ideal of S. Proof. Straightforward.

Every intuitionistic fuzzy strongly irreducible bi- Γ -ideal of S is an intuitionistic fuzzy irreducible bi- Γ -ideal of S but the converse is not true in general.

Example 4.15. Let $S = \{a, b, c, d, e, f\}$ be a semigroup with following multiplication table and Γ be a non-empty set. Define $S \times \Gamma \times S \to S$ by $x\gamma y = x * y$ for all $x, y \in S$ and $\gamma \in \Gamma$. Then S is a Γ -semigroup.

*	a	b	c	d	e	f
a	a	a	a	a	a	a
b	a	b	b	b	b	b
с	a	b	c	d	b	b
d	a	b	b	b	c	d
e	a	b	e	f	b	b
f	a	b	b	b	e	f

All bi- Γ -ideals of S are $\{a\}$, $\{a,b\}$, $\{a,b,c\}$, $\{a,b,d\}$, $\{a,b,e\}$, $\{a,b,f\}$, $\{a,b,c,e\}$, $\{a,b,d,f\}$, $\{a,b,c,d\}$, $\{a,b,e,f\}$ and S. Here $\{a\}$, $\{a,b,c,e\}$, $\{a,b,d,f\}$, $\{a,b,c,d\}$, $\{a,b,e,f\}$ and S are irreducible but only $\{a\}$ and S are strongly irreducible. If $A = \{a,b,c,e\}$, $B = \{a,b,d,f\}$, $C = \{a,b,c,d\}$ and $D = \{a,b,e,f\}$, then by Lemma 4.14, χ_A , χ_B , χ_C , χ_D are intuitionistic fuzzy irreducible bi- Γ -ideals of S which are not intuitionistic fuzzy strongly irreducible bi- Γ -ideals of S.

Proposition 4.16. An intuitionistic fuzzy strongly irreducible semiprime bi- Γ -ideal of S is an intuitionistic fuzzy strongly prime bi- Γ -ideal of S.

Proof. Let A be an intuitionistic fuzzy strongly irreducible semiprime bi- Γ -ideal of S. Let B and C be any two intuitionistic fuzzy bi- Γ -ideals of S such that, $B\Gamma C \cap C\Gamma B \subseteq A$. Now as $B \cap C \subseteq B$ and $B \cap C \subseteq C$ implies that $(B \cap C)\Gamma(B \cap C) \subseteq B\Gamma C$, similarly $(B \cap C)\Gamma(B \cap C) \subseteq C\Gamma B$. Then we can write $(B \cap C)\Gamma(B \cap C) \subseteq B\Gamma C \cap C\Gamma B$ implies $(B \cap C)\Gamma(B \cap C) \subseteq A$. Since A is an intuitionistic fuzzy semiprime bi- Γ -ideal, so $B \cap C \subseteq A$, as A is a strongly irreducible so $B \subseteq A$ or $C \subseteq A$. Hence A is an intuitionistic fuzzy strongly prime bi- Γ -ideal of S.

Proposition 4.17. Let $B = (\mu_B, \gamma_B)$ be an intuitionistic fuzzy bi- Γ -ideal of S with $\mu_B(a) = t$ and $\gamma_B(a) = 1-t$, for $a \in S$ and $t \in (0, 1]$, then there exist an intuitionistic fuzzy irreducible bi- Γ -ideal $C = (\mu_C, \gamma_C)$ of S such that $B \subseteq C$ and $\mu_C(a) = t$ and $\gamma_C(a) = 1 - t$.

Proof. Let $\mathcal{F} = \{A \mid A \text{ is an intuitionistic fuzzy bi-Γ-ideal of } S \text{ such that } \mu_A(a) = t$, $\gamma_A(a) = 1 - t$ and $B \subseteq A\}$, then $\mathcal{F} \neq \phi$ because $B \in \mathcal{F}$. Then the collection \mathcal{F} is a partially ordered set under inclusion. If $\omega = \{A_i \mid i \in I\}$ is any totally ordered subcollection of \mathcal{F} then $\bigcup_{i \in I} A_i = (\bigvee_{i \in I} \mu_{A_i}, \bigwedge_{i \in I} \gamma_{A_i})$, where, $\bigvee_{i \in I} \mu_{A_i}(x) = \sup \{\mu_{A_i}(x) \mid i \in I, x \in S\}$ and $\bigwedge_{i \in I} \gamma_{A_i}(x) = \inf \{\gamma_{A_i}(x) \mid i \in I, x \in S\}$. Now we will show that $\bigcup_{i \in I} A_i, i \in I$ is an intuitionistic fuzzy bi-Γ-ideal of S. For $x, y \in S$, $\alpha \in \Gamma$,

we have,

$$\begin{array}{ll} \bigvee_{i\in I} \mu_{A_i}(x\alpha y) &= & \sup\left\{\mu_{A_i}(x\alpha y) \mid i\in I, x\alpha y\in S\right\} \\ &\geq & \sup\{\min\{\mu_{A_i}(x), \mu_{A_i}(y)\} \mid i\in I, x, y\in S\} \\ &\geq & \min\{\sup\{\mu_{A_i}(x) \mid i\in I, x\in S\}, \sup\{\mu_{A_i}(y)\} \mid i\in I, y\in S\} \\ &\bigvee_{i\in I} \mu_{A_i}(x\alpha y) &\geq & \min\{\bigvee_{i\in I} \mu_{A_i}(x), \bigvee_{i\in I} \mu_{A_i}(y)\}, \end{array}$$

and

$$\begin{split} & \bigwedge_{i \in I} \gamma_{A_i}(x \alpha y) = \inf \left\{ \gamma_{A_i}(x \alpha y) \mid i \in I, x \alpha y \in S \right\} \\ & \leq \inf \left\{ \max\{\gamma_{A_i}(x), \gamma_{A_i}(y)\} \mid i \in I, x, y \in S \right\} \\ & \leq \max\{\inf\{\gamma_{A_i}(x) \mid i \in I, x \in S\}, \inf\{\gamma_{A_i}(y)\} \mid i \in I, y \in S\} \\ & \bigwedge_{i \in I} \gamma_{A_i}(x \alpha y) \leq \max\{\bigwedge_{i \in I} \gamma_{A_i}(x), \bigwedge_{i \in I} \gamma_{A_i}(y)\}. \end{split}$$

Hence $\bigcup_{i \in I} A_i, i \in I$ is an intuitionistic fuzzy Γ -subsemigroup of S. Now for $x, y, z \in S, \alpha, \beta \in \Gamma$,

$$\begin{array}{ll} \bigvee_{i\in I} \mu_{A_i}(x\alpha z\beta y) &= & \sup\left\{\mu_{A_i}(x\alpha z\beta y) \mid i\in I, x\alpha z\beta y\in S\right\} \\ &\geq & \sup\{\min\{\mu_{A_i}(x), \mu_{A_i}(y)\} \mid i\in I, x, y\in S\} \\ &\geq & \min\{\sup\{\mu_{A_i}(x) \mid i\in I, x\in S\}, \sup\{\mu_{A_i}(y)\} \mid i\in I, y\in S\} \\ &\bigvee_{i\in I} \mu_{A_i}(x\alpha z\beta y) &\geq & \min\{\bigvee_{i\in I} \mu_{A_i}(x), \bigvee_{i\in I} \mu_{A_i}(y)\} \end{array}$$

and

$$\begin{split} & \bigwedge_{i \in I} \gamma_{A_i}(x \alpha z \beta y) = \inf \left\{ \gamma_{A_i}(x \alpha z \beta y) \mid i \in I, x \alpha z \beta y \in S \right\} \\ & \leq \inf \{ \max\{\gamma_{A_i}(x), \gamma_{A_i}(y)\} \mid i \in I, x, y \in S \} \\ & \leq \max\{\inf\{\gamma_{A_i}(x) \mid i \in I, x \in S\}, \inf\{\gamma_{A_i}(y)\} \mid i \in I, y \in S \} \\ & & \bigwedge_{i \in I} \gamma_{A_i}(x \alpha z \beta y) \leq \max\{ \bigwedge_{i \in I} \gamma_{A_i}(x), \bigwedge_{i \in I} \gamma_{A_i}(y) \}. \end{split}$$

Thus $\bigcup A_i$ is an intuitionistic fuzzy bi- Γ -ideal of S. Since $B \subseteq A_i$ for all $i \in I$, then $B \subseteq \bigcup_{i \in I} A_i$. Also $(\bigvee_{i \in I} \mu_{A_i})(a) = \bigvee_{i \in I} \mu_{A_i}(a) = t$ and $(\bigwedge_{i \in I} \gamma_{A_i})(a) = \bigwedge_{i \in I} \gamma_{A_i}(a) = 1 - t$. Hence $\bigcup_{i \in I} A_i$ is an upper bound of ω that is $\omega = \{A_i \mid i \in I\}$ is bounded above then by Zorn's lemma, there exists a maximal intuitionistic fuzzy bi- Γ -ideal, $C = (\mu_C, \gamma_C)$ of S such that $B \subseteq C$ and $\mu_C(a) = t, \gamma_C(a) = 1 - t$. Now we will show that C is irreducible. Let B_1, B_2 be any intuitionistic fuzzy bi- Γ -ideal of S, such that $B_1 \cap B_2 = C$ then $C \subseteq B_1$ and $C \subseteq B_2$. We suppose that $C \neq B_1$ and $C \neq B_2$. Since C is the maximal intuitionistic fuzzy bi- Γ -ideal of S with $\mu_C(a) = t, \gamma_C(a) = 1 - t$, then $\mu_{B_1}(a) \neq t$ or $\gamma_{B_1}(a) \neq 1 - t$ and $\mu_{B_2}(a) \neq t$ or $\gamma_{B_2}(a) \neq 1 - t$. Thus we have,

$$t = \mu_C(a) = \mu_{B_1 \cap B_2}(a) = \mu_{B_1}(a) \cap \mu_{B_2}(a) \neq t$$

or

$$1 - t = \gamma_C(a) = \gamma_{B_1 \cap B_2}(a) = \gamma_{B_1}(a) \cap \gamma_{B_2}(a) \neq 1 - t$$

Which is a contradiction. Hence either $B_1 = C$ or $B_2 = C$ implies that C is an irreducible intuitionistic fuzzy bi- Γ -ideal of S.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994) 137–172.
- [3] K. T. Atanassov, Intuitionistic fuzzy sets, Theory and Applications Studies in Fuzziness and Soft Computing, Vol. 35, Physica-Verlag, Heidelberg, 1999.
- [4] R. Chinram and C. Jirojkul, On bi Γ-ideals in Γ-semigroups, Songklanakarin J. Sci. Technol. 29 (2007) 231–234.
- [5] K. H. Kim and Y. B. Jun, Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33(4) (2002) 443–449.
- [6] K. H. Kim and Y.B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. Math. Sci. 27 (5) (2001) 261–267.
- [7] K. H. Kim and J. G. Lee, On fuzzy bi-ideals of semigroups, Turk. J. Math. 29 (2005) 201-210.
- [8] S. Lekkoksung, Intuitionistic fuzzy bi-ideals of Γ-semigroups, Int. J. Contemp. Math. Sci. 7(8) (2012) 351–355.
- [9] N. K. Saha, On Γ -semigroup II, Bull. Calcutta Math. Soc. 79(6) (1987) 331–335.
- [10] N. K. Saha, On $\Gamma\text{-semigroup}$ III, Bull. Calcutta Math. Soc. 80(1) (1988) 1–13.
- [11] S. K. Sardar, S. K. Majumder and M. Mandal, Atanassov's intuitionistic fuzzy ideals of Γsemigroups, Int. J. Algebra 5(7) (2011) 335–353.
- [12] M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Calcutta Math. Soc. 78(3) (1986) 180–186.
- [13] M. Shabir and S. Ali, Prime bi-ideals of Γ-semigroups, J. Adv. Res. in Pure Math. 4(2) (2012) 47–58.
- [14] M. Shabir, M. S. Arif, A. Khan and M. Aslam, On intuitionistic fuzzy prime bi-ideals of semigroups, Bull. Malays. Math. Sci. Soc. (in press).
- [15] M. Uckun, M. A. Ozturk and Y. B. Jun, Intuitionistic fuzzy sets in gamma-semigroups, Bull. Korean Math. Soc. 44(2) (2007) 359–367.
- [16] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

<u>MUHAMMAD AKRAM</u> (makram_69@yahoo.com)

Department of Mathematics, University of Gujrat, Gujrat, Pakistan