Annals of Fuzzy Mathematics and Informatics Volume 5, No. 1, (January 2013), pp. 59–71

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

© Kyung Moon Sa Co. http://www.kyungmoon.com

On $(\in, \in \lor q)$ -intuitionistic fuzzy h-ideals of hemirings

Mohsen Asghari-Larimi, Young Bae Jun

Received 28 June 2011; Revised 2 May 2012; Accepted 4 May 2012

ABSTRACT. The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization of the notion of fuzzy sets. Using the notion of "belongingness (\in)" and "quasi-coincidence (q)" of fuzzy points in fuzzy sets, we introduce the concepts of (\in , \in $\vee q$)-intuitionistic fuzzy ideal, (\in , \in $\vee q$)-intuitionistic fuzzy h-ideal of hemirings, and some interesting properties are investigated.

2010 AMS Classification: 16Y60, 13E05, 03G25

Keywords: Fuzzy set, Intuitionistic fuzzy set, $(\in, \in \lor q)$ -Intuitionistic fuzzy ideals, $(\in, \in \lor q)$ -Intuitionistic fuzzy k-ideals, $(\in, \in \lor q)$ -Intuitionistic fuzzy k-ideals.

Corresponding Author: MOHSEN ASGHARI-LARIMI (asghari2004@yahoo.com)

1. Introduction

Given a set H, a fuzzy subset of H (or a fuzzy set in H) is, by definition, an arbitrary mapping $\mu: H \longrightarrow [0,1]$ where [0,1] is the closed interval in reals whose endpoints are 0 and 1. This important concept of a fuzzy set has been introduced by Zadeh in [19]. Since then, many papers on fuzzy sets appeared showing the importance of the concept and its applications (see, for example, [2, 6]).

After the introduction of fuzzy sets by Zadeh, there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [3, 6] is one among them. An intuitionistic fuzzy set gives both a membership degree and a non-membership degree. The membership and non-membership values induce an indeterminacy index, which models the hesitancy of deciding the degree to which an object satisfies a particular property. As the basis for the study of intuitionistic fuzzy set theory, many operations and relations over intuitionistic fuzzy sets were introduced [4, 5]. Many concepts in fuzzy set theory were also extended to intuitionistic fuzzy set theory, such as intuitionistic fuzzy

relations, intuitionistic L-fuzzy sets, intuitionistic fuzzy implications, intuitionistic fuzzy grade of hypergroups, intuitionistic fuzzy logics, and the degree of similarity between intuitionistic fuzzy sets, etc., [10].

In [7] Biswas applied the concept of intuitionistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a group.

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [16], played a vital role to generate some different types of fuzzy subgroups. Bhakat and Das [8] gave the concepts of (α, β) -fuzzy subgroups by using the notion of (\in) and (q) between a fuzzy point and a fuzzy subgroup, where α, β are any two of $\{\in, q, \in \vee q, \in \wedge q\}$ with $\alpha \neq \in \wedge q$, and introduced the concept of an $(\in, \in \vee q)$ -fuzzy subgroup. In [9] $(\in, \in \vee q)$ - fuzzy subrings and ideals defined. In [14] Jun and Song initiated the study of (α, β) -fuzzy interior ideals of a semigroup. In [17] Shabir et al. studied characterizations of regular semigroups by (α, β) -fuzzy ideals. In [18] Yuan et al. redefined (α, β) -intuitionistic fuzzy subgroups. In [15] Kazanci and Yamak studied $(\in, \in \vee q)$ -fuzzy bi-ideals of a semigroup. Generalizing the concept of the quasi-coincident of a fuzzy point with a fuzzy subset. Dudek et al. [11] introduced the concept of $(\in, \in \vee q)$ -fuzzy h-ideal (k-ideal) of a hemiring. In [13] Jun et al. studied $(\in, \in \vee q_k)$ -fuzzy ideals of hemirings. In [1] Abdullah et al. studied (α, β) -intuitionistic fuzzy ideals in hemirings. In [12] Jun studied (α, β) -fuzzy ideals of hemirings. This paper continues this line of research.

The paper is organized as follows: in Section 2 some fundamental definitions on fuzzy sets and intuitionistic fuzzy sets are explored; in Section 3, we define $(\in, \in \lor q)$ -intuitionistic fuzzy ideals of hemirings, $(\in, \in \lor q)$ -intuitionistic fuzzy k-ideal, and $(\in, \in \lor q)$ -intuitionistic fuzzy k-ideal of a hemiring. Finally, in Section 4, we produce some relations between $(\in, \in \lor q)$ -intuitionistic fuzzy ideals with $(\in, \in \lor q)$ -fuzzy ideals and with anti $(\in, \in \lor q)$ -fuzzy ideals, and then establish some useful theorems.

2. Preliminaries

A semiring is an algebraic system $(R,+,\cdot)$ consisting of a non-empty set R together with two binary operations called addition "+" and multiplication "·", here $x\cdot y$ will be denoted by juxtaposition for all $x,y\in R$, such that (R,+) and (R,\cdot) are semigroups connected by the following distributive laws: a(b+c)=ab+ac and (b+c)a=ba+ca for all $a,b,c\in R$. An element $0\in R$ is called a zero of R if a+0=0+a=a and a0=0a=a for all $a\in R$. A semiring with zero and a commutative addition is called a hemiring. A nonempty subset X of R is called a subhemiring of R if $X\cdot X\subseteq X$ and $X+X\subseteq X$. A non-empty subset I of a semiring R is said to be a left (resp. right) ideal of R if it is closed under the addition and $RI\subseteq I$ (resp. $IR\subseteq I$). A left ideal which is also a right ideal is called an ideal. A left (resp. right) ideal I of a hemiring R is called a left (resp. right) R if for any R is called a left (resp. right) R if or any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R whenever R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if for any R is called a left (resp. right) R if R is called R if R

The concept of a fuzzy set in a non-empty set was introduced by Zadeh [19] in 1965. Let X be a non-empty set. A mapping $\mu: X \longrightarrow [0;1]$ is called a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in X$.

For any $t \in [0,1]$ and fuzzy set μ of X, the set

$$U(\mu, t) = \{x \in X | \mu(x) \ge t\}$$
 (respectively, $L(\mu, t) = \{x \in X | \mu(x) \le t\}$),

is called an upper (respectively, lower) t-level cut of μ .

Definition 2.1. An intuitionistic fuzzy set (IFS for short) A in a non-empty set X is an object having the form

$$A = \{(x, \mu_{\scriptscriptstyle A}(x), \lambda_{\scriptscriptstyle A}(x)) | x \in X\},$$

where the functions $\mu_A: X \longrightarrow [0;1]$ and $\lambda_A: X \longrightarrow [0;1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\lambda_A(x)$) of each element $x \in X$ with respect to the set A, respectively, and $0 \le \mu_A(x) + \lambda_A(x) \le$ 1 for all $x \in X$ (see [3, 4]). For the sake of simplicity, we shall use the symbol $A = (\mu_A, \lambda_A)$ for the IFS $A = \{(x, \mu_A(x), \lambda_A(x)) | x \in X\}$. Denote by IFS(X) the set of all intuitionistic fuzzy sets in X.

Definition 2.2 ([3]). Let $A = (\mu_A, \lambda_A)$ and $B = (\mu_B, \lambda_B)$ be intuitionistic fuzzy sets in X. Then

- (1) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\lambda_A(x) \ge \lambda_B(x)$ for all $x \in X$,
- (2) A = B iff $A \subseteq B$ and $B \subseteq A$,
- (3) $A^c = \{(x, \lambda_A(x), \mu_A(x)) | x \in X\},\$
- $(4) \ A \cap B = \{(x, \min\{\mu_{{}_{\!A}}(x), \mu_{{}_{\!B}}(x)\}, \max\{\lambda_{{}_{\!A}}(x), \lambda_{{}_{\!B}}(x)\}) | x \in X\},$
- $(5) \ A \cup B = \{(x, \max\{\mu_{{}_{A}}(x), \mu_{{}_{B}}(x)\}, \min\{\lambda_{{}_{A}}(x), \lambda_{{}_{B}}(x)\}) | x \in X\},$
- $\begin{array}{l} (6) \ \Box A = \{(x,\mu_{_{\!A}}(x),\mu_{_{\!A}}^c(x))|x\in X\},\\ (7) \ \diamondsuit A = \{(x,\lambda_{_{\!A}}^c(x),\lambda_{_{\!A}}(x))|x\in X\}. \end{array}$

Definition 2.3 ([16]). Let $Y \subseteq X$ and $t \in [0,1]$. We define $t_Y \in F(X)$ as follows:

$$t_Y(x) = \begin{cases} t & \text{if } x \in Y \\ 0 & \text{if } x \in X \backslash Y. \end{cases}$$

In particular, if Y is a singleton, say x, then $t_{\{x\}}$ is called a fuzzy point with support x and value t and is denoted by x_t .

Definition 2.4 ([16]). Let μ be a fuzzy subset of X and x_t be a fuzzy point.

- (1) If $\mu(x) \geq t$, then we say x_t belongs to μ , and write $x_t \in \mu$.
- (2) If $\mu(x) + t > 1$, then we say x_t is quasi-coincident with μ , and write $x_t q \mu$.
- (3) $x_t \in \forall q\mu \iff x_t \in \mu \text{ or } x_t q\mu.$
- (4) $x_t \in \land q\mu \iff x_t \in \mu \text{ and } x_t q\mu.$

In what follows, unless otherwise specified, α and β will denote any one of \in , q, \in $\forall q \text{ or } \in \land q \text{ with } \alpha \neq \in \land q.$ To say that $x_t \overline{\alpha} \mu$ means that $x_t \alpha \mu$ does not hold. We defined

$$U(\alpha\mu, t) = \{ x \in X | x_t \alpha \mu \},\$$

where $\alpha \in \{\in, q, \in \vee q\}$.

Definition 2.5 ([11]). A fuzzy subset μ of R is said to be an $(\in, \in \vee q)$ -fuzzy left (resp. right) ideal of a hemiring R if

$$\begin{array}{l} x \in U(\in \mu, t), \ y \in U(\in \mu, r) \Longrightarrow x + y \in U(\in \vee q\mu, t \wedge r), \\ x \in U(\in \mu, t) \Longrightarrow yx \in U(\in \vee q\mu, t) (\text{resp. } xy \in U(\in \vee q\mu, t)), \end{array}$$

for all $x, y \in R$ and $t, r \in (0, 1]$. A fuzzy subset which is an $(\in, \in \lor q)$ -fuzzy left and right ideal is called an $(\in, \in \lor q)$ -fuzzy ideal.

An $(\in, \in \lor q)$ -fuzzy ideal μ of a hemiring R satisfying the following condition:

$$x + a = b, \ a \in U(\in \mu, t), \ b \in U(\in \mu, r) \Longrightarrow x \in U(\in \forall q\mu, t \land r),$$

for all $a, b, x \in R$ and $t, r \in (0, 1]$ is called an $(\in, \in \lor q)$ -fuzzy k-ideal.

An $(\in, \in \lor q)$ -fuzzy ideal μ of a hemiring R satisfying the following condition:

$$x + a + y = b + y, \ a \in U(\in \mu, t), \ b \in U(\in \mu, r) \Longrightarrow x \in U(\in \forall q\mu, t \land r),$$

for all $a, b, x, y \in R$ and $t, r \in (0, 1]$ is called an $(\in, \in \lor q)$ -fuzzy h-ideal.

Lemma 2.6 ([11]). A fuzzy subset μ of a hemiring R is an $(\in, \in \lor q)$ -fuzzy h-ideal (resp. k-ideal) of R if and only if it satisfies:

- (a) $\mu(x+y) \ge \min\{\mu(x), \mu(y), 0.5\},\$
- (b) $\mu(yx) \ge \min\{\mu(x), 0.5\},\$
- (c) $\mu(xy) \ge \min\{\mu(x), 0.5\},\$
- (d) $x + a + y = b + y \Longrightarrow \mu(x) \ge \min{\{\mu(a), \mu(b), 0.5\}},$

(resp. (e)
$$x + a = b \Longrightarrow \mu(x) \ge \min\{\mu(a), \mu(b), 0.5\}$$
),

for all $a, b, x, y \in R$.

3. $(\in, \in \lor q)$ -Intuitionistic fuzzy ideals of hemirings

In what follows, let R denote a hemiring and $t \in (0, 1]$.

Definition 3.1. Let μ be a fuzzy set in X. We define

$$\begin{split} L(\in \mu, t) &= \{ x \in X | \ \mu(x) \le t \}, \\ L(q\mu, t) &= \{ x \in X | \ \mu(x) + t \le 1 \}), \\ L(\in \forall q\mu, t) &= \{ x \in X | \ \mu(x) + t \le 1 \ \text{or} \ \mu(x) \le t \}. \end{split}$$

Then the set $L(\alpha\mu, t)$ is called a *lower t-level cut* of $\alpha\mu$, where $\alpha \in \{\in, q, \in \lor q\}$.

It is clear that $L(\in \mu, t) = L(\mu, t)$.

Corollary 3.2 (). Let μ be a fuzzy set in X. Then for all $t \in (0,1]$ we have

- (1) $U(\in \forall q\mu, t) = U(\in \mu, t) \bigcup U(q\mu, t),$
- (2) $L(\in \forall q\mu, t) = L(\in \mu, t) \bigcup L(q\mu, t).$

Corollary 3.3 ([11]). For any fuzzy subset λ of X and $t \in (0,1]$, we consider two subsets:

$$Q(\lambda, t) = \{x \in X | x_t q \lambda\} \text{ and } [\lambda]_t = \{x \in X | x_t \in \forall q \lambda\}.$$

Then $[\lambda]_t = U(\lambda, t) \bigcup Q(\lambda, t)$.

Theorem 3.4 (). Let μ be a fuzzy set in X. Then we have

- (1) If $t \in (0, 0.5]$, then $U(\in \forall q\mu, t) = U(\in \mu, t)$,
- (2) If $t \in (0.5, 1]$, then $U(\in \forall q\mu, t) = U(q\mu, t)$.

Proof. (1) If $t \in (0,0.5]$, then $1-t \in [0.5,1)$. Thus $t \leq 1-t$. By Corollary 3.2, it is clear that $U(\in \mu,t) \subseteq U(\in \vee q\mu,t)$. Let $x \notin U(\in \mu,t)$. Then $\mu(x) < t$ and so $\mu(x) < 1-t$. This shows that $x \notin U(q\mu,t)$, and hence $x \notin (U(\in \mu,t) \bigcup U(q\mu,t))$. Thus $U(\in \mu,t) \supseteq U(\in \vee q\mu,t)$. Therefore $U(\in \mu,t) = U(\in \vee q\mu,t)$.

(2) If $t \in (0.5, 1]$, then $1 - t \in [0, 0.5)$. Thus 1 - t < t. By Theorem 3.2, we have $U(q\mu, t) \subseteq U(\in \forall q\mu, t)$. Let $x \notin U(q\mu, t)$, then $\mu(x) + t \le 1$ and so

 $\mu(x) \leq 1 - t < t$. This shows that $x \notin U(\in \mu, t)$, and thus $x \notin (U(\in \mu, t) \bigcup U(q\mu, t))$. Hence $U(q\mu, t) \supseteq U(\in \forall q\mu, t)$. Therefore $U(q\mu, t) = U(\in \forall q\mu, t)$.

Corollary 3.5 ([12]). Every fuzzy subset λ of X satisfies the following assertion:

$$t \in (0, 0.5] \Longrightarrow [\lambda]_t = U(\lambda, t).$$

Theorem 3.6. Let μ be a fuzzy set in X. Then we have

- (1) If $t \in (0, 0.5]$, then $L(\in \forall q\mu, t) = L(\in \mu, t)$,
- (2) If $t \in [0.5, 1]$, then $L(\in \forall q\mu, t) = L(q\mu, t)$.

Proof. The proof is similar to that of Theorem 3.4.

Definition 3.7. Let $A = (\mu_A, \lambda_A) \in IFS(R)$. Then $A = (\mu_A, \lambda_A)$ is called an (α, β) -intuitionistic fuzzy left (resp. right) ideal of hemiring R if

- $(1) \ x \in U(\alpha \mu_{\scriptscriptstyle A}, t), \ y \in U(\alpha \mu_{\scriptscriptstyle A}, r) \Longrightarrow x + y \in U(\beta \mu_{\scriptscriptstyle A}, t \wedge r),$
- $(2) \ x \in U(\alpha \mu_{\scriptscriptstyle A}, t) \Longrightarrow yx \in U(\beta \mu_{\scriptscriptstyle A}, t) (\text{resp. } xy \in U(\beta \mu_{\scriptscriptstyle A}, t)),$
- $(3) \ x \in L(\alpha \lambda_A, t), \ y \in L(\alpha \lambda_A, r) \Longrightarrow x + y \in L(\beta \lambda_A, t \vee r),$
- $(4) \ x \in L(\alpha \lambda_A, t) \Longrightarrow yx \in L(\beta \lambda_A, t) (\text{resp. } xy \in L(\beta \lambda_A, t)),$

for all $x, y \in R$ and $t, r \in (0, 1]$. A fuzzy subset which is an (α, β) -intuitionistic fuzzy left and right ideal is called an (α, β) -intuitionistic fuzzy ideal.

A fuzzy subset μ (resp. λ) of R is said to be an (resp. anti) (α, β) -fuzzy ideal of hemiring R if it satisfies the conditions (1) and (2) (resp. (3) and (4)) of Definition 3.7.

Definition 3.8. An (α, β) -intuitionistic fuzzy ideal $A = (\mu_A, \lambda_A)$ of a hemiring R satisfying the following condition:

- $(1) \ x+a=b, \ a\in U(\alpha\mu_{\scriptscriptstyle A},t), \ b\in U(\alpha\mu_{\scriptscriptstyle A},r)\Longrightarrow x\in U(\beta\mu_{\scriptscriptstyle A},t\wedge r),$
- $(2) \ x+a=b, \ a\in L(\alpha\lambda_{{}_A},t), \ b\in L(\alpha\lambda_{{}_A},r)\Longrightarrow x\in L(\beta\lambda_{{}_A},t\vee r),$

for all $a, b, x \in R$ and $t, r \in (0, 1]$ is called an (α, β) -intuitionistic fuzzy k-ideal.

A fuzzy subset μ (resp. λ) of R is said to be an (resp. anti) (α, β) -fuzzy k-ideal of hemiring R if it satisfies the condition (1) (resp. (2)) of Definition 3.8.

Definition 3.9. An (α, β) -intuitionistic fuzzy ideal $A = (\mu_A, \lambda_A)$ of a hemiring R satisfying the following condition:

- $(1) \ x+a+y=b+y, \ a\in U(\alpha\mu_{\scriptscriptstyle A},t), \ b\in U(\alpha\mu_{\scriptscriptstyle A},r)\Longrightarrow x\in U(\beta\mu_{\scriptscriptstyle A},t\wedge r),$
- $(2) \ x+a+y=b+y, \ a\in L(\alpha\lambda_{\scriptscriptstyle A},t), \ b\in L(\alpha\lambda_{\scriptscriptstyle A},r)\Longrightarrow x\in L(\beta\lambda_{\scriptscriptstyle A},t\vee r),$

for all $a, b, x, y \in R$ and $t, r \in (0, 1]$ is called an (α, β) -intuitionistic fuzzy h-ideal.

A fuzzy subset μ (resp. λ) of R is said to be an (resp. anti) (α, β) -fuzzy h-ideal of hemiring R if it satisfies the condition (1) (resp. (2)) of Definition 3.9.

Theorem 3.10. Let λ be a fuzzy subset of a hemiring R and $t, r \in (0, 1]$. Then:

- (1) (a1) $x \in L(\in \lambda, t), y \in L(\in \lambda, r) \Longrightarrow x + y \in L(\in \forall q\lambda, t \lor r)$ and
 - (a2) $\lambda(x+y) \leq \max\{\lambda(x), \lambda(y), 0.5\}$ for all $x, y \in R$ are equivalent.
- (2) (b1) $x \in L(\in \lambda, t) \Longrightarrow yx \in L(\in \forall q\lambda, t)$ and
 - (b2) $\lambda(yx) \leq \max\{\lambda(x), 0.5\}$ for all $x, y \in R$ are equivalent.
- (3) (c1) $x \in L(\in \lambda, t) \Longrightarrow xy \in L(\in \forall q\lambda, t)$ and
 - (c2) $\lambda(xy) \leq \max\{\lambda(x), 0.5\}$ for all $x, y \in R$ are equivalent.

- $(4) \ \ (d1) \ \ x+a+y=b+y, \ \ a\in L(\in\lambda,t), \ \ b\in L(\in\lambda,r) \Longrightarrow x\in L(\in\vee q\lambda,t\vee r)$ and $(d2) \ \ x+a+y=b+y\Longrightarrow \lambda(x)\leq \max\{\lambda(a),\lambda(b),0.5\} \ \ for \ \ all \ \ a,b,x,y\in R$
- (5) (e1) x + a = b, $a \in L(\in \lambda, t)$, $b \in L(\in \lambda, r) \Longrightarrow x \in L(\in \forall q\lambda, t \lor r)$ and (e2) $x + a = b \Longrightarrow \lambda(x) \le \max\{\lambda(a), \lambda(b), 0.5\}$ for all $a, b, x \in R$ are equivalent.

Proof. (a1) \Longrightarrow (a2). Assume that there exist $x, y \in R$ such that

are equivalent.

$$\lambda(x+y) > \max\{\lambda(x), \lambda(y), 0.5\}.$$

Choose $t \in (0,1]$ such that $\lambda(x+y) > t \ge \max\{\lambda(x),\lambda(y),0.5\}$. Then $x \in L(\in \lambda,t)$ and $y \in L(\in \lambda,t)$. But $\lambda(x+y) > t$, so $x+y\overline{\in}L(\in \lambda,t)$ and $\lambda(x+y)+t > 2t \ge 1$. Then we have

$$x + y \overline{\in} L(\in \forall q\lambda, t) = L(\in \forall q\lambda, t \lor t),$$

which is a contradiction. Thus $\lambda(x+y) \leq \max\{\lambda(x), \lambda(y), 0.5\}$. Hence (a2) holds. $(a2) \Longrightarrow (a1)$. Let

$$\lambda(x+y) \le \max{\{\lambda(x), \lambda(y), 0.5\}}.$$

Assume that $t, r \in (0,1]$ such that $x \in L(\in \lambda, t)$ and $y \in L(\in \lambda, r)$. Then $\lambda(x) \leq t$ and $\lambda(y) \leq r$. Hence

$$\lambda(x+y) \le \max\{\lambda(x), \lambda(y), 0.5\} \le \max\{t, r, 0.5\}.$$

If $\max\{t,r\} \leq 0.5$, then $\lambda(x+y) \leq 0.5$, and so $\lambda(x+y) + \max\{t,r\} \leq 0.5 + 0.5 = 1$, which implies $x+y \in L(q\lambda,t\vee r)$. If $\max\{t,r\} > 0.5$, then $\lambda(x+y) \leq \max\{t,r\}$, which implies that $x+y \in L(\in \lambda,t\vee r)$. Hence (a1) holds.

- $\begin{array}{l} (b1) \Longrightarrow (b2). \text{ Assume that there exist } x,y \in R \text{ such that } \lambda(yx) > \max\{\lambda(x),0.5\}. \\ \text{Choose } t \in (0,1] \text{ such that } \lambda(yx) > t \geq \max\{\lambda(x),0.5\}. \text{ Then } x \in L(\in \lambda,t) \text{ but } \lambda(yx) > t, \text{ so } yx \overline{\in} L(\in \lambda,t) \text{ and } \lambda(yx) + t > 2t \geq 1. \text{ Then we obtain } yx \overline{\in} L(\in \vee q\lambda,t), \\ \text{which is a contradiction. Thus } \lambda(yx) \leq \max\{\lambda(x),0.5\}. \text{ Hence (b2) holds.} \end{array}$
- $(b2)\Longrightarrow (b1).$ Let $\lambda(yx)\leq \max\{\lambda(x),0.5\}.$ Assume that $t\in (0,1]$ such that $x\in L(\in\lambda,t).$ Then $\lambda(x)\leq t.$ Hence $\lambda(yx)\leq \max\{\lambda(x),0.5\}\leq \max\{t,0.5\}.$ If $t\leq 0.5$, then $\lambda(yx)\leq 0.5$, and so $\lambda(yx)+t\leq 0.5+0.5=1$, which implies that $yx\in L(q\lambda,t).$ If t>0.5, then $\lambda(yx)\leq t,$ which implies that $yx\in L(\in\lambda,t).$ Hence (b1) holds.
- $(d1)\Longrightarrow (d2). \text{ Suppose that there exist } a,b,x,y\in R \text{ such that } x+a+y=b+y.$ Assume that $\lambda(x)>\max\{\lambda(a),\lambda(b),0.5\}.$ Choose $t\in(0,1]$ such that $\lambda(x)>t\geq\max\{\lambda(a),\lambda(b),0.5\}.$ Then $a,b\in L(\in\lambda,t).$ But $x\overline{\in}L(\in\lambda,t)$ and $\lambda(x)+t>2t\geq 1,$ so $x\overline{\in}L(q\lambda,t).$ Then we obtain $x\overline{\in}L(\in\forall q\lambda,t),$ which is a contradiction. Thus $\lambda(x)\leq\max\{\lambda(a),\lambda(b),0.5\}.$ Hence (d2) holds.
- $(d2) \Longrightarrow (d1)$. Let $a,b,x,y \in R$, $t,r \in (0,1]$, x+a+y=b+y and $a \in L(\in \lambda,t), \ b \in L(\in \lambda,r)$. If $\max\{\lambda(a),\lambda(b),0.5\}=\lambda(a)$, then

$$\lambda(x) \leq \max\{\lambda(a), \lambda(b), 0.5\} = \lambda(a) \leq t \leq \max\{t, r\}.$$

Thus $x \in L(\in \lambda, t \vee r)$, implying that $x \in L(\in \vee q\lambda, t \vee r)$. Similarly, if $\max\{\lambda(a), \lambda(b), 0.5\} = \lambda(b)$, then $x \in L(\in \vee q\lambda, t \vee r)$. Let $\max\{\lambda(a), \lambda(b), 0.5\} = 0.5$. If $\max\{t, r\} \geq 0.5$, then

$$\lambda(x) \le \max\{\lambda(a), \lambda(b), 0.5\} = 0.5 \le \max\{t, r\},\$$

which implies $x \in L(\in \lambda, t \vee r)$ and so $x \in L(\in \forall q\lambda, t \vee r)$. If $\max\{t, r\} < 0.5$, then $0.5 < 1 - \max\{t, r\} < 1$. Thus $\lambda(x) \le 0.5 \le 1 - \max\{t, r\}$, which implies that $x \in L(q\lambda, t \vee r)$ and so $x \in L(\in \forall q\lambda, t \vee r)$. Hence (d1) holds.

Corollary 3.11. A fuzzy subset λ of a hemiring R is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R if and only if it satisfies:

- $(1) \ \forall x,y \in R, \ \lambda(x+y) \leq \max\{\lambda(x),\lambda(y),0.5\},$
- (2) $\forall x, y \in R, \ \lambda(yx) \le \max\{\lambda(x), 0.5\},\$
- (3) $\forall x, y \in R, \ \lambda(xy) \le \max\{\lambda(x), 0.5\},\$
- (4) $\forall a, b, x, y \in R, \ x + a + y = b + y \Longrightarrow \lambda(x) \le \max\{\lambda(a), \lambda(b), 0.5\}.$

Corollary 3.12. A fuzzy subset λ of a hemiring R is an anti $(\in, \in \lor q)$ -fuzzy k-ideal of R if and only if it satisfies:

- (1) $\forall x, y \in R, \ \lambda(x+y) \le \max\{\lambda(x), \lambda(y), 0.5\},\$
- $(2) \ \forall x, y \in R, \ \lambda(yx) \le \max\{\lambda(x), 0.5\},\$
- (3) $\forall x, y \in R, \ \lambda(xy) \le \max\{\lambda(x), 0.5\},\$
- (4) $\forall a, b, x \in R, \ x + a = b \Longrightarrow \lambda(x) \le \max\{\lambda(a), \lambda(b), 0.5\}.$

Corollary 3.13. A fuzzy subset λ of a hemiring R is an anti $(\in, \in \lor q)$ -fuzzy ideal of R if and only if it satisfies:

- (1) $\forall x, y \in R, \ \lambda(x+y) \le \max\{\lambda(x), \lambda(y), 0.5\},\$
- (2) $\forall x, y \in R, \ \lambda(yx) \le \max\{\lambda(x), 0.5\},\$
- (3) $\forall x, y \in R, \ \lambda(xy) \le \max\{\lambda(x), 0.5\}.$

Example 3.14. Let $R = \{0, 1, 2, 3, 4\}$ and let the operations be given by the following tables holds:

+	0	1	2	3	4			0	1	2	3	4
0	0	1	2	3	4	and	0	0	0	0	0	0
1	1	2	3	4	0		1	0	1	2	3	4
2	2	3	4	0	1		2	0	2	4	1	3
3	3	4	0	1	2		3	0	3	1	4	2
4	4	0	1	2	3		4	0	4	3	2	1

Let μ and λ be two fuzzy subset of R defined by

$$\mu(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \in \{0,1\} \\ \frac{x-1}{x} & \text{if } x \in \{2,3,4\} \end{array} \right., \ \lambda(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \in \{0,1\} \\ \frac{1}{x} & \text{if } x \in \{2,3,4\} \end{array} \right.$$

Then (R, +, .) is a hemiring and $A = (\mu_A, \lambda_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy h-ideal (resp. k-ideal) of R.

Theorem 3.15. Let λ be an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R. Then we have

- (1) If $t \in [0.5, 1]$, then $L(\in \lambda, t) \neq \emptyset$ is a h-ideal of R.
- (2) If $t \in (0, 0.5]$, then $L(q\lambda, t) \neq \emptyset$ is a h-ideal of R.

Proof. (1) Let λ be an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R, and let $t \in [0.5, 1]$ be such that $L(\in \lambda, t) \neq \varnothing$. Let $x, y \in L(\in \lambda, t)$ be such that $x + y \in L(\in \lambda, t)$. Then $\lambda(x) \leq t$ and $\lambda(y) \leq t$, but $\lambda(x + y) > t$. Since λ is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R. By Corollary 3.11(1), we get

$$t < \lambda(x+y) \le \max\{\lambda(x), \lambda(y), 0.5\}.$$

If $\max\{\lambda(x),\lambda(y),0.5\}=\lambda(x)$, then $x\overline{\in}L(\in\lambda,t)$, which is a contradiction. Similarly, if $\max\{\lambda(x),\lambda(y),0.5\}=\lambda(y)$, then $y\overline{\in}L(\in\lambda,t)$, which is a contradiction. If $\max\{\lambda(x),\lambda(y),0.5\}=0.5$, then

$$0.5 \le t < \lambda(x+y) \le \max{\{\lambda(x), \lambda(y), 0.5\}} = 0.5,$$

which is a contradiction. Thus $x + y \in L(\in \lambda, t)$.

If $x \in L(\in \lambda, t)$ and $y \in R$ be such that $yx \overline{\in} L(\in \lambda, t)$, then $\lambda(x) \leq t$, but $\lambda(yx) > t$. Since λ is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R. By Corollary 3.11(2), we get

$$t < \lambda(yx) \le \max\{\lambda(x), 0.5\},\$$

If $\max\{\lambda(x), 0.5\} = \lambda(x)$, then $x \in L(\in \lambda, t)$, which is a contradiction. If $\max\{\lambda(x), 0.5\} = 0.5$, then

$$0.5 \le t < \lambda(yx) \le \max\{\lambda(x), 0.5\} = 0.5,$$

which is a contradiction. Thus $yx \in L(\in \lambda, t)$. Similarly, let $x \in L(\in \lambda, t)$ and $y \in R$. Then $xy \in L(\in \lambda, t)$.

Now, let $a, b \in L(\in \lambda, t)$, $x, y \in R$ and x + a + y = b + y be such that $x \in L(\in \lambda, t)$. Then $\lambda(a) \leq t$ and $\lambda(b) \leq t$, but $\lambda(x) > t$. Since λ is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R. By Corollary 3.11(4), we get

$$t < \lambda(x) \le \max{\{\lambda(a), \lambda(b), 0.5\}},$$

If $\max\{\lambda(a),\lambda(b),0.5\}=\lambda(a)$, then $a\overline{\in}L(\in\lambda,t)$, which is a contradiction. Similarly, if $\max\{\lambda(a),\lambda(b),0.5\}=\lambda(b)$, then $b\overline{\in}L(\in\lambda,t)$, which is a contradiction. If $\max\{\lambda(a),\lambda(b),0.5\}=0.5$, then $0.5\leq t<\lambda(x)\leq \max\{\lambda(a),\lambda(b),0.5\}=0.5$, which is a contradiction. Thus $x\in L(\in\lambda,t)$.

(2) Let λ be an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R, and let $t \in (0, 0.5]$ such that $L(q\lambda, t) \neq \varnothing$. Let $x, y \in L(q\lambda, t)$ be such that $x + y \in L(q\lambda, t)$. Then $\lambda(x) + t \le 1$ and $\lambda(y) + t \le 1$ but $\lambda(x + y) + t > 1$. Since λ is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R. By Corollary 3.11(1), we get

$$1 - t < \lambda(x + y) \le \max\{\lambda(x), \lambda(y), 0.5\}.$$

If $\max\{\lambda(x), \lambda(y), 0.5\} = \lambda(x)$, then $x \in L(q\lambda, t)$, which is a contradiction. Similarly, if $\max\{\lambda(x), \lambda(y), 0.5\} = \lambda(y)$, then $y \in L(q\lambda, t)$, which is a contradiction. Let $\max\{\lambda(x), \lambda(y), 0.5\} = 0.5$. Since $t \in (0, 0.5]$, then $1 - t \in [0.5, 1)$ and so

$$0.5 \le 1 - t < \lambda(x + y) \le \max\{\lambda(x), \lambda(y), 0.5\} = 0.5,$$

which is a contradiction. Thus $x + y \in L(q\lambda, t)$.

Let $x \in L(q\lambda,t)$ and $y \in R$ be such that $yx \in L(q\lambda,t)$ Then $\lambda(x) + t \leq 1$, but $\lambda(yx) + t > 1$. Since λ is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R. By Corollary 3.11(2), we get

$$1 - t < \lambda(yx) \le \max\{\lambda(x), 0.5\},$$

If $\max\{\lambda(x), 0.5\} = \lambda(x)$, then $\lambda(x) > 1 - t$ and so $x \in L(q\lambda, t)$, which is a contradiction. If $\max\{\lambda(x), 0.5\} = 0.5$, then

$$0.5 \le 1 - t < \lambda(yx) \le \max\{\lambda(x), 0.5\} = 0.5,$$

which is a contradiction. Thus $yx \in L(q\lambda, t)$. Similarly, let $x \in L(q\lambda, t)$ and $y \in R$. Then $xy \in L(q\lambda, t)$.

Now, let $a, b \in L(q\lambda, t)$, $x, y \in R$ and x + a + y = b + y be such that $x \in L(q\lambda, t)$. Then $\lambda(a) + t \le 1$ and $\lambda(b) + t \le 1$, but $\lambda(x) + t > 1$. Since λ is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R. By Corollary 3.11(4), we get

$$1 - t < \lambda(x) \le \max\{\lambda(a), \lambda(b), 0.5\},\$$

If $\max\{\lambda(a),\lambda(b),0.5\} = \lambda(a)$, then $a\overline{\in}L(q\lambda,t)$, which is a contradiction. Similarly, if $\max\{\lambda(a),\lambda(b),0.5\} = \lambda(b)$, then $b\overline{\in}L(q\lambda,t)$, which is a contradiction. If $\max\{\lambda(a),\lambda(b),0.5\} = 0.5$, then $0.5 \le 1-t < \lambda(x) \le \max\{\lambda(a),\lambda(b),0.5\} = 0.5$, which is a contradiction. Thus $x \in L(q\lambda,t)$.

Corollary 3.16. Let λ be an anti $(\in, \in \vee q)$ -fuzzy k-ideal of R. Then we have

- (1) If $t \in [0.5, 1]$, then $L(\in \lambda, t) \neq \emptyset$ is a K-ideal of R.
- (2) If $t \in (0, 0.5]$, then $L(q\lambda, t) \neq \emptyset$ is a K-ideal of R.

Corollary 3.17. Let λ be an anti $(\in, \in \vee q)$ -fuzzy ideal of R. Then we have

- (1) If $t \in [0.5, 1]$, then $L(\in \lambda, t) \neq \emptyset$ is an ideal of R.
- (2) If $t \in (0, 0.5]$, then $L(q\lambda, t) \neq \emptyset$ is an ideal of R.

Theorem 3.18. Let A be a h-ideal of R, and let λ and μ be fuzzy subset of R defined by

$$\mu_A(x) = \left\{ \begin{array}{ll} \geq 0.5 & \text{if } x \in A \\ 0 & o.w. \end{array} \right., \ \lambda_A(x) = \left\{ \begin{array}{ll} \leq 0.5 & \text{if } x \in A \\ 1 & o.w. \end{array} \right.$$

Then

- (1) $A = (\mu_A, \lambda_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy h-ideal of R.
- (2) $A = (\mu_A, \lambda_A)$ is an $(q, \in \forall q)$ -intuitionistic fuzzy h-ideal of R.

Proof. (1) If $t,r\in(0,1]$, then $A=(\mu_{\scriptscriptstyle A},\lambda_{\scriptscriptstyle A})$ must satisfies the following conditions,

- (a1) $x \in L(\in \lambda, t), y \in L(\in \lambda, r) \Longrightarrow x + y \in L(\in \forall q\lambda, t \lor r),$
- $(a2) \ x \in U(\in \mu, t), \ y \in U(\in \mu, r) \Longrightarrow x + y \in U(\in \forall q\mu, t \lor r),$
- (b1) $x \in L(\in \lambda, t) \Longrightarrow yx \in L(\in \vee q\lambda, t),$
- $(b2) \ x \in U(\in \mu, t) \Longrightarrow yx \in U(\in \forall q\mu, t),$
- $(c1) \ x \in L(\in \lambda, t) \Longrightarrow xy \in L(\in \forall q\lambda, t),$
- $(c2) \ x \in U(\in \mu, t) \Longrightarrow xy \in U(\in \forall q\mu, t),$
- $(d1) \ x + a + y = b + y, \ a \in L(\in \lambda, t), \ b \in L(\in \lambda, r) \Longrightarrow x \in L(\in \forall q\lambda, t \lor r),$
- (d2) x + a + y = b + y, $a \in U(\in \mu, t)$, $b \in U(\in \mu, r) \Longrightarrow x \in U(\in \forall q\mu, t \lor r)$ for all $a, b, x, y \in R$.
- (a1) Let $x,y\in R$ and $t,r\in (0,1]$ be such that $x\in L(\in\lambda_A,t),\ y\in L(\in\lambda_A,r).$ Then $\lambda_A(x)\leq t$ and $\lambda_A(y)\leq r.$ Let $\max\{t,r\}=1.$ Hence $\lambda_A(x)=1$ or $\lambda_A(y)=1.$ Then $\lambda(x+y)\leq 1=\max\{\lambda(x),\lambda(y),0.5\}.$ By Theorem 3.10(1), we have $x+y\in L(\in \forall q\lambda_A,t\vee r).$ If $\max\{t,r\}\neq 1$, then $\lambda_A(x)\leq 0.5$ and

 $\lambda_A(y) \leq 0.5$. Thus $x,y \in A$. Since A is a h-ideal of R, we have $x+y \in A$. This implies

$$\lambda_{\scriptscriptstyle A}(x+y) \leq 0.5 = \max\{\lambda(x),\lambda(y),0.5\}.$$

Therefore $x + y \in L(\in \vee q\lambda_A, t \vee r)$.

- (a2) Let $x,y \in R$ and $t,r \in (0,1]$ be such that $x \in U(\in \mu_A,t), \ y \in U(\in \mu_A,r)$. Then $\mu_A(x) \ge t > 0$ and $\mu_A(y) \ge r > 0$. Thus $\mu_A(x) \ge 0.5$ and $\mu_A(y) \ge 0.5$, and so $x,y \in A$. Since A is a h-ideal of R, we have $x+y \in A$. Thus $\mu_A(x+y) \ge 0.5$. If $\max\{t,r\} \le 0.5$, then $\mu_A(x+y) \ge \max\{t,r\}$, and so $x+y \in U(\in \mu_A,t \vee r)$. If $\max\{t,r\} > 0.5$, then $\mu_A(x+y) + \max\{t,r\} > 0.5 + 0.5 = 1$, and so $x+y \in U(q\mu_A,t \vee r)$. Therefore $x+y \in U(\in \forall q\mu_A,t \vee r)$.
- (b1) Let $x,y\in R$ and $t\in (0,1]$ be such that $x\in L(\in \lambda_A,t)$. Then $\lambda_A(x)\leq t$. If $\lambda_A(x)=1$. Since $\lambda(yx)\leq 1=\max\{\lambda(x),0.5\}$. By Theorem 3.10(2), we have $yx\in L(\in \vee q\lambda_A,t)$. If $\lambda_A(x)\neq 1$, then $\lambda_A(x)\leq 0.5$, thus $x\in A$. Since A is a h-ideal of R, we have $yx\in A$. Thus $\lambda_A(yx)\leq 0.5=\max\{\lambda(x),0.5\}$. Therefore $yx\in L(\in \vee q\lambda_A,t)$.
- (b2) Let $x,y\in R$ and $t\in (0,1]$ be such that $x\in U(\in \mu_A,t)$. Then $\mu_A(x)\geq t>0$. Thus $\mu_A(x)\geq 0.5$, and so $x\in A$. Since A is a h-ideal of R, we have $yx\in A$. Thus $\mu_A(yx)\geq 0.5$. If $t\leq 0.5$, then $\mu_A(yx)\geq t$, and so $yx\in U(\in \mu_A,t)$. If t>0.5, then $\mu_A(yx)+t>0.5+0.5=1$, and so $yx\in U(q\mu_A,t)$. Therefore $yx\in U(\in \forall q\mu_A,t)$.

Similarly we can prove (c1) and (c2).

(d1) Let $a,b,x,y\in R,\ x+a+y=b+y$ and $t,r\in(0,1]$ be such that $a\in L(\in\lambda_A,t),\ b\in L(\in\lambda_A,r).$ Then $\lambda_A(a)\leq t$ and $\lambda_A(b)\leq r.$ Let $\max\{t,r\}=1.$ Then $\lambda_A(a)=1$ or $\lambda_A(b)=1.$ Hence $\lambda(x)\leq 1=\max\{\lambda(a),\lambda(b),0.5\}.$ By Theorem 3.10(4), we have $x\in L(\in \forall q\lambda_A,t\vee r).$ Let $\max\{t,r\}\neq 1.$ Then $\lambda_A(a)\leq 0.5$ and $\lambda_A(b)\leq 0.5.$ Thus $a,b\in A.$ Since A is a h-ideal of R, we have $x\in A.$ Hence $\lambda_A(x)\leq 0.5.$ This implies

$$\lambda_{\scriptscriptstyle A}(x) \leq 0.5 = \max\{\lambda(a),\lambda(b),0.5\}.$$

Therefore $x \in L(\in \forall q \lambda_A, t \vee r)$.

(d2) Let $a,b,x,y\in R,\ x+a+y=b+y$ and $t,r\in(0,1]$ be such that $a\in U(\in\mu_A,t),\ b\in U(\in\mu_A,r).$ Then $\mu_A(a)\geq t>0$ and $\mu_A(b)\geq r>0$. Thus $\mu_A(a)\geq 0.5$ and $\mu_A(b)\geq 0.5$, and so $a,b\in A$. Since A is a h-ideal of R, we have $x\in A$. Thus $\mu_A(x)\geq 0.5$. If $\max\{t,r\}\leq 0.5$, then $\mu_A(x)\geq \max\{t,r\},$ and so $x\in U(\in\mu_A,t\vee r).$ If $\max\{t,r\}>0.5$, then $\mu_A(x)+\max\{t,r\}>0.5+0.5=1$, and so $x\in U(q\mu_A,t\vee r).$ Therefore $x\in U(\in \forall q\mu_A,t\vee r).$

Theorem 3.19. Let A be a k-ideal of R, and let λ and μ be fuzzy subset of R defined by

$$\mu_A(x) = \begin{cases} \geq 0.5 & \text{if } x \in A \\ 0 & o.w. \end{cases}, \ \lambda_A(x) = \begin{cases} \leq 0.5 & \text{if } x \in A \\ 1 & o.w. \end{cases}$$

Then

- (1) $A = (\mu_A, \lambda_A)$ is an $(\in, \in \forall q)$ -intuitionistic fuzzy k-ideal of R.
- (2) $A = (\mu_A, \lambda_A)$ is an $a (q, \in \forall q)$ -intuitionistic fuzzy k-ideal of R.

Proof. The proof is similar to that of Theorem 3.18.

Corollary 3.20. Let A be an ideal of R, and let λ and μ be fuzzy subset of R defined

$$\mu_A(x) = \begin{cases} \ge 0.5 & \text{if } x \in A \\ 0 & o.w. \end{cases}, \ \lambda_A(x) = \begin{cases} \le 0.5 & \text{if } x \in A \\ 1 & o.w. \end{cases}$$

Then

- (1) $A = (\mu_A, \lambda_A)$ is an $(\in, \in \forall q)$ -intuitionistic fuzzy ideal of R.
- (2) $A = (\mu_A, \lambda_A)$ is an $a (q, \in \forall q)$ -intuitionistic fuzzy ideal of R.

4. $(\in, \in \lor q)$ -Intuitionistic fuzzy ideals with (anti) $(\in, \in \lor q)$ -Fuzzy ideals

In this section, let R be a hemiring. It is clear that, $A = (\mu_A, \lambda_A)$ is an $(\in, \in \lor q)$ intuitionistic fuzzy ideal of R if and only if μ_A is an $(\in, \in \lor q)$ -fuzzy ideal and λ_A is an anti $(\in, \in \lor q)$ -fuzzy ideal of R. But, we introduce some relations between $(\in, \in \lor q)$ intuitionistic fuzzy ideals with $(\in, \in \lor q)$ -fuzzy ideals and with anti $(\in, \in \lor q)$ -fuzzy ideals.

Theorem 4.1. Let R be a hemiring. Then, $\Box A = (\mu_A, \mu_A^c)$ is an $(\in, \in \lor q)$ intuitionistic fuzzy h-ideal of R if and only if μ_A is an $(\in, \in \lor q)$ -fuzzy h-ideal of R.

Proof. Let μ_A be an $(\in, \in \lor q)$ -fuzzy h-ideal of R. By Corollary 3.11, it is sufficient to show that $\mu_{\scriptscriptstyle A}^c$ satisfies the conditions:

- (1) $\forall x, y \in R, \ \mu_A^c(x+y) \le \max\{\mu_A^c(x), \mu_A^c(y), 0.5\},\$ (2) $\forall x, y \in R, \ \mu_A^c(yx) \le \max\{\mu_A^c(x), 0.5\},\$

- (3) $\forall x, y \in R, \ \mu_A^{\hat{c}}(xy) \le \max\{\mu_A^{\hat{c}}(x), 0.5\},\$ (4) $\forall a, b, x, y \in R, \ x + a + y = b + y \Longrightarrow \mu_A^c(x) \le \max\{\mu_A^c(a), \mu_A^c(b), 0.5\}.$

Since μ_A is an $(\in, \in \lor q)$ -fuzzy h-ideal of R. Then

Case(1) For $x, y \in R$, we have $\mu_A(x+y) \ge \min\{\mu_A(x), \mu_A(y), 0.5\}$, and so

$$1 - \mu_{_A}^c(x+y) \ge \min\{1 - \mu_{_A}^c(x), 1 - \mu_{_A}^c(y), 0.5\}.$$

Which implies

$$\mu_{\Delta}^{c}(x+y) \le 1 - \min\{1 - \mu_{\Delta}^{c}(x), 1 - \mu_{\Delta}^{c}(y), 0.5\}.$$

Therefore

$$\mu_{_{A}}^{c}(x+y) \le \max\{\mu_{_{A}}^{c}(x), \mu_{_{A}}^{c}(y), 0.5\}.$$

Case(2) For $x, y \in R$, we have $\mu_A(yx) \ge \min\{\mu_A(x), 0.5\}$, and so

$$1 - \mu_{_{\!A}}^c(yx) \ge \min\{1 - \mu_{_{\!A}}^c(x), 0.5\}.$$

Which implies

$$\mu_{\Lambda}^{c}(yx) \le 1 - \min\{1 - \mu_{\Lambda}^{c}(x), 0.5\}.$$

Therefore

$$\mu_{_{A}}^{c}(yx) \le \max\{\mu_{_{A}}^{c}(x), 0.5\}.$$

Case(3) Similarly, for $x,y\in R$, we have $\mu_{A}(xy)\geq \min\{\mu_{A}(x),0.5\}$, and so 1- $\mu_A^c(xy) \ge \min\{1 - \mu_A^c(x), 0.5\}.$ Which implies $\mu_A^c(xy) \le 1 - \min\{1 - \mu_A^c(x), 0.5\}.$ Therefore $\mu_A^c(xy) \le \max\{\mu_A^c(x), 0.5\}.$

 $Case(4) \text{ For } a,b,x,y \in R, \ x+a+y=b+y, \text{ we have } \mu_{\scriptscriptstyle A}(x) \geq \min\{\mu_{\scriptscriptstyle A}(a),\mu_{\scriptscriptstyle A}(b),0.5\}, \text{ and so}$

$$1 - \mu_{_A}^c(x) \ge \min\{1 - \mu_{_A}^c(a), 1 - \mu_{_A}^c(b), 0.5\}.$$

Which implies

$$\mu_{\underline{A}}^{c}(x) \le 1 - \min\{1 - \mu_{\underline{A}}^{c}(a), 1 - \mu_{\underline{A}}^{c}(b), 0.5\}.$$

Therefore

$$\mu_{_{A}}^{c}(x) \le \max\{\mu_{_{A}}^{c}(a), \mu_{_{A}}^{c}(b), 0.5\}.$$

П

This completes the proof.

Corollary 4.2. Let R be a hemiring. Then, $\Diamond A = (\lambda_A^c, \lambda_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy h-ideal of R if and only if λ_A is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R.

Theorem 4.3. Let R be a hemiring. Then, $\Box A = (\mu_A, \mu_A^c)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy k-ideal of R if and only if μ_A is an $(\in, \in \lor q)$ -fuzzy k-ideal of R

Proof. The proof is similar to that of Theorem 4.1.

Corollary 4.4. Let R be a hemiring. Then, $\Diamond A = (\lambda_A^c, \lambda_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy k-ideal of R if and only if λ_A is an anti $(\in, \in \lor q)$ -fuzzy k-ideal of R.

Theorem 4.5. Let R be a hemiring. Then, $\Box A = (\mu_A, \mu_A^c)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of R if and only if μ_A is an $(\in, \in \lor q)$ -fuzzy ideal of R.

Proof. The proof is similar to that of Theorem 4.1.

Corollary 4.6. Let R be a hemiring. Then, $\Diamond A = (\lambda_A^c, \lambda_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy h-ideal of R if and only if λ_A is an anti $(\in, \in \lor q)$ -fuzzy h-ideal of R.

Acknowledgements. The authors are grateful to the referee(s) for reading the paper carefully and for making helpful comments.

REFERENCES

- S. Abdullah, B. Davvaz and M. Aslam, (α, β)-intuitionistic fuzzy ideals in hemirings, Comput. Math. Appl. 62 (2011) 3077–3090.
- [2] M. Asghari-Larimi, B. Davvaz, Hyperstructures associated to arithmetic functions, Ars Combitoria 97 (2010) 51–63.
- [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [4] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994) 137–142.
- [5] K. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33 (1989) 37–45.
- [6] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg, 1999.
- [7] R. Biswas, Intuitionistic fuzzy subgroups, Math. Forum 10 (1989) 37–46.
- [8] S. K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems 80 (1996) 359–368.
- [9] S. K. Bhakat, P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81 (1996) 383–393.

- [10] H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems 78 (1996) 293–303.
- [11] W. A. Dudek, M. Shabir and M. Irfan Ali, (α, β) -fuzzy ideals of hemirings, Comput. Math. Appl. 58 (2009) 310–321.
- $[12] \ \ Y.\ B.\ Jun,\ Note\ on\ (\alpha,\beta)\ -\textit{fuzzy\ ideals\ of\ hemirings},\ Comput.\ Math.\ Appl.\ 59\ (2010)\ 2582-2586.$
- [13] Y. B. Jun, W. A. Dudek and M. Shabir, Generalizations of (α, β) -fuzzy ideals of hemirings (submitted for publication).
- [14] Y. B. Jun and S. Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176 (2006) 3079–3093.
- [15] O. Kazanci and S. Yamak, Generalized fuzzy bi-ideals of semigroup, Soft Comput. 12 (2008) 1119–1124.
- [16] P. M. Pu and Y. M. Liu, Fuzzy topology I: Neighourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- [17] M. Shabir, Y. B. Jun and Y. Nawaz, Characterizations of regular semigroups by (α, β) -fuzzy ideals, Comput. Math. Appl. 59 (2010) 161–175.
- [18] X. H. Yuan, H. X. Li and E. S. Lee, On the definition of the intuitionistic fuzzy subgroups, Comput. Math. Appl. 59 (2010) 3117–3129.
- [19] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.

MOHSEN ASGHARI-LARIMI (asghari2004@yahoo.com)

Department of Mathematics, Golestan University, Postal code 49138-15759, Gorgan, Iran.

Young Bae Jun (skywine@gmail.com)

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea.