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1. Introduction

The concept of fuzzy set was introduced by Zadeh [36] in 1965 and since then an
extensive work was done by many researchers in the area of Fuzzy Logic, Artificial
Intelligence and Fuzzy Analysis (see, for example, [19] and references therein). Par-
ticularly, it is our interest to underline that there are many viewpoints of the notion
of metric space in fuzzy topology. More precisely, we are interested in the following
two. The first viewpoint focuses on those results in which a fuzzy metric on a set X
is treated as a map d : X ×X → [0,∞), where X represents the totality of all fuzzy
points of a set and satisfies some axioms which are analogous to the ordinary metric
axioms. In such an approach numerical distances are set up between fuzzy objects.
The second one focuses on those results in which the distance between objects is
fuzzy and the objects themselves may or may not be fuzzy.

Subsequently, in the last decades, there have appeared a large number of research
papers devoted to the development of fixed point theorems and their applications in
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fuzzy metric spaces (see [8, 18, 22, 33, 34]). In 1988, Grabiec [8] proved an important
fixed point theorem in fuzzy metric spaces, that is the fuzzy version of the contraction
principle in ordinary metric spaces. Subramanyam [31] generalized Grabiec’s result
for a pair of commuting maps in the pattern of Jungck [14], or equivalently, we can
say that he extended Jungck’s theorem for ordinary metric spaces to fuzzy metric
spaces. George and Veeramani [9] modified the concept of fuzzy metric spaces [22]
and showed that every metric induces a fuzzy metric in Hausdorff topology. For
more details, the reader can refer to [5, 35]. In this paper, first we introduce the
new notion of (f, g)-reciprocal continuity, and then prove a common fixed point
theorem for a pair of sub-compatible maps by employing a generalized (ϕ,ψ)-weak
contraction in fuzzy metric spaces. In order to apply our result, we prove a theorem
for (ϕ, ψ)-weak cyclic contractions.

2. Preliminaries

In this section, we recall useful definitions and give some examples.

Definition 2.1. ([36]) A fuzzy set A in X is a function with domain X and values
in [0, 1].

Definition 2.2. ([30]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for every a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.3. ([9]) The 3-tuple (X, M, ∗) is said to be a fuzzy metric space if X
is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in X2 × (0,∞)
satisfying the following conditions for all x, y ∈ X and t, s > 0:

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s), for all z ∈ X,
(5) M(x, y, ·) : (0,∞) → [0, 1] is continuous.

In view of (1) and (2), it is worth pointing out that 0 < M(x, y, t) < 1 for all t > 0,
provided x 6= y. In view of Definition 2.3, George and Veermani [9] introduced the
concept of Hausdorff topology on fuzzy metric spaces and showed that every metric
space induces a fuzzy metric space. In fact, we can fuzzify metric spaces into fuzzy
metric spaces in a natural way, as is shown by the following example. In other words,
every metric induces a fuzzy metric.

Example 2.4. Let (X, d) be a metric space and define a ∗ b = ab for all a, b ∈ [0, 1].
Also define M(x, y, t) = t

t+d(x,y) for all x, y ∈ X and t > 0. Then (X, M, ∗) is a
fuzzy metric space, usually called standard fuzzy metric space induced by (X, d).

For more properties and examples of fuzzy metric spaces, the reader can refer to
[3, 4, 13, 18, 22, 24, 27].
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Definition 2.5. Let (X, M, ∗) be a fuzzy metric space. A sequence {xn} in X is
said to be a Cauchy sequence if for every 0 < ε < 1 and for every t > 0, there is
n0 ∈ N such that M(xn, xm, t) > 1− ε for every n,m ≥ n0.

Definition 2.6. A sequence {xn} in X is said to be a G-Cauchy sequence, that is
Cauchy sequence in the sense of Grabiec [8], if M(xn, xn+p, t) → 1 as n → ∞, for
every p ∈ N and for every t > 0.

Definition 2.7. A fuzzy metric space (X,M, ∗) is said to be complete (respec-
tively G-complete) if every Cauchy sequence (respectively G-Cauchy sequence) is
convergent.

Vasuki and Veeramani [32] suggested that the definition of G-Cauchy sequence is
weaker than the definition of Cauchy sequence.

In 1984, Khan et al. [21] introduced the concept of an altering distance function
as follows:

Definition 2.8. A function ϕ : [0,∞) → [0,∞) is an altering distance function if
ϕ(t) is monotone non-decreasing, continuous and ϕ(t) = 0 iff t = 0.

Thus, an altering distance function is a control function used for altering the
metric distance between two points and then for dealing with a new class of fixed
point problems.

Now we introduce the notion of (f, g)-reciprocal continuity as follows:

Definition 2.9. Let f and g be self-maps of a fuzzy metric space (X, M, ∗). The
maps f and g are said to be (f, g)-reciprocally continuous iff limn→∞ ffxn = fu
and limn→∞ ggxn = gu, whenever {xn} is a sequence in X such that limn→∞ fxn =
limn→∞ gxn = u for some u ∈ X.

In 1994, Mishra et al. [24] defined the concept of compatible maps in fuzzy metric
spaces as follows:

Definition 2.10. Let f and g be self-maps of a fuzzy metric space (X, M, ∗). The
maps f and g are said to be compatible if limn→∞M(fgxn, gfxn, t) = 1, whenever
{xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = u for some u ∈ X
and for all t > 0.

In 1996 Pathak et al. [28] introduced the concept of compatible maps of type (P )
in metric spaces and showed its relationship with compatible maps and compatible
maps of type (A) introduced by Jungck [15] and Jungck, Murthy and Cho [16],
respectively. According to this notion, we give the following definition:

Definition 2.11. Let f and g be self-maps of a fuzzy metric space (X, M, ∗). The
maps f and g are said to be weakly compatible of type (P ) iff there exists a se-
quence {xn} in X such that limn→∞ fxn = limn→∞ gxn = u for some u ∈ X and
limn→∞M(ffxn, ggxn, t) = 1, for all t > 0.

Observation 2.12. Let f and g be (f, g)-reciprocally continuous maps of a fuzzy
metric space (X, M, ∗). Then f and g have a coincidence point iff they are weakly
compatible maps of type (P ).
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Proof. (If part) Suppose that f and g have a coincidence point, say u. If we consider
a sequence {xn} in X such that xn = u for all n ≥ 0, then we have

lim
n→∞

fxn = fu = z = gu = lim
n→∞

gxn,

for some z ∈ X.
Since f and g are (f, g)-reciprocally continuous maps, then limn→∞ ffxn = fu and
limn→∞ ggxn = gu. This implies that limn→∞M(ffxn, ggxn, t) = M(fu, gu, t) = 1
and therefore, f and g are weakly compatible maps of type (P ).

(Only if part) Now, assume that f and g are weakly compatible maps of type
(P ). Corresponding to a sequence {xn} in X such that limn→∞ fxn = limn→∞ gxn =
u for some u ∈ X and using (4) of Definition 2.3, we can write

M(fu, gu, t) ≥ M(fu, ffxn,
t

3
) ∗M(ffxn, ggxn,

t

3
) ∗M(ggxn, gu,

t

3
).

Taking n →∞, we get

lim
n→∞

M(fu, gu, t) ≥ lim
n→∞

M(fu, ffxn,
t

3
) ∗ lim

n→∞
M(ffxn, ggxn,

t

3
)

∗ lim
n→∞

M(ggxn, gu,
t

3
),

which implies, since f and g are (f, g)-reciprocally continuous and weakly compatible
maps of type (P ), that M(fu, gu, t) = 1. Therefore, f and g have a coincidence
point. ¤

In 2011, Gopal and Imdad [10] studied the concept of sub-compatible maps in
fuzzy metric spaces. Subsequently, Murthy and Tas discussed and utilized it in [25].
We also recall that this concept was initially introduced by Bouhadjera and Thobie
[2] in metric spaces to weaken the notion of occasionally weakly compatible maps [1]
and weak compatible maps [17]. On this topic, we ask the reader to see [7, 11, 23].

Definition 2.13. Let f and g be self-maps of a fuzzy metric space (X, M, ∗). The
maps f and g are said to be sub-compatible iff there exists a sequence {xn} in X
such that limn→∞ fxn = limn→∞ gxn = u for some u ∈ X and

lim
n→∞

M(fgxn, gfxn, t) = 1,

for all t > 0.

Now, we give some illustrative examples of sub-compatible and (f, g)-reciprocally
continuous maps with coincidence point and without coincidence point.

Example 2.14. Let X = [0,∞) and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X and

t > 0. Define f, g : X → X by

fx =

{
x2 if x ∈ [0, 1)
2x if x ∈ [1,∞)

and gx =

{
x if x ∈ [0, 1)
x + 1 if x ∈ [1,∞)

.

Let {xn} be a sequence in X such that xn = 1− 1
n+1 , for all n ≥ 0. Then, we have

lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

fgxn = lim
n→∞

gfxn = 1
48
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and
lim

n→∞
M(fgxn, gfxn, t) = 1.

Therefore, the maps f and g are sub-compatible.
On the other hand, the maps f and g are not compatible. In fact, let {xn} be a
sequence in X such that xn = 1 + 1

n+1 , for all n ≥ 0. Then, we have limn→∞ fxn =
limn→∞ gxn = 2, limn→∞ fgxn = 4, limn→∞ gfxn = 3 and so

lim
n→∞

M(fgxn, gfxn, t) =
t

t + 1
6= 1.

Example 2.15. Let X = R and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X and t > 0.

Define f, g : X → X by

fx =

{
x
2 if x ∈ (−∞, 1)
x if x ∈ [1,∞)

and gx =

{
x + 1 if x ∈ (−∞, 1)
2x− 1 if x ∈ [1,∞)

.

Let {xn} be a sequence in X such that xn = 1 + 1
n , for all n ≥ 1. Then, we have

lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

fgxn = lim
n→∞

gfxn = 1

and
lim

n→∞
M(fgxn, gfxn, t) = 1.

Therefore, the maps f and g are sub-compatible.
On the other hand, the maps f and g are not compatible. In fact, let {xn} be a
sequence in X such that xn = 1

n − 2, for all n ≥ 1. Then, we have limn→∞ fxn =
limn→∞ gxn = −1, limn→∞ fgxn = − 1

2 , limn→∞ gfxn = 0 and so

lim
n→∞

M(fgxn, gfxn, t) =
t

t + 1/2
6= 1.

It is easy to show that f and g are (f, g)-reciprocally continuous maps with coin-
cidence point x = 1 (that is also a common fixed point of the pair (f, g)) and this
implies that f and g are weakly compatible maps of type (P ).

Example 2.16. Let X = [0,∞) and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X and

t > 0. Define f, g : X → X by

fx =

{
1 + x if x ∈ [0, 1)
x if x ∈ [1,∞)

and gx =

{
1− x if x ∈ [0, 1]
2x− 1 if x ∈ (1,∞)

.

Notice that f and g are discontinuous. Let {xn} be a sequence in X such that
xn = 1 + 1

n+1 , for all n ≥ 0. Then, we have

lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

fgxn = lim
n→∞

gfxn = 1

and
lim

n→∞
M(fgxn, gfxn, t) = 1.

Therefore, the maps f and g are sub-compatible.
On the other hand, the maps f and g are not compatible. In fact, let {xn} be a
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sequence in X such that xn = 1
2n , for all n ≥ 1. Then, we have limn→∞ fxn =

limn→∞ gxn = 1, limn→∞ fgxn = 2, limn→∞ gfxn = 0 and so

lim
n→∞

M(fgxn, gfxn, t) =
t

t + 2
6= 1.

It is easy to show that f and g are (f, g)-reciprocally continuous maps without a
coincidence point. Therefore, f and g are not weakly compatible maps of type (P ).

3. Main Result

Before proving our main theorem, we introduce the following definition.

Definition 3.1. Let (X, M, ∗) be a fuzzy metric space and f, g : X → X be given
maps. The map g is called a generalized (ϕ,ψ)-weak contraction with respect to f
if there exists a function ψ : [0,∞) → [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0
and an altering distance function ϕ such that

(3.1) ϕ

(
1

M(gx, gy, t)
− 1

)
≤ ϕ

(
1

m(f, g)
− 1

)
− ψ

(
1

m(f, g)
− 1

)

holds for all x, y ∈ X and each t > 0 with

m(f, g) = min{M(fx, fy, t),M(gx, fx, t),M(gy, fy, t)}.
If f = IX , where IX is the identity map, then g is called a generalized (ϕ,ψ)-weak
contraction.

Theorem 3.2. Let f, g : X → X be (f, g)-reciprocally continuous self-maps of a
fuzzy metric space (X, M, ∗) such that

(1) g(X) ⊆ f(X),
(2) one of f(X) and g(X) is a G-complete subset of X,
(3) g is a generalized (ϕ,ψ)-weak contraction with respect to f .

If f and g are sub-compatible maps and ψ is a continuous function, then f and
g have a unique common fixed point in X, that is, there exists u ∈ X such that
u = fu = gu.

Proof. Let x0 be an arbitrary point in X. Since g(X) ⊆ f(X), we can define, for
each n ≥ 0, a sequence of points x0, x1, x2, . . . , xn, . . . , such that xn+1 is in the
pre-image under f of {gxn}, that is, gx0 = fx1, gx1 = fx2, . . . , gxn = fxn+1, . . ..
Moreover, we can define a sequence yn in X by

(3.2) yn = gxn = fxn+1, for all n.

Suppose that yn = yn+1 for some n. Then by condition (3.1) we have easily yn+1 =
yn+2 and so ym = yn for every m > n. Thus the sequence {yn} is Cauchy. Assume
that yn+1 6= yn, for all n. Then, for x = xn+1 and y = xn, we have

m(f, g) = min{M(fxn+1, fxn, t),M(gxn+1, fxn+1, t),M(gxn, fxn, t)}
= min{M(yn, yn−1, t),M(yn+1, yn, t),M(yn, yn−1, t)}.
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Now, if m(f, g) = M(yn+1, yn, t), we obtain

ϕ

(
1

M(gxn+1, gxn, t)
− 1

)
= ϕ

(
1

M(yn+1, yn, t)
− 1

)

≤ ϕ

(
1

M(yn+1, yn, t)
− 1

)
− ψ

(
1

M(yn+1, yn, t)
− 1

)

which implies that M(yn+1, yn, t) = 1, a contradiction as yn+1 6= yn for all n.
Then, we must have m(f, g) = M(yn, yn−1, t) and hence

ϕ

(
1

M(yn+1, yn, t)
− 1

)
≤ ϕ

(
1

M(yn−1, yn, t)
− 1

)
− ψ

(
1

M(yn−1, yn, t)
− 1

)

< ϕ

(
1

M(yn, yn−1, t)
− 1

)
.

Consequently, considering that the ϕ function is non-decreasing, we have that

M(yn, yn+1, t) > M(yn−1, yn, t), for all n,

and hence {M(yn−1, yn, t)} is an increasing sequence of positive real numbers in
(0, 1]. Let S(t) = limn→∞M(yn−1, yn, t). Now, we show that S(t) = 1, for all t > 0.
If not, there exists t > 0 such that S(t) < 1. Then from the above inequality, on
taking n →∞, we obtain

ϕ

(
1

S(t)
− 1

)
≤ ϕ

(
1

S(t)
− 1

)
− ψ

(
1

S(t)
− 1

)
,

that is a contradiction. Therefore M(yn, yn+1, t) → 1 as n →∞.
Now, for each positive integer p, we write

M(yn, yn+p, t) ≥ M(yn, yn+1,
t

p
) ∗M(yn+1, yn+2,

t

p
) ∗ · · · ∗M(yn+p−1, yn+p,

t

p
).

It follows that
lim

n→∞
M(yn, yn+p, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1,

and hence {yn} is a G-cauchy sequence.
If f(X) is G-complete, then there exists u ∈ f(X) such that yn → u as n →∞.
Clearly,

lim
n→∞

yn = lim
n→∞

gxn = lim
n→∞

fxn+1 = u.

Now, (f, g)-reciprocal continuity of f and g implies that ffxn → fu and ggxn → gu,
as n → ∞. From ffxn → fu, by construction of the sequence (3.2), we have
fgxn = ffxn+1 → fu, as n →∞. On the other hand, sub-compatibility of f and g
yields limn→∞M(fgxn, gfxn, t) = 1, which implies that gfxn → fu. Now, taking
x = u and y = fxn, we get

m(f, g) = min{M(fu, ffxn, t),M(gu, fu, t),M(gfxn, ffxn, t)}
→ M(gu, fu, t),

as n →∞. Now, by

ϕ

(
1

M(gu, gfxn, t)
− 1

)
≤ ϕ

(
1

m(f, g)
− 1

)
− ψ

(
1

m(f, g)
− 1

)
,
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on taking n → ∞, we get M(gu, fu, t) = 1, which implies that gu = fu. It means
that u is a coincidence point of f and g.
Now, we shall show that u is also a common fixed point of f and g. For this we
assert that gu = u, and so gu = u = fu. On the other hand, if gu 6= u, then taking
x = u and y = xn, we have

m(f, g) = min{M(fu, fxn, t),M(gu, fu, t),M(gxn, fxn, t)}.
It follows that m(f, g) → M(gu, u, t), as n →∞.
Now, by

ϕ

(
1

M(gu, gxn, t)
− 1

)
≤ ϕ

(
1

m(f, g)
− 1

)
− ψ

(
1

m(f, g)
− 1

)
,

on taking n →∞, we get

ϕ

(
1

M(gu, u, t)
− 1

)
≤ ϕ

(
1

M(gu, u, t)
− 1

)
− ψ

(
1

M(gu, u, t)
− 1

)
,

which implies gu = u. Therefore fu = u = gu and hence u is a common fixed point
of f and g.
Finally, to prove uniqueness of the fixed point, we suppose that z is another common
fixed point of f and g. Then, taking x = u and y = z, we have

m(f, g) = min{M(fu, fz, t),M(gu, fu, t),M(gz, fz, t)}
= min{M(u, z, t),M(u, u, t),M(z, z, t)}
= M(u, z, t).

Consequently

ϕ

(
1

M(gu, gz, t)
− 1

)
= ϕ

(
1

M(u, z, t)
− 1

)

≤ ϕ

(
1

M(u, z, t)
− 1

)
− ψ

(
1

M(u, z, t)
− 1

)
,

which implies M(u, z, t) = 1, that holds if and only if u = z. Therefore u is a unique
common fixed point of f and g. ¤

Example 3.3. Let X = [0, 1] and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X, t > 0.

Define ϕ,ψ : [0,∞) → [0,∞) by ϕ(t) = t and ψ(t) = t
2 , for all t > 0. Define also

f, g : X → X by

fx =
x

2
for all x ∈ [0, 1] and gx =

{
x
16 if x ∈ [0, 1

2 ]
0 if x ∈ ( 1

2 , 1]
.

Let {xn} be a sequence in X such that xn = 1
2n , for all n ≥ 1. Then, we have

lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

fgxn = lim
n→∞

gfxn = lim
n→∞

ffxn = lim
n→∞

ggxn = 0

and
lim

n→∞
M(fgxn, gfxn, t) = 1.

Therefore, the maps f and g are sub-compatible. It is easy to show that f and g
are (f, g)-reciprocally continuous and satisfy the contractive condition (3.1). Thus,
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all the hypotheses of Theorem 3.2 hold and x = 0 is a unique common fixed point
of f and g.

Remark 3.4. Theorem 3.2 extends and complements the related results of [34] and
references therein.

4. Cyclic (ϕ,ψ)-weak contraction

In 2010, Pacurar and Rus [26] introduced the concept of cyclic φ-contraction and
proved a fixed point theorem for cyclic φ-contraction in complete metric spaces.
Later on, Gopal et al. [12] introduced the notion of cyclic weak φ-contraction in
fuzzy metric spaces. For other results in partial metric spaces, the reader can refer
to [6].

Definition 4.1. ([26]) Let X be a nonempty set, m a positive integer and g : X → X

an operator. By definition, X =
m⋃

i=1

Xi is a cyclic representation of X with respect

to g if
(i) Xi, i = 1, 2, . . . , m are nonempty sets,
(ii) g(X1) ⊂ X2, . . . , g(Xm−1) ⊂ Xm, g(Xm) ⊂ X1.

Example 4.2. ([12]) Let X = R. Assume A1 = A3 = [−2, 0] and A2 = A4 = [0, 2],

so that Y =
4⋃

i=1

Ai = [−2, 2]. Define g : Y → Y such that gx = −x
2 , for all x ∈ Y. It

is clear that Y =
4⋃

i=1

Ai is a cyclic representation of Y.

Here, following the idea of Gopal et al. [12], we present the notion of cyclic weak
(ϕ,ψ)-contraction in fuzzy metric spaces.

Definition 4.3. Let (X, M, ∗) be a fuzzy metric space, A1, A2, . . . , Am be closed

subsets of X and Y =
m⋃

i=1

Ai. An operator g : Y → Y is called a cyclic weak

(ϕ,ψ)-contraction if the following conditions hold:

(i) Y =
m⋃

i=1

Ai is a cyclic representation of Y with respect to g;

(ii) there exists a function ψ : [0,∞) → [0,∞) with ψ(r) > 0 for r > 0 and
ψ(0) = 0 and an altering distance function ϕ such that

(4.1) ϕ

(
1

M(gx, gy, t)
− 1

)
≤ ϕ

(
1

M(x, y, t)
− 1

)
− ψ

(
1

M(x, y, t)
− 1

)
,

for any x ∈ Ai, y ∈ Ai+1 (i = 1, 2, · · · ,m, where Am+1 = A1) and each
t > 0.

Now, we are ready to state and prove the following result.

Theorem 4.4. Let (X, M, ∗) be a fuzzy metric space, A1, A2, . . . , Am be closed sub-

sets of X and Y =
m⋃

i=1

Ai be G-complete. Suppose that there exists a continuous

function ψ : [0,∞) → [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0 and an altering
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distance function ϕ. If g : Y → Y is a continuous cyclic weak (ϕ,ψ)-contraction,

then g has a unique fixed point u ∈
m⋂

i=1

Ai.

Proof. Let x0 ∈ Y =
m⋃

i=1

Ai and set xn = gxn−1 (n ≥ 1). Clearly, we get

M(xn, xn+1, t) = M(gxn−1, gxn, t) for any t > 0. Besides for any n ≥ 0, there
exists in ∈ {1, 2, . . . , m} such that xn ∈ Ain and xn+1 ∈ Ain+1. Then by (3.1), for
t > 0 we have

ϕ

(
1

M(xn, xn+1, t)
− 1

)
= ϕ

(
1

M(gxn−1, gxn, t)
− 1

)

≤ ϕ

(
1

M(xn−1, xn, t)
− 1

)
− ψ

(
1

M(xn−1, xn, t)
− 1

)
(4.2)

≤ ϕ

(
1

M(xn−1, xn, t)
− 1

)
.

It implies that M(xn, xn+1, t) ≥ M(xn−1, xn, t) for all n ≥ 1 and so {M(xn−1, xn, t)}
is a non-decreasing sequence of positive real numbers in (0, 1].
Let S(t) = lim

n→∞
M(xn−1, xn, t). Now, we show that S(t) = 1 for all t > 0. If not,

there exists some t > 0 such that S(t) < 1. Then, on making n → ∞ in (4.2), we
obtain

ϕ

(
1

S(t)
− 1

)
≤ ϕ

(
1

S(t)
− 1

)
− ψ

(
1

S(t)
− 1

)

which is a contradiction. Therefore M(xn, xn+1, t) → 1 as n →∞.
Now, for each positive integer p, we have

M(xn, xn+p, t) ≥ M(xn, xn+1, t/p)∗M(xn+1, xn+2, t/p)∗· · ·∗M(xn+p−1, xn+p, t/p).

It follows that
lim

n→∞
M(xn, xn+p, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1,

and hence {xn} is a G-Cauchy sequence.
Since Y is G-complete, then there exists z ∈ Y such that lim

n→∞
xn = z. On the other

hand, by the condition (i) of Definition 4.3, it follows that the iterative sequence {xn}
has an infinite number of terms in Ai for each i = 1, 2, . . . , m. As Y is G-complete,
from each Ai, i = 1, 2, . . . ,m, one can extract a subsequence of {xn} that converges
to z. In virtue of the fact that each Ai, i = 1, 2, . . . , m, is closed, we conclude that

z ∈
m⋂

i=1

Ai and so
m⋂

i=1

Ai 6= ∅. Obviously,
m⋂

i=1

Ai is closed and G-complete. Now,

consider the restriction of g on
m⋂

i=1

Ai, i.e., g|
m⋂

i=1

Ai :
m⋂

i=1

Ai →
m⋂

i=1

Ai which satisfies

the assumptions of Theorem 3.2 and thus, g|
m⋂

i=1

Ai has a unique fixed point in
m⋂

i=1

Ai,

say u, which is obtained by iteration from the starting point x0 ∈ Y . To this aim,
we have to show that xn → u as n → ∞, where xn = gxn−1 (n ≥ 1). We have
proved that, for every x0 ∈ X, the sequence {xn} converges to some z ∈ X. Then,
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by (4.1), we have

ϕ

(
1

M(xn, u, t)
− 1

)
≤ ϕ

(
1

M(xn−1, u, t)
− 1

)
− ψ

(
1

M(xn−1, u, t)
− 1

)
.

Now, letting n →∞, we get

ϕ

(
1

M(z, u, t)
− 1

)
≤ ϕ

(
1

M(z, u, t)
− 1

)
− ψ

(
1

M(z, u, t)
− 1

)

which is a contradiction if M(z, u, t) < 1, and so, we conclude that u = z. Obviously,
u is a unique fixed point of g. ¤

Remark 4.5. Theorem 4.4 extends and generalizes the related results of [20, 26, 29]
in fuzzy metric spaces via cyclic weak (ϕ,ψ)-contraction.

Example 4.6. Let X = R and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X, t > 0. Assume

A1 = A2 = · · · = Am = [0, 1], so that Y =
m⋃

i=1

Ai = [0, 1] and define g : Y → Y

by gx = x2

4 for all x ∈ Y . Furthermore, if ϕ,ψ : [0,∞) → [0,∞) are defined by
ψ(s) = s

4 and ϕ(s) = s
2 for all s ≥ 0, we have

ϕ

(
1

M(gx, gy, t)
− 1

)
=

∣∣x2 − y2
∣∣

8t

≤ |x− y|
4t

= ϕ

(
1

M(x, y, t)
− 1

)
− ψ

(
1

M(x, y, t)
− 1

)
.

Clearly, g is a cyclic weak (ϕ,ψ)-contraction and all the conditions of Theorem 4.4

are satisfied. Therefore g has a unique fixed point 0 ∈
m⋂

i=1

Ai.
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