Annals of Fuzzy Mathematics and Informatics Volume 5, No. 1, (January 2013), pp. 269–281

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr



# Some common fixed point theorems for non-Archimedean L-fuzzy metric spaces

Anju Rani, Renu Chugh

Received 5 October 2011; Revised 2 May 2012; Accepted 17 May 2012

ABSTRACT. The aim of paper is to obtain some results on fixed point theorems for coincidence commuting mappings, implicit relations, contractive mappings and fuzzy  $\psi$ -contractive mappings in non-Archimedean L-fuzzy metric space.

2010 AMS Classification: 47H10, 54H25

Keywords: commuting mappings, implicit relations, contractive mappings and fuzzy  $\psi$ -contractive mappings non-Archimedean fuzzy metric space

Corresponding Author: ANJU RANI (toor.anju@yahoo.com)

### 1. Introduction

The notion of fuzzy sets was introduced by Zadeh [15]. Many authors have studied fixed point theorems in fuzzy metric space [1, 2, 5, 6, 7, 9]. Saadati et al [14] introduced the concept of L-fuzzy metric space as an extension of fuzzy metric and intuitionistic fuzzy metric spaces. In 2008, Mihet proved a Banach Contraction Theorem in M-complete non-Archimedean fuzzy metric space. As the generalization of non-Archimedean fuzzy metric space, R. Saadati and S. Mansour [13] introduced the concept of non-Archimedean L-fuzzy metric space and showed that every contractive mapping on non-Archimedean L-fuzzy metric space has a unique fixed point. The aim of this paper is to obtain some results on fixed point theorems for coincidence commuting mappings, implicit relations, contractive mappings and fuzzy $\psi$ -contractive mappings in non-Archimedean L-fuzzy metric space.

**Definition 1.1.** Let  $L = (L, \leq_L)$  be a complete lattice and U a non empty set called universe. An L-fuzzy set A on U is defined as a mapping.  $A: U \to L$ . For each u in U, A(u) represents the degree (in L) to which satisfies A.

Classically, a triangular norm T on  $([0,1], \leq)$  is defined as an increasing, commutative, associative mapping  $T:[0,1]^2 \to [0,1]$  satisfying (1,x)=x for all  $x \in [0,1]$ . These definitions can be straightforwardly extended to any lattice  $L=(L, \leq_L)$ .

**Definition 1.2.** A triangular norm(t-norm) on L is a mapping  $\tau: L^2 \to L$  satisfying the following conditions:

- (a)  $\tau(x, 1_L) = x \ \forall \ x \in L$  (boundary condition)
- (b)  $\tau(x,y) = \tau(y,x) \; \forall \; (x,y) \in L^2 \; (\text{commutativity})$
- (c)  $\tau(x\tau(y,z)) = \tau(\tau(x,y),z)$ ) (associativity)
- (d)  $x \leq_L x'$  and  $y \leq_L y' \Rightarrow \tau(x,y) \leq_L \tau(x',y')$  (monotonicity)

The t-norm  $\tau$  is Hadzic type if  $\tau(x,y) \geq_L \wedge (x,y)$  for every  $x,y \in L$  where

$$\wedge(x,y) = \begin{cases} x & \text{if } x \leq_L y \\ y & \text{if } y \leq_L x \end{cases}$$

Triangle norms are recursively defined by  $\tau^2 = \tau$  and

$$\tau^{n}(x_{(1)},\ldots,x_{(n+1)}) = \tau(\tau^{n-1}(x_{(1)},\ldots,x_{(n)}),x_{(n+1)})$$

for  $n \ge 2, x_{(i)} \in L$  and  $i \in \{1, 2, ..., n + 1\}$ .

**Definition 1.3.** A negator on L is any decreasing mapping  $N: L \to L$  satisfying  $N(0_L) = 1_L$  and  $N(1_L) = 0_L$ . If N(N(x)) = x for all  $x \in L$ , then N is called an involutive negator.

In this research the negator  $N: L \to L$  is fixed. The negator  $N_S$  on  $([0,1], \leq)$  defined as  $N_S(x) = 1-x$ , for all  $x \in [0,1]$ , is called the standard negator on  $([0,1], \leq)$ .

**Definition 1.4.** The triple  $(X, M, \tau)$  is said to be an L-fuzzy metric space if X is an non empty arbitrary set,  $\tau$  is a continuous t-norm on L and M is an L-fuzzy set on  $X^2 \times (0, \infty)$  satisfying the following conditions for every x, y, z in X and t, s in  $(0, \infty)$ :

- (a)  $M(x, y, t) >_L 0_L$
- (b)  $M(x, y, t) = M(y, x, t) = 1_L$  for all t > 0 if and only if x = y
- (c)  $\tau(M(x, y, t), M(y, z, s)) \leq_L M(x, z, t + s)$
- (d)  $M(x,y,\cdot):(0,\infty)\to L$  is continuous
- (e)  $\lim_{t\to\infty} M(x,y,t) = 1_L$ .

In this case, M is called an L-fuzzy metric.

If, in the above definition, the triangle inequality (c) is replaced by

(NA) 
$$\tau(M(x,y,t),M(y,z,s)) \leq_L M(x,z,\max\{t,s\}) \ \forall \ x,y,z \in X, \ t,s>0$$
 or equivalently,

$$\tau(M(x,y,t),M(y,z,t)) \le_L M(x,z,t) \quad \forall \ x,y,z \in X, \ t > 0.$$

Then the triple  $(X, M, \tau)$  is called a Non Archimedean L-fuzzy metric space.

For  $t \in (0, \infty)$ , we define the closed ball B[x, r, t] with centre  $x \in X$  and radius  $r \in L \setminus \{0_L, 1_L\}$ , as

$$B[x, r, t] = \{ y \in X : M(x, y, t) \ge_L N(r) \}.$$

**Definition 1.5** ([13]). A sequence  $\{x_n\}_{n\in N}$  in an L-fuzzy metric space  $(X,M,\tau)$  is called a right(left) Cauchy sequence if, for each  $\varepsilon\in L$   $\{0_L\}ad$ , t>0, there exists  $n_0\in N$  such that  $M(x_m,x_n,t)>_L N(\varepsilon)$ , for all  $m\geq N\geq n_0$   $(n\geq m\geq n_0)$ .

The sequence  $\{x_n\}_{n\in N}$  is called convergent to  $x\in X$  in an L-fuzzy metric space  $(X,M,\tau)$  (denoted by  $x_n\stackrel{M}{\longrightarrow} X$ ) if  $M(x_n,x,t)=M(x,x_n,t)=1_L$ , whenever  $n\to +\infty$  for every t>0. An L-fuzzy metric space is said to be right (left) complete if and only if every right (left) Cauchy sequence is convergent.

**Definition 1.6** ([13]). Let  $(X, M, \tau)$  be an L-fuzzy metric space and let N, be a negator on L. Let A be a subset of X, then the LF-diameter f the set A is the function defined as:

$$\delta_A(s) = \sup_{t < s} \inf_{x, y \in A} M(x, y, t).$$

A sequence  $\{A_n\}_{n\in\mathbb{N}}$  of subsets of an L-fuzzy metric space is called decreasing sequence if  $A_1\supseteq A_2\supseteq A_3\supseteq\ldots$ 

The following lemma gives conditions under which the intersection of such sequences is nonempty.

**Lemma 1.7** ([13]). Let  $(X, M, \tau)$  be a left complete L-fuzzy metric space and let  $\{A_n\}_{n\in N}$  be a decreasing sequence of nonempty closed subsets of X such that  $\delta_{A_n}(t) \to 1_L$  as  $n \to \infty$ . Then  $A = \bigcap_{n=1}^{\infty} A_n$  contains exactly one point.

Corollary 1.8 ([13]). Let  $(X, M, \tau)$  be a left complete L-fuzzy metric space and let  $\{A_i\}_{i\in I}$  be a family of closed subsets of X, which has the finite intersection property and for each  $\varepsilon > 0$ , contains a set of LF-diameter less than  $\varepsilon$ , then  $\bigcap_{i\in I} A_i \neq \phi$ .

**Definition 1.9.** Let  $(X, M, \tau)$  be a left complete L-fuzzy metric space. A mapping  $\Delta: X \to X$  is said to be contractive if whenever x and y are distinct point in X, we have

$$M(\land x, \land y, t) >_L M(x, y, t).$$

# 2. Main Results

In this section, we prove some results of [3, 4, 8, 10, 11, 12] in non-Archimedean L-fuzzy metric space.

**Theorem 2.1.** Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space and f, g, S and T be self maps on X satisfying

(I)  $M(Sx, Ty, t) \ge_L \min\{M(fx, gy, t), M(fx, Sx, t), M(gy, Ty, t)\}$ 

for all 
$$x, y \in X$$
, with  $fx \neq gy$ ,

- $(\mathrm{II}) \ fS = Sf, fg = gf, fT = Tf, gS = Sg, gT = Tg, ST = TS,$
- (III)  $S(X) \subseteq f(X), T(X) \subseteq g(X)$
- (IV) fg(X) is complete and fg is one-one mapping.

Then f and S have a coincident point or g and T have a coincident point in X.

*Proof.* For  $a \in X$ , let  $B_a = [fga, \eta, t)]$  where

$$\eta(a,t) = N\{\min\{M(fga, Sga, t), M(fga, Tfa, t)\}\}$$

denote the closed sphere centered at fga with the radius

$$\min\{M(fga, Sga, t), M(fga, Tfa, t)\}\}.$$

Let A be the collection of all the spheres for all  $a \in fg(X)$ . Then the relation  $B_a \leq B_b$  iff  $B_b \subseteq B_a$  is a partial order on A.

Consider a totally ordered sub family  $A_1$  of A. Since fg(X) is complete and by above corollary 1.8, we have  $\bigcap_{B_a \in A_1} B_a = B \neq \phi$ . Let  $fgb \in B$  where  $b \in fg(X)$  and  $B_a \in A_1$ . Then  $fgb \in B_a$ . Hence

$$M(fgb, fga, t) \ge_L N\{N\{\min\{M(fga, Sga, t), M(fga, Tfa, t)\}\}\}$$

$$\ge_L \min\{M(fga, Sga, t), M(fga, Tfa, t)\}.$$

If a = b then  $B_a = Bb$ . Assume that  $a \neq b$ . Since fg is one-one, we have  $fga \neq fgb$ . Let  $x \in B_b$ . Then

$$\begin{split} M(x,fgb,t) \geq_L N\{N\{\min\{M(fgb,Sgb,t),M(fgb,Tfb,t)\}\}\} \\ \geq_L \min\{M(fgb,Sgb,t),M(fgb,Tfb,t)\} \\ \geq_L \min\{M(fgb,fga,t),M(fga,Tfa,t),M(Tfa,Sgb,t),\\ M(fgb,fga,t),M(fga,Sga,t),M(Sga,Tfb,t)\} \\ \geq_L \min\{M(fgb,Sga,t),M(fga,Tfa,t),\\ \min\{M(fgb,gfa,t),M(fgb,Sgb,t),M(gfa,Tfa,t)\},\\ \min\{M(fga,gfb,t),M(fga,Sga,t),M(gfb,Tfb,t)\}\} \\ = \min\{M(fga,Sga,t),M(fga,Tfa,t)\} \quad \text{from (2.1), (I) (II)}. \end{split}$$

Now

$$M(x, fga, t) \ge_t N\{N\{\min\{M(x, fgb, t), M(fgb, fga, t)\}\}\}$$
  
 $\ge_L \min\{M(x, fgb, t), M(fgb, fga, t)\}$   
 $\ge_L \min\{M(fga, Sga, t), M(fga, Tfa, t)\}.$ 

Thus  $x \in B_b$ . Hence  $B_b \subseteq B_a$  for every  $B_b \in A_1$ . Thus  $B_b$  is an upper bound in A for the family  $A_1$  and hence by Zorn's lemma, there is a maximal element in A, say  $B_z, z \in fg(X)$ . There exists  $w \in X$  such that z = fgw. Suppose  $S(gfgw) \neq f(gfgw)$  and  $T(ffgw) \neq g(ffgw)$ . From (I) we have

$$\begin{split} M(Sgfgw,TSfgw,t) \geq_L N\{N\{\min\{M(fgfgw,gSfgw,t),M(fgfgw,Sgfgw,t),\\ & M(gSfgw,TSfgw,t)\}\}\} \\ \geq_L \min\{M(fgfgw,gSfgw,t),M(fgfgw,Sgfgw,t),\\ & M(gSfgw,TSfgw,t)\} \\ (2.2) & = M(fgfgw,gSfgw,t)\\ M(STfgw,Tffgw,t) \geq_L N\{N\{\min\{M(fTfgw,gffgw,t),M(fTfgw,STfgw,t),\\ & M(gffgw,Tffgw,t)\}\}\} \end{split}$$

```
\geq_L \min\{M(fTfgw, gffgw, t), M(fTfgw, STfgw, t),
                             M(qffgw, Tffgw, t)
(2.3)
                     = M(fTfgw, gffgw, t)
M(fggSw, SggSw, t) \ge_L N\{N\{\min\{M(fggSw, TSfgw, t), M(TSfgw, Tffgw, t), \}\}\}
                             M(Tffgw, SggSw, t)\}\}
                     \geq_L \min\{M(fggSw, TSfgw, t), M(TSfgw, Tffgw, t),\}
                             M(Tffgw, SggSw, t)
                     \geq_L \min\{M(fgfgw, gSfgw, t), M(fTfgw, gffgw, t),
                         \min\{M(fggSw, gffgw, t), M(fggSw, SggSw, t),
                         M(gffgw, Tffgw, t)} from (2.2), (2.3), (I), (II)
                     = \min\{M(fgfgw, gSfgw, t), M(fTfgw, gffgw, t)\}
(2.4)
                         M(Tffgw, TffTw, t)N\{N\{\min\{M(Tffgw, STfgw, t),
                             M(STfgw, Sgfgw, t), M(Sgfgw, TffTw, t)\}\}
                         \min\{M(Tffgw, STfgw, t), M(STfgw, Sgfgw, t),
                             M(Sgfgw, TffTw, t)
                         \min\{M(fTfgw,gffgw,t),M(fgfgw,gSfgw,t),
                             \min\{M(fgfgw, gffTw, t), M(fgfgw, Sgfgw, t),
                             M(gffTw, TffTw, t)} from (2.2), (2.3), (I), (II)
                     = \min\{M(fTfgw, gffgw, t), M(fgfgw, gSfgw, t)\}
(2.5)
From (2.2), (2.4) we have
             \min\{M(Sqfqw, TSfqw, t), M(fqqSw, SqqSw, t)\}
(2.6)
               \geq_L \min\{M(fgfgw, gSfgw, t), M(fTfgw, gffgw, t)\}
From (2.3), (2.5) we have
             \min\{M(STfgw, Tffgw, t), M(Tffgw, TffTw, t)\}
               \geq_L \min\{M(fgfgw, gSfgw, t), M(fTfgw, gffgw, t)\}
(2.7)
```

If  $\min\{M(fgfgw,gSfgw,t),M(fTfgw,gffgw,t)\}=M(fgfgw,gSfgw,t),$  then from (2.6),  $fgfgw\not\in BgSw\Rightarrow fgz\not\in BgSw.$  Hence  $B_z\not\subset B_{gSw}.$  It is a contradiction to the maximality of  $B_z$  in A, since  $gSw\subseteq gf(X)=fg(X).$  If  $\min\{M(fgfgw,gSfgw,t),M(fTfgw,gffgw,t)\}=M(fTfgw,gffgw,t),$  then from (2.7),  $fgfgw\not\in B_{fTw}\Rightarrow fgz\not\in B_{fTw}.$  Hence  $B_z\not\subset B_{fTw}.$  It is a contradiction to the maximality of  $B_z$  in A, since  $fTw\subseteq fg(X).$  Hence either S(gfgw)=f(gfgw) or T(ffgw)=g(ffgw). Thus either f and g or g and g have a coincident point in g. Taking g we get the following result:

Corollary 2.2. Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space,  $f, S, T: X \to X$  satisfying

(a) f(X) is complete,

- (b)  $M(Sx, Ty, t) \ge_L \min\{M(fx, fy, t), M(fx, Sx, t), M(fy, Ty, t)\}\$  for  $x, y \in X$ ,  $x \ne y$ ;
- (c) fS = Sf, fT = Tf, ST = TS,
- (d)  $S(X) \subseteq f(X), T(X) \subseteq f(X).$

Then either fw = Sw or fw = Tw for some  $w \in Xs$ .

Taking S = T, we get the following corollary:

Corollary 2.3. Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space. If f and T are two self maps satisfying

$$(2.8) T(X) \subseteq f(X),$$

and

(2.9)

 $M(Tx, Ty, t) \ge_L \min\{M(fx, fy, t), M(fx, Tx, t), M(fy, Ty, t)\} \ \forall \ x, y \in X, \ x \ne y$ then there exists  $z \in X$  such that fz = Tz.

Further if f and T are coincidentally commuting at z then z is the unique common fixed point of f and T.

If we take f = I (identity map) in above theorem, it becomes the following result:

**Corollary 2.4.** Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space. If  $T: X \to X$  is a mapping such that for every  $x, y \in X, x \neq y$ ,

(2.10) 
$$M(Tx, Ty, t) \ge_L \min\{M(x, Tx, t), M(x, y, t), M(y, Ty, t)\}$$

Then T has a unique fixed point.

Now we extend Corollary 2.3 when T is a multivalued map. Let C(X) denote the class of all non empty compact subsets of X. For  $A, B \in C(X)$ , the Hausdorff metric is defined by

$$(2.11) \hspace{1cm} H(A,B) = \max \Big\{ \sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A) \Big\}$$

where  $d(x, A) = \inf\{d(x, a) : a \in A\}.$ 

**Theorem 2.5.** Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space. Let  $f: X \to X$  and  $T: X \to C(X)$  be satisfying

(2.12)

$$T(X) \subseteq f(X) \quad \forall \ x \in X,$$

(2.13)

 $H(Tx,Ty,t) \ge_L \min\{M(fx,fy,t), M(fx,Tx,t), M(fy,Ty,t)\} \ \forall \ x,y \in X, \ x \ne y$ 

then there exists  $z \in X$  such that  $fz \in Tz$ .

Further assume that

$$(2.14) M(fx, fu, t) \ge_L H(Tfy, Tu, t) \ \forall \ x, y, u \in X, fx \in Ty$$

and

(2.15) f and T are coincidentally commuting at z.

Then fz is the unique common fixed point of f and T.

Proof. Let  $B_a = [fa, \eta, t]$  where  $\eta(a, t) = N\{N\{1 - M(fa, Ta, t)\}\}$  denote the closed sphere centered at fa with the radius 1 - M(fa, Ta, t) and let A be the collection of these spheres for all  $a \in X$ . Then the relation  $B_a \leq B_b$  iff  $B_b \subseteq B_a$  is a partial order on A. Let  $A_1$  be a totally ordered sub family of A. Since  $(X, M, \tau)$  is complete and by above corollary 1.8, we have

$$\bigcap_{B_a \in A_1} B_a = B \neq \phi.$$

Let  $fb \in B$  and  $B_a \in A_1$ . Then  $fb \in B_a$ . Hence

$$(2.16) M(fb, fa, t) \ge_L M(fa, Ta, t)$$

If a = b then  $B_a = B_b$ . Assume that  $a \neq b$ . Let  $x \in B_b$ . Then

$$M(x, fb, t) \ge_L N\{N\{M(fb, Tb, t)\}\}. \ge_L M(fb, Tb, t).$$

Since Ta is compact, there exists  $u \in Ta$  such that

(2.17) 
$$M(fa, u, t) = M(fa, Ta, t).$$

Consider

$$\begin{split} M(fb,Tb,t) &= \inf_{c \in Tb} M(fb,c,t) \\ &\geq_L \min\{M(fb,fa,t), M(fa,u,t), \inf_{c \in Tb} M(u,c,t)\} \\ &\geq_L \min\{M(fb,Ta,t), M(Ta,Tb,t)\} \qquad \text{(from (2.16) and (2.17))} \\ &\geq_L \min\{M(fb,Ta,t), M(Ta,fb,t)\} \qquad \text{(from (2.16) and (2.13))} \end{split}$$

Thus

$$(2.18) M(x, fa, t) \ge_L M(fb, Tb, t) M(fa, Ta, t)$$

Now,

$$M(x, fa, t) \ge_L \min\{M(x, fa, t), M(fb, fa, t)\}$$
  
  $\ge_L M(fa, Ta, t)$  (from (2.16) and (2.18)).

Thus  $x \in B_a$ . Hence  $B_b \subseteq B_a$  for any  $B_a \in A_1$ . Thus  $B_b$  is an upper bound in A for the family  $A_1$  and hence by Zorn's Lemma, A has a maximal element, say  $B_z$ ,  $z \in X$ .

Suppose  $fz \notin Tz$ . Since Tz is compact, there exists  $k \in Tz$  such that M(fz, Tz, t) = M(fz, k, t). From (2.12), there exists  $w \in X$  such that k = fw. Thus

(2.19) 
$$M(fz, Tz, t) = M(fz, fw, t).$$

Clearly  $z \neq w$ . Now,

$$\begin{split} M(fw,Tw,t) &\geq_L H(Tz,Tw,t) \\ &\geq_L \min\{M(fz,fw,t),M(fz,Tz,t),M(fw,Tw,t)\} \\ &= M(fz,fw,t) \qquad \text{(from (2.19))} \end{split}$$

Hence,  $fz \notin B_w$ . Thus  $B_z \not\subset B_w$ . It is a contradiction to the maximality of  $B_z$ . Hence  $fz \in Tz$ .

Further assume (2.14) and (2.15). Write fz = p. Then  $p \in Tz$ . From (2.14),

 $M(p,fp,t)=M(fz,fp,t)\geq_L H(Tfz,Tp,t)=H(Tp,Tp,t)=0$ . This implies that fp=p. From (2.15),  $p=fp\in fTz\subseteq Tfz=Tp$ . Thus fz=p is a common fixed point of f and T.

Suppose  $q \in X, q \neq p$  is such that  $q = fq \in Tq$ . From (2.13) and (2.14) we have

$$\begin{split} M(p,q,t) &= M(fp,fq,t) \geq_L H(Tfp,Tq,t) \\ &= H(Tp,Tq,t) \\ &\geq_L \min\{M(fp,fq,t),M(fp,Tp,t),M(fq,Tq,t)\} \\ &= M(p,q,t). \end{split}$$

This implies that p=q. Thus p=fz is the unique common fixed point of f and T. We denote by  $F_X$  the set of maps  $f:X\to [0,+\infty)$ .

**Definition 2.6.** A function  $f \in F_X$  is said to be metric locally constant (shortly, m.l.c.) provided that for any  $x \in X$  and any y in the open B(x, f(x)) one has f(x) = f(y).

**Remark 2.7.** Let  $(X, M, \tau)$  be non-Archimedean L-fuzzy metric space. If  $a, b \in X, \lambda > 0$ , and  $b \in B(a, \lambda, t)$  then  $B(a, \lambda, t) = B(b, \lambda, t)$ .

- (a) If  $a, b \in X, 0 < \delta \leq \lambda$ , then either  $B(a, \lambda, t) \cap B(b, \lambda, t) = \phi$  or  $B(b, \lambda, t) \subseteq B(a, \lambda, t)$ . Hence, if a ball  $B(a, \lambda, t)$  contains a ball  $B(b, \lambda, t)$ , then either the balls are the same or  $\delta < \lambda$ .
- (b) Every ball is clopen (closed and open) in the topology defined by M.

**Theorem 2.8.** Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space and  $T: X \to X$  contractive mapping. Then there exist subset  $B \subseteq X$  such that  $T: B \to B$  and that the function  $f(x) = M(x, Tx, t), x \in B$ , is m.l.c.

*Proof.* Let  $B_a = B(a, 1 - M(a, Ta, t), t)$  denote the closed spheres centered at a with the radii 1-M(a, Ta, t) and let A be the collection of these spheres for all  $a \in X$ . The relation

$$B_a \leq B_b$$
 iff  $B_b \subseteq B_a$  is a partial order on  $A$ .

Let  $A_1$  be a totally ordered subfamily of A. Since  $(X, M, \tau)$  is complete and from above Corollary 1.8, we have

$$\bigcap_{B_a \in A_1} = B_a = B \neq \phi.$$

Let  $b \in B$  and  $B_a \in A_1$  then  $b \in B_a$  so

$$M(b, a, t) \ge_L 1 - (1 - M(a, Ta, t)) = M(a, Ta, t).$$

If a = b then  $B_a = B_b$ . Assume that  $a \neq b$ , for any  $x \in B_b$ 

$$M(x, a, t) \ge_L \min\{M(x, b, t), M(b, a, t)\} \ge_L M(a, Ta, t)$$

and

$$\begin{split} M(x,b,t) &\geq_L 1 - (1 - M(b,Tb,t)) \\ &= M(b,Tb,t) \\ &\geq_L \min\{M(b,a,t), M(a,Ta,t), M(Ta,Tb,t)\} \\ &= \min\{M(a,Ta,t), M(Ta,Tb,t)\} = M(a,Ta,t). \end{split}$$

So  $B_b \subseteq B_a$  for any  $B_a \in A_1$ . Thus  $B_b$  is the upper bound for the family  $A_1$ . By Zorn's lemma there is a maximal element in  $A_1$ , say  $B_z$ . For any  $b \in B_z$ 

$$M(b, Tb, t) \ge_L \min\{M(b, z, t), M(z, Tz, t), M(Tz, Tb, t)\}$$
  
  $\ge_L \min\{M(b, z, t), M(z, Tz, t), M(z, b, t)\} = M(z, Tz, t)$ 

 $B_b \cap B_z$  is nonempty (contains b) so by above Remark 2.7,

$$B_b \subseteq B_z$$

Since  $Tb \in B_b$  we just prove that  $T: B_z \to B_z$ .

For z = Tzf(x) = 0 so theorem is proved.

For z = Tz we are going to prove that f(b) = f(z) for every  $b \in B_z$ .

We know that  $M(b, Tb, t) \ge_L M(z, Tz, t)$  for any  $b \in B_z$ . Let us suppose that for some  $b \in B_z$ 

$$M(b, Tb, t) \ge_L M(z, Tz, t).$$

As

$$M(b, z, t) \ge_L M(z, Tz, t)$$

then

$$\begin{split} M(z,Tz,t) &\geq_L \min\{M(z,b,t), M(b,Tz,t)\} \\ &\geq_L \min\{M(z,b,t), M(b,Tb,t), M(Tb,Tz,t)\} \\ &\geq_L \min\{M(z,b,t), M(b,Tb,t), M(b,z,t)\} \\ &= \min\{M(z,b,t), M(b,Tb,t)\} \\ &= M(z,b,t). \end{split}$$

We obtain that M(z, Tz, t) = M(b, z, t).

But

$$M(b,z,t) = M(z,Tz,t) \leq_L M(b,Tb,t)$$

implies that  $z \in B_z$  but  $z \notin B_b$  and hence

$$B_b \subsetneq B_z$$

which contradicts the maximality of  $B_z$  Thus we proved that f is m.l.c. on  $B=B_z$ .

#### 3. Implicit relations

Let  $\phi$  be the sets of all real continuous functions  $\phi: (R^+)^4 \to R$ , non decreasing in first argument and satisfying the following conditions:

- (i) For  $u, v \ge 0$ ,  $\phi(u, v, v, u) \ge 0$  or  $\phi(u, v, u, v) \ge 0$  imply  $u \ge v$
- (ii) The functions  $\phi$  satisfies condition  $(\phi_U)$  if

(3.1) 
$$\phi(u, u, 1, 1) \ge 0$$
 implies  $u \ge 1$ .

**Theorem 3.1.** Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space. If

$$F(M(Tx, Ty, t), M(x, y, t), M(x, Tx, t), M(y, Ty, t)) \ge_L 0$$

for every  $x \neq y$  in X, where F satisfies conditions  $(\phi_U)$ , then T has at most one fixed point.

*Proof.* Suppose that T has two fixed points z and z' with  $z \neq z'$ . Then by (3.1) we have successively

$$F(M(Tz, Tz', t), M(z, z', t), M(z, Tz, t), M(z', Tz', t)) \ge_L 0$$

i.e.,

$$F(M(z, z', t), M(z, z', t), M(z, z, t), M(z', z', t)) \ge_L 0$$

i.e.,

$$F(M(z, z', t), M(z, z', t), 1, 1) \ge_L 0$$

which contradicts  $(\phi_U)$ .

**Theorem 3.2.** Let  $(X, M, \tau)$  be complete non-Archimedean L-fuzzy metric space. If  $T: X \to X$  satisfies the inequality (3.1) for every distinct points x, y in X, where  $F \in F_4$ , then T has a fixed point. Further, if F satisfies in addition condition  $(\phi_U)$ , then the fixed point is unique.

*Proof.* Let  $B_a = B[a, \eta, t]$  where  $\eta(a, t) = N\{N\{1 - M(a, Ta, t)\}\}$  denote the closed sphere centered at "a" with radius 1 - M(a, Ta, t) and let A be the collection of these spheres for all  $\in X$ . The relation  $B_a \leq B_b$  iff  $B_b \subseteq B_a$  is a partial order on A.

Now consider a totally ordered subfamily  $A_1$  of A. Since  $(X, M, \tau)$  be complete and from above Corollary 1.8, we have

$$\bigcap_{B_a \in A_1} B_a = B \neq 0.$$

Let  $b \in B$ ,  $b \neq a$ ,  $B_a \in A_1$  and  $x \in B_b$ . Then

$$M(x,b,t) \ge_L N\{N\{M(b,Tb,t)\}\}$$

$$\ge_L M(b,Tb,t)$$

$$\ge_L \min\{M(b,a,t), M(a,Ta,t), M(Ta,Tb,t)\}$$

$$= \min\{M(a,Ta,t), M(Ta,Tb,t)\}$$
278

On the other hand, by (3.1) we have successively

$$F(M(Ta, Tb, t), M(a, b, t), M(a, Ta, t), M(b, Tb, t)) \ge_L 0$$
  
 $F(M(Ta, Tb, t), M(a, Ta, t), M(a, Ta, t), M(Ta, Tb, t)) \ge_L 0$ 

which implies

$$M(Ta, Tb, t) \geq_L M(a, Ta, t)$$

By (3.2) we have

$$M(x,b,t) >_L M(a,Ta,t).$$

Now, we have

$$M(x, a, t) \ge_L \min\{M(x, b, t), M(b, a, t), M(a, Ta, t)\}.$$

So  $x \in B_a$  and  $B_b \subseteq B_a$  for any  $B_a \in A_1$ . Thus  $B_b$  is the upper bound for the family A. By Zorn's lemma A has a maximal element, say  $B_z$ , for some  $z \in X$ . We are going to prove that z = Tz.

Let us suppose the contrary, i.e. that  $z \neq Tz$ . Inequality (3.1) we have that

$$F(M(Tz, T(Tz), t), M(z, Tz, t), M(z, Tz, t), M(Tz, T(T(z)), t) \ge_L 0$$

which implies

$$M(Tz, T(Tz), t) \ge_L M(z, Tz, t).$$

Now, if  $y \in BTz$  then

$$M(y,Tz,t) \geq_L M(Tz,T(T(z),t) \geq_L M(z,Tz,t).$$

Therefore,

$$M(y, z, t) \ge_L \min\{M(y, Tz, t), M(T(z), TT(z), t)\} = M(z, Tz, t).$$

This mean that  $y \in Bz$  and that  $B_{Tz} \subseteq B_z$ . On the other hand,  $z \notin Bz$  since M(z,Tz,t) > M(z,T(Tz),t). so  $BTz \notin Bz$ . This is a contradiction with the maximality of Bz. Hence, we have that z = Tz. If F satisfies property  $(\phi_U)$ . By Theorem 3.1 it follows that z is the unique fixed point of T.

**Theorem 3.3.** Let  $(X, M, \tau)$  be non-Archimedean L-fuzzy metric space in which  $\tau$  is Hadzic type and  $\Delta: X \to X$  be a fuzzy  $\psi$ -contractive mapping. If there exists  $x \in X$  such that  $M(x, \Delta x, t) > 0 \ \forall \ t > 0$ , then  $\Delta$  has a unique fixed point.

*Proof.* Let  $B_x = B[x, \eta, t]$  with  $\eta(x, t) = N(M(x, \Delta x, t))$  and t > 0. Let A be the collection of these balls for all  $\in X$ . The relation  $B_x \leq B_y$  iff  $B_y \subseteq B_x$  is a partial order in A. Consider a totally ordered subfamily  $A_i$  of A. From Corollary 1.8, we have

$$\bigcap_{B_x \in A_1} Bx = B \neq \phi.$$

Let  $y \in B$  and  $B_x \in A_1$ , then

(3.3) 
$$M(x,y,t) \ge_L N(N(M(x,\wedge x,t))) = M(x,\wedge x,t)$$

Now, if  $x_0 \in B_{\nu}$ , then by using  $\psi$ -contractive mapping, we have

$$M(x_0, y, t) \geq_L N(N(M(y, \land y, t)))$$

$$\geq_L \tau^2(M(y, x, t), M(x, \land x, t), M(\land x, \land y, t))$$

$$\geq_L \tau^2(M(y, x, t), M(x, \land x, t), M(x, y, t))$$

$$\geq_L M(x, \land x, t).$$

Thus

$$(3.4) M(x_n, y, t) \ge_L M(x, \land x, t)$$

Now by using (3.3) and (3.4), we obtain

$$M(x_0, x, t) \ge_L \tau(M(x_0, y, t), M(x, y, t))$$
  
 
$$\ge_L \tau(M(x, \land x, t), M(\land x, x, t))$$
  
 
$$\ge_L M(x, \land x, t).$$

Therefore  $x_0 \in B_x$  and  $B_y \subseteq B_x$  implies that  $B_x \subseteq B_y$  for all  $B_x \in A_1$ . Thus  $B_y$  is an upper bound in A for family  $A_1$  and hence by Zorn's Lemma, A has a maximal element, say  $B_z, z \in X$ . We claim that  $z = \Delta z$ .

Suppose that  $z \neq \Delta z$ . Since  $\Delta$  is  $\psi$ -contractive and  $\psi(t) > t$ , therefore

$$M(\land z, \land^2 z, t) \ge_L \psi M(z, \land z, t),$$
  
  $\ge_L M(z, \land z, t),$ 

where  $\Delta^2 = \Delta 0 \Delta$  and

$$\land z \in B[\land z, \eta(\land z, t), t] \cap B[z, \eta(z, t), t]$$

Therefore  $B_{\Delta z} \subseteq B_z$  and z is not in  $B_{\Delta z}$ . Thus  $B_{\Delta z} \subset B_z$ , which contradicts the maximality of  $B_z$ . Hence  $\Delta$  has a fixed point.

Uniqueness easily follows from  $\psi$ -contractive condition.

### References

- S.S. Chang, Y.J. Cho, B.S. Lee, J.S. Jung and S.M. Kang, Coincidence point and minimization theorems in fuzzy metric spaces, Fuzzy Sets and System 88(1997) 119–128.
- [2] Y.J. Cho, H.K. Pathak, S.M. Kang and J.S. Jung, Common fixed points of compatible maps of type  $(\beta)$  in fuzzy metric spaces, Fuzzy Sets and System 93(1998) 99–111.
- [3] Ljilijana Gajic, On Ultrametrc Space, Novi Sad J. Math. 31(2) (2001) 69-71.
- [4] Ljilijana Gajic, Metric locally constant function on some subset of ultrametrc space, Novi Sad J. Math. 35(1) (2005) 123–125.
- [5] J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18(1967) 145–174.
- [6] V. Gregori and A. Sapena, On fixed point theorem in fuzzy metric spaces, Fuzzy Sets and System 125(2002) 245–252.
- [7] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and System 144(2004) 431–439.
- [8] D. Mihet, Fuzzy  $\psi$ -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and system 159(2008) 739–744.
- [9] E. Pap, O. Hadzic and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl. 202(1996) 433–449.
- [10] V. Popa, A general fixed point theorem for mappings in ultra metric spaces, Universitatea Din Bacau Studii Si Cercetari Stiintifice, 18(2008) 249–254.

- [11] K.P.R. Rao and G.N.V. Kishore, Common fixed point theorems in Ultra Metric Spaces, Journal of Mathematics  $40(2008)\ 31-35$ .
- [12] K.P.R. Rao, G.N.V. Kishore and T. Ranga Rao, Some coincidence point theorems in ultra metric spaces, Int. Journal of Math. Analysis 1(2007) 897–902.
- [13] R. Saadati and S. M. Vaezpou, A fixed point theorems in L-fuzzy quasi-metric spaces. Am. J. Applied Sci. 6(2)~(2009)~273-275.
- [14] R. Saadati, A. Razani and H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos, Solitons Fractals 33(2007) 358–363.
- [15] L.A. Zadeh, Fuzzy sets, Information and Control 8(1965) 338–353.

# <u>ANJU RANI</u> (toor.anju@yahoo.com, anjupanwar15@gmail.com)

Department of Mathematics, M.D. University, Rohtak-124001(Haryana), India

## $\underline{\text{RENU CHUGH}} \; (\texttt{chughrenu@yahoo.com})$

Department of Mathematics, M.D. University, Rohtak-124001(Haryana), India