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1. Introduction

The notion of fuzzy sets was introduced by Zadeh [15]. Many authors have
studied fixed point theorems in fuzzy metric space [1, 2, 5, 6, 7, 9]. Saadati et al
[14] introduced the concept of L-fuzzy metric space as an extension of fuzzy metric
and intuitionistic fuzzy metric spaces. In 2008, Mihet proved a Banach Contrac-
tion Theorem in M-complete non-Archimedean fuzzy metric space. As the gener-
alization of non-Archimedean fuzzy metric space, R. Saadati and S. Mansour [13]
introduced the concept of non-Archimedean L-fuzzy metric space and showed that
every contractive mapping on non-Archimedean L-fuzzy metric space has a unique
fixed point. The aim of this paper is to obtain some results on fixed point theorems
for coincidence commuting mappings, implicit relations, contractive mappings and
fuzzyψ-contractive mappings in non-Archimedean L-fuzzy metric space.

Definition 1.1. Let L = (L,≤L) be a complete lattice and U a non empty set
called universe. An L-fuzzy set A on U is defined as a mapping. A : U → L. For
each u in U,A(u) represents the degree (in L) to which satisfies A.
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Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing, commu-
tative, associative mapping T : [0, 1]2 → [0, 1] satisfying (1, x) = x for all x ∈ [0, 1].
These definitions can be straightforwardly extended to any lattice L = (L,≤L).

Definition 1.2. A triangular norm(t-norm) on L is a mapping τ : L2 → L satisfying
the following conditions:
(a) τ(x, 1L) = x ∀ x ∈ L (boundary condition)
(b) τ(x, y) = τ(y, x) ∀ (x, y) ∈ L2 (commutativity)
(c) τ(xτ(y, z)) = τ(τ(x, y), z)) (associativity)
(d) x ≤L x′ and y ≤L y′ ⇒ τ(x, y) ≤L τ(x′, y′) (monotonicity)
The t-norm τ is Hadzic type if τ(x, y) ≥L ∧(x, y) for every x, y ∈ L where

∧(x, y) =

{
x if x ≤L y

y if y ≤L x

Triangle norms are recursively defined by τ2 = τ and

τn(x(1), . . . , x(n+1)) = τ(τn−1(x(1), . . . , x(n)), x(n+1))

for n ≥ 2, x(i) ∈ L and i ∈ {1, 2, . . . , n + 1}.
Definition 1.3. A negator on L is any decreasing mapping N : L → L satisfying
N(0L) = 1L and N(1L) = 0L. If N(N(x)) = x for all x ∈ L, then N is called an
involutive negator.

In this research the negator N : L → L is fixed. The negator NS on ([0, 1],≤)
defined as NS(x) = 1−x, for all x ∈ [0, 1], is called the standard negator on ([0, 1],≤).

Definition 1.4. The triple (X,M, τ) is said to be an L-fuzzy metric space if X is
an non empty arbitrary set, τ is a continuous t-norm on L and M is an L-fuzzy set
on X2 × (0,∞) satisfying the following conditions for every x, y, z in X and t, s in
(0,∞):
(a) M(x, y, t) >L 0L

(b) M(x, y, t) = M(y, x, t) = 1L for all t > 0 if and only if x = y
(c) τ(M(x, y, t),M(y, z, s)) ≤L M(x, z, t + s)
(d) M(x, y, ·) : (0,∞) → L is continuous
(e) limt→∞M(x, y, t) = 1L.
In this case, M is called an L-fuzzy metric.

If, in the above definition, the triangle inequality (c) is replaced by

(NA) τ(M(x, y, t),M(y, z, s)) ≤L M(x, z, max{t, s}) ∀ x, y, z ∈ X, t, s > 0

or equivalently,

τ(M(x, y, t),M(y, z, t)) ≤L M(x, z, t) ∀ x, y, z ∈ X, t > 0.

Then the triple (X, M, τ) is called a Non Archimedean L-fuzzy metric space.
For t∈ (0,∞), we define the closed ball B[x, r, t] with centre x ∈ X and radius

r ∈ L \ {0L, 1L}, as

B[x, r, t] = {y ∈ X : M(x, y, t) ≥L N(r)}.
270
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Definition 1.5 ([13]). A sequence {xn}n∈N in an L-fuzzy metric space (X, M, τ)
is called a right(left) Cauchy sequence if, for each ε ∈ L {0L}ad, t > 0, there exists
n0 ∈ N such that M(xm, xn, t) >L N(ε), for all m ≥ N ≥ n0 (n ≥ m ≥ n0).

The sequence {xn}n∈N is called convergent to x ∈ X in an L-fuzzy metric space
(X, M, τ) (denoted by xn

M−→ X) if M(xn, x, t) = M(x, xn, t) = 1L, whenever n →
+∞ for every t > 0. An L-fuzzy metric space is said to be right (left) complete if
and only if every right (left) Cauchy sequence is convergent.

Definition 1.6 ([13]). Let (X, M, τ) be an L-fuzzy metric space and let N , be a
negator on L. Let A be a subset of X, then the LF-diameter f the set A is the
function defined as:

δA(s) = sup
t<s

inf
x,y∈A

M(x, y, t).

A sequence {An}n∈N of subsets of an L-fuzzy metric space is called decreasing
sequence if A1 ⊇ A2 ⊇ A3 ⊇ . . ..

The following lemma gives conditions under which the intersection of such se-
quences is nonempty.

Lemma 1.7 ([13]). Let (X,M, τ) be a left complete L-fuzzy metric space and
let {An}n∈N be a decreasing sequence of nonempty closed subsets of X such that

δAn(t) → 1L as n →∞. Then A =
∞⋂

n=1
An contains exactly one point.

Corollary 1.8 ([13]). Let (X,M, τ) be a left complete L-fuzzy metric space and let
{Ai}i∈I be a family of closed subsets of X, which has the finite intersection property
and for each ε > 0, contains a set of LF-diameter less than ε, then

⋂
i∈I

Ai 6= φ.

Definition 1.9. Let (X, M, τ) be a left complete L-fuzzy metric space. A mapping
∆ : X → X is said to be contractive if whenever x and y are distinct point in X, we
have

M(∧x,∧y, t) >L M(x, y, t).

2. Main Results

In this section, we prove some results of [3, 4, 8, 10, 11, 12] in non-Archimedean
L-fuzzy metric space.

Theorem 2.1. Let (X,M, τ) be complete non-Archimedean L-fuzzy metric space
and f, g, S and T be self maps on X satisfying

(I) M(Sx, Ty, t) ≥L min{M(fx, gy, t),M(fx, Sx, t),M(gy, Ty, t)}
for all x, y ∈ X, with fx 6= gy,

(II) fS = Sf, fg = gf, fT = Tf, gS = Sg, gT = Tg, ST = TS,
(III) S(X) ⊆ f(X), T (X) ⊆ g(X)
(IV) fg(X) is complete and fg is one-one mapping.

Then f and S have a coincident point or g and T have a coincident point in X.
271
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Proof. For a ∈ X, let Ba = [fga, η, t)] where

η(a, t)] = N{min{M(fga, Sga, t),M(fga, Tfa, t)}}
denote the closed sphere centered at fga with the radius

min{M(fga, Sga, t),M(fga, Tfa, t)}}. ¤

Let A be the collection of all the spheres for all a ∈ fg(X). Then the relation
Ba ≤ Bb iff Bb ⊆ Ba is a partial order on A.

Consider a totally ordered sub family A1 of A. Since fg(X) is complete and by
above corollary 1.8, we have

⋂
Ba∈A1

Ba = B 6= φ. Let fgb ∈ B where b ∈ fg(X) and

Ba ∈ A1. Then fgb ∈ Ba. Hence

M(fgb, fga, t) ≥L N{N{min{M(fga, Sga, t),M(fga, Tfa, t)}}}
≥L min{M(fga, Sga, t),M(fga, Tfa, t)}.(2.1)

If a = b then Ba = Bb. Assume that a 6= b. Since fg is one-one, we have fga 6= fgb.
Let x ∈ Bb. Then

M(x, fgb, t) ≥L N{N{min{M(fgb, Sgb, t),M(fgb, Tfb, t)}}}
≥L min{M(fgb, Sgb, t),M(fgb, Tfb, t)}
≥L min{M(fgb, fga, t),M(fga, Tfa, t),M(Tfa, Sgb, t),

M(fgb, fga, t),M(fga, Sga, t),M(Sga, Tfb, t)}
≥L min{M(fgb, Sga, t),M(fga, Tfa, t),

min{M(fgb, gfa, t),M(fgb, Sgb, t),M(gfa, Tfa, t)},
min{M(fga, gfb, t),M(fga, Sga, t),M(gfb, Tfb, t)}}

= min{M(fga, Sga, t),M(fga, Tfa, t)} from (2.1), (I) (II).

Now

M(x, fga, t) ≥t N{N{min{M(x, fgb, t),M(fgb, fga, t)}}}
≥L min{M(x, fgb, t),M(fgb, fga, t)}
≥L min{M(fga, Sga, t),M(fga, Tfa, t)}.

Thus x ∈ Bb. Hence Bb ⊆ Ba for every Bb ∈ A1. Thus Bb is an upper bound
in A for the family A1 and hence by Zorn’s lemma, there is a maximal element
in A, say Bz, z ∈ fg(X). There exists w ∈ X such that z = fgw. Suppose
S(gfgw) 6= f(gfgw) and T (ffgw) 6= g(ffgw). From (I) we have

M(Sgfgw, TSfgw, t) ≥L N{N{min{M(fgfgw, gSfgw, t),M(fgfgw, Sgfgw, t),

M(gSfgw, TSfgw, t)}}}
≥L min{M(fgfgw, gSfgw, t),M(fgfgw, Sgfgw, t),

M(gSfgw, TSfgw, t)}
= M(fgfgw, gSfgw, t)(2.2)

M(STfgw, Tffgw, t) ≥L N{N{min{M(fTfgw, gffgw, t),M(fTfgw, STfgw, t),

M(gffgw, Tffgw, t)}}}
272
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≥L min{M(fTfgw, gffgw, t),M(fTfgw, STfgw, t),

M(gffgw, Tffgw, t)

= M(fTfgw, gffgw, t)(2.3)

M(fggSw, SggSw, t) ≥L N{N{min{M(fggSw, TSfgw, t),M(TSfgw, Tffgw, t),

M(Tffgw, SggSw, t)}}}
≥L min{M(fggSw, TSfgw, t),M(TSfgw, Tffgw, t),

M(Tffgw, SggSw, t)}
≥L min{M(fgfgw, gSfgw, t),M(fTfgw, gffgw, t),

min{M(fggSw, gffgw, t), M(fggSw, SggSw, t),

M(gffgw, Tffgw, t)}} from (2.2), (2.3), (I), (II)

= min{M(fgfgw, gSfgw, t), M(fTfgw, gffgw, t)}(2.4)

M(Tffgw, TffTw, t)N{N{min{M(Tffgw, STfgw, t),

M(STfgw, Sgfgw, t), M(Sgfgw, TffTw, t)}}}
min{M(Tffgw, STfgw, t),M(STfgw, Sgfgw, t),

M(Sgfgw, TffTw, t)}
min{M(fTfgw, gffgw, t),M(fgfgw, gSfgw, t),

min{M(fgfgw, gffTw, t),M(fgfgw, Sgfgw, t),

M(gffTw, TffTw, t)}} from (2.2), (2.3), (I), (II)

= min{M(fTfgw, gffgw, t),M(fgfgw, gSfgw, t)}(2.5)

From (2.2), (2.4) we have

min{M(Sgfgw, TSfgw, t),M(fggSw, SggSw, t)}
≥L min{M(fgfgw, gSfgw, t),M(fTfgw, gffgw, t)}(2.6)

From (2.3), (2.5) we have

min{M(STfgw, Tffgw, t),M(Tffgw, TffTw, t)}
≥L min{M(fgfgw, gSfgw, t),M(fTfgw, gffgw, t)}(2.7)

If min{M(fgfgw, gSfgw, t), M(fTfgw, gffgw, t)} = M(fgfgw, gSfgw, t), then
from (2.6), fgfgw 6∈ BgSw ⇒ fgz 6∈ BgSw. Hence Bz 6⊂ BgSw. It is a con-
tradiction to the maximality of Bz in A, since gSw ⊆ gf(X) = fg(X). If min
{M(fgfgw, gSfgw, t),M(fTfgw, gffgw, t)} = M(fTfgw, gffgw, t), then from
(2.7), fgfgw 6∈ BfTw ⇒ fgz 6∈ BfTw. Hence Bz 6⊂ BfTw. It is a contradiction to
the maximality of Bz in A, since fTw ⊆ fg(X). Hence either S(gfgw) = f(gfgw)
or T (ffgw) = g(ffgw). Thus either f and S or g and T have a coincident point in
X. Taking f = g we get the following result:

Corollary 2.2. Let (X, M, τ) be complete non-Archimedean L-fuzzy metric space,
f, S, T : X → X satisfying

(a) f(X) is complete,
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(b) M(Sx, Ty, t) ≥L min{M(fx, fy, t),M(fx, Sx, t),M(fy, Ty, t)} for x, y ∈ X,
x 6= y;

(c) fS = Sf , fT = Tf , ST = TS,
(d) S(X) ⊆ f(X), T (X) ⊆ f(X).
Then either fw = Sw or fw = Tw for some w ∈ Xs.

Taking S = T , we get the following corollary:

Corollary 2.3. Let (X, M, τ) be complete non-Archimedean L-fuzzy metric space.
If f and T are two self maps satisfying

T (X) ⊆ f(X),(2.8)

and

M(Tx, Ty, t) ≥L min{M(fx, fy, t),M(fx, Tx, t),M(fy, Ty, t)} ∀ x, y ∈ X, x 6= y

(2.9)

then there exists z ∈ X such that fz = Tz.
Further if f and T are coincidentally commuting at z then z is the unique common

fixed point of f and T .

If we take f = I (identity map) in above theorem, it becomes the following result:

Corollary 2.4. Let (X, M, τ) be complete non-Archimedean L-fuzzy metric space.
If T : X → X is a mapping such that for every x, y ∈ X, x 6= y,

M(Tx, Ty, t) ≥L min{M(x, Tx, t), M(x, y, t),M(y, Ty, t)}(2.10)

Then T has a unique fixed point.

Now we extend Corollary 2.3 when T is a multivalued map. Let C(X) denote the
class of all non empty compact subsets of X. For A,B ∈ C(X), the Hausdorff metric
is defined by

H(A,B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

(2.11)

where d(x,A) = inf{d(x, a) : a ∈ A}.
Theorem 2.5. Let (X, M, τ) be complete non-Archimedean L-fuzzy metric space.
Let f : X → X and T : X → C(X) be satisfying

T (X) ⊆ f(X) ∀ x ∈ X,

(2.12)

H(Tx, Ty, t) ≥L min{M(fx, fy, t),M(fx, Tx, t),M(fy, Ty, t)} ∀ x, y ∈ X, x 6= y

(2.13)

then there exists z ∈ X such that fz ∈ Tz.
Further assume that

M(fx, fu, t) ≥L H(Tfy, Tu, t) ∀ x, y, u ∈ X, fx ∈ Ty(2.14)

and

f and T are coincidentally commuting at z.(2.15)

Then fz is the unique common fixed point of f and T .
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Proof. Let Ba = [fa, η, t] where η(a, t) = N{N{1−M(fa, Ta, t)}} denote the closed
sphere centered at fa with the radius 1-M(fa, Ta, t) and let A be the collection of
these spheres for all a ∈ X. Then the relation Ba ≤ Bb iff Bb ⊆ Ba is a partial order
on A. Let A1 be a totally ordered sub family of A. Since (X,M, τ) is complete and
by above corollary 1.8, we have

⋂

Ba∈A1

Ba = B 6= φ.

Let fb ∈ B and Ba ∈ A1. Then fb ∈ Ba. Hence

M(fb, fa, t) ≥L M(fa, Ta, t)(2.16)

If a = b then Ba = Bb. Assume that a 6= b. Let x ∈ Bb. Then

M(x, fb, t) ≥L N{N{M(fb, T b, t)}}. ≥L M(fb, T b, t).

Since Ta is compact, there exists u ∈ Ta such that

M(fa, u, t) = M(fa, Ta, t).(2.17)

Consider

M(fb, T b, t) = inf
c∈Tb

M(fb, c, t)

≥L min{M(fb, fa, t),M(fa, u, t), inf
c∈Tb

M(u, c, t)}
≥L min{M(fb, Ta, t),M(Ta, Tb, t)} (from (2.16) and (2.17))

≥L min{M(fb, Ta, t),M(Ta, fb, t)} (from (2.16) and (2.13))

Thus

M(x, fa, t) ≥L M(fb, T b, t)M(fa, Ta, t)(2.18)

Now,

M(x, fa, t) ≥L min{M(x, fa, t),M(fb, fa, t)}
≥L M(fa, Ta, t) (from (2.16) and (2.18)).

Thus x ∈ Ba. Hence Bb ⊆ Ba for any Ba ∈ A1. Thus Bb is an upper bound in A
for the family A1 and hence by Zorn’s Lemma, A has a maximal element, say Bz,
z ∈ X.

Suppose fz 6∈ Tz. Since Tz is compact, there exists k ∈ Tz such that M(fz, Tz, t) =
M(fz, k, t). From (2.12), there exists w ∈ X such that k = fw. Thus

M(fz, Tz, t) = M(fz, fw, t).(2.19)

Clearly z 6= w. Now,

M(fw, Tw, t) ≥L H(Tz, Tw, t)

≥L min{M(fz, fw, t),M(fz, Tz, t),M(fw, Tw, t)}
= M(fz, fw, t) (from (2.19))

Hence, fz 6∈ Bw. Thus Bz 6⊂ Bw. It is a contradiction to the maximality of Bz.
Hence fz ∈ Tz.

Further assume (2.14) and (2.15). Write fz = p. Then p ∈ Tz. From (2.14),
275
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M(p, fp, t) = M(fz, fp, t) ≥L H(Tfz, Tp, t) = H(Tp, Tp, t) = 0. This implies
that fp = p. From (2.15), p = fp ∈ fTz ⊆ Tfz = Tp. Thus fz = p is a common
fixed point of f and T .

Suppose q ∈ X, q 6= p is such that q = fq ∈ Tq. From (2.13) and (2.14) we have

M(p, q, t) = M(fp, fq, t) ≥L H(Tfp, Tq, t)

= H(Tp, Tq, t)

≥L min{M(fp, fq, t),M(fp, Tp, t),M(fq, T q, t)}
= M(p, q, t).

This implies that p = q. Thus p = fz is the unique common fixed point of f and T .
We denote by FX the set of maps f : X → [0, +∞). ¤

Definition 2.6. A function f ∈ FX is said to be metric locally constant (shortly,
m.l.c.) provided that for any x ∈ X and any y in the open B(x, f(x)) one has
f(x) = f(y.)

Remark 2.7. Let (X,M, τ) be non-Archimedean L-fuzzy metric space. If a, b ∈
X, λ > 0, and b ∈ B(a, λ, t) then B(a, λ, t) = B(b, λ, t).

(a) If a, b ∈ X, 0 < δ ≤ λ, then either B(a, λ, t) ∩ B(b, λ, t) = φ or B(b, λ, t) ⊆
B(a, λ, t). Hence, if a ball B(a, λ, t) contains a ball B(b, λ, t), then either the
balls are the same or δ < λ.

(b) Every ball is clopen (closed and open) in the topology defined by M .

Theorem 2.8. Let (X,M, τ) be complete non-Archimedean L-fuzzy metric space
and T : X → X contractive mapping. Then there exist subset B ⊆ X such that
T : B → B and that the function f(x) = M(x, Tx, t), x ∈ B, is m.l.c.

Proof. Let Ba = B(a, 1−M(a, Ta, t), t) denote the closed spheres centered at a with
the radii 1-M(a, Ta, t) and let A be the collection of these spheres for all a ∈ X.
The relation

Ba ≤ Bb iff Bb ⊆ Ba is a partial order on A.

Let A1 be a totally ordered subfamily of A. Since (X, M, τ) is complete and from
above Corollary 1.8, we have

⋂

Ba∈A1

= Ba = B 6= φ.

Let b ∈ B and Ba ∈ A1 then b ∈ Ba so

M(b, a, t) ≥L 1− (1−M(a, Ta, t)) = M(a, Ta, t).

If a = b then Ba = Bb. Assume that a 6= b, for any x ∈ Bb

M(x, a, t) ≥L min{M(x, b, t),M(b, a, t)} ≥L M(a, Ta, t)
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and

M(x, b, t) ≥L 1− (1−M(b, T b, t)

= M(b, T b, t)

≥L min{M(b, a, t),M(a, Ta, t),M(Ta, Tb, t)}
= min{M(a, Ta, t),M(Ta, Tb, t)} = M(a, Ta, t).

So Bb ⊆ Ba for any Ba ∈ A1. Thus Bb is the upper bound for the family A1. By
Zorn’s lemma there is a maximal element in A1, say Bz. For any b ∈ Bz

M(b, T b, t) ≥L min{M(b, z, t),M(z, Tz, t),M(Tz, T b, t)}
≥L min{M(b, z, t),M(z, Tz, t),M(z, b, t)} = M(z, Tz, t)

Bb ∩Bz is nonempty (contains b) so by above Remark 2.7,

Bb ⊆ Bz.

Since Tb ∈ Bb we just prove that T : Bz → Bz.
For z = Tzf(x) = 0 so theorem is proved.
For z = Tz we are going to prove that f(b) = f(z) for every b ∈ Bz.
We know that M(b, T b, t) ≥L M(z, Tz, t) for any b ∈ Bz. Let us suppose that for

some b ∈ Bz

M(b, T b, t) ≥L M(z, Tz, t).

As

M(b, z, t) ≥L M(z, Tz, t)

then

M(z, Tz, t) ≥L min{M(z, b, t),M(b, Tz, t)}
≥L min{M(z, b, t),M(b, T b, t), M(Tb, Tz, t)}
≥L min{M(z, b, t),M(b, T b, t), M(b, z, t)}
= min{M(z, b, t),M(b, T b, t)}
= M(z, b, t).

We obtain that M(z, Tz, t) = M(b, z, t).
But

M(b, z, t) = M(z, Tz, t) ≤L M(b, T b, t)

implies that z ∈ Bz but z 6∈ Bb and hence

Bb $ Bz

which contradicts the maximality of Bz Thus we proved that f is m.l.c. on B =
Bz. ¤
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3. Implicit relations

Let φ be the sets of all real continuous functions φ : (R+)4 → R, non decreasing
in first argument and satisfying the following conditions:

(i) For u, v ≥ 0, φ(u, v, v, u) ≥ 0 or φ(u, v, u, v) ≥ 0 imply u ≥ v
(ii) The functions φ satisfies condition (φU ) if

φ(u, u, 1, 1) ≥ 0 implies u ≥ 1.(3.1)

Theorem 3.1. Let (X, M, τ) be complete non-Archimedean L-fuzzy metric space.
If

F (M(Tx, Ty, t),M(x, y, t), M(x, Tx, t), M(y, Ty, t)) ≥L 0

for every x 6= y in X, where F satisfies conditions (φU ), then T has at most one
fixed point.

Proof. Suppose that T has two fixed points z and z′ with z 6= z′. Then by (3.1) we
have successively

F (M(Tz, Tz′, t),M(z, z′, t), M(z, Tz, t),M(z′, T z′, t)) ≥L 0

i.e.,

F (M(z, z′, t),M(z, z′, t), M(z, z, t),M(z′, z′, t)) ≥L 0

i.e.,

F (M(z, z′, t),M(z, z′, t), 1, 1) ≥L 0

which contradicts (φU ). ¤

Theorem 3.2. Let (X, M, τ) be complete non-Archimedean L-fuzzy metric space.
If T : X → X satisfies the inequality (3.1) for every distinct points x, y in X, where
F ∈ F4, then T has a fixed point. Further, if F satisfies in addition condition (φU ),
then the fixed point is unique.

Proof. Let Ba = B[a, η, t] where η(a, t) = N{N{1−M(a, Ta, t)}} denote the closed
sphere centered at “a” with radius 1 − M(a, Ta, t) and let A be the collection of
these spheres for all ∈ X. The relation Ba ≤ Bb iff Bb ⊆ Ba is a partial order on A.

Now consider a totally ordered subfamily A1 of A. Since (X, M, τ) be complete
and from above Corollary 1.8, we have

⋂

Ba∈A1

Ba = B 6= 0.

Let b ∈ B, b 6= a, Ba ∈ A1 and x ∈ Bb. Then

M(x, b, t) ≥L N{N{M(b, T b, t)}}
≥L M(b, T b, t)

≥L min{M(b, a, t),M(a, Ta, t),M(Ta, Tb, t)}
= min{M(a, Ta, t), M(Ta, Tb, t)}(3.2)
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On the other hand, by (3.1) we have successively

F (M(Ta, Tb, t),M(a, b, t),M(a, Ta, t), M(b, T b, t)) ≥L 0

F (M(Ta, Tb, t),M(a, Ta, t), M(a, Ta, t),M(Ta, Tb, t)) ≥L 0

which implies

M(Ta, Tb, t) ≥L M(a, Ta, t)

By (3.2) we have

M(x, b, t) ≥L M(a, Ta, t).

Now, we have

M(x, a, t) ≥L min{M(x, b, t),M(b, a, t),M(a, Ta, t)}.
So x ∈ Ba and Bb ⊆ Ba for any Ba ∈ A1. Thus Bb is the upper bound for the
family A. By Zorn’s lemma A has a maximal element, say Bz, for some z ∈ X. We
are going to prove that z = Tz.

Let us suppose the contrary, i.e. that z 6= Tz. Inequality (3.1) we have that

F (M(Tz, T (Tz), t),M(z, Tz, t),M(z, Tz, t),M(Tz, T (T (z)), t) ≥L 0

which implies

M(Tz, T (Tz), t) ≥L M(z, Tz, t).

Now, if y ∈ BTz then

M(y, Tz, t) ≥L M(Tz, T (T (z), t) ≥L M(z, Tz, t).

Therefore,

M(y, z, t) ≥L min{M(y, Tz, t),M(T (z), TT (z), t)} = M(z, Tz, t).

This mean that y ∈ Bz and that BTz ⊆ Bz. On the other hand, z 6∈ Bz since
M(z, Tz, t) > M(z, T (Tz), t). so BTz 6⊂ Bz. This is a contradiction with the
maximality of Bz. Hence, we have that z = Tz. If F satisfies property (φU ). By
Theorem 3.1 it follows that z is the unique fixed point of T . ¤

Theorem 3.3. Let (X,M, τ) be non-Archimedean L-fuzzy metric space in which τ
is Hadzic type and ∆ : X → X be a fuzzy ψ-contractive mapping. If there exists
x ∈ X such that M(x, ∆x, t) > 0 ∀ t > 0, then ∆ has a unique fixed point.

Proof. Let Bx = B[x, η, t] with η(x, t) = N(M(x, ∆x, t)) and t > 0. Let A be the
collection of these balls for all ∈ X. The relation Bx ≤ By iff By ⊆ Bx is a partial
order in A. Consider a totally ordered subfamily Ai of A. From Corollary 1.8, we
have

⋂

Bx∈A1

Bx = B 6= φ.

Let y ∈ B and Bx ∈ A1, then

M(x, y, t) ≥L N(N(M(x,∧x, t))) = M(x,∧x, t)(3.3)
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Now, if x0 ∈ By, then by using ψ-contractive mapping, we have

M(x0, y, t) ≥L N(N(M(y,∧y, t)))

≥L τ2(M(y, x, t),M(x,∧x, t),M(∧x,∧y, t))

≥L τ2(M(y, x, t),M(x,∧x, t),M(x, y, t))

≥L M(x,∧x, t).

Thus

M(xn, y, t) ≥L M(x,∧x, t)(3.4)

Now by using (3.3) and (3.4), we obtain

M(x0, x, t) ≥L τ(M(x0, y, t),M(x, y, t))

≥L τ(M(x,∧x, t),M(∧x, x, t))

≥L M(x,∧x, t).

Therefore x0 ∈ Bx and By ⊆ Bx implies that Bx ≤ By for all Bx ∈ A1. Thus By is
an upper bound in A for family A1 and hence by Zorn’s Lemma, A has a maximal
element, say Bz, z ∈ X. We claim that z = ∆z.

Suppose that z 6= ∆z. Since ∆ is ψ-contractive and ψ(t) > t, therefore

M(∧z,∧2z, t) ≥L ψM(z,∧z, t),

≥L M(z,∧z, t),

where ∆2 = ∆0∆ and

∧z ∈ B[∧z, η(∧z, t), t] ∩B[z, η(z, t), t]

Therefore B∆z ⊆ Bz and z is not in B∆z. Thus B∆z ⊂ Bz, which contradicts the
maximality of Bz. Hence ∆ has a fixed point.

Uniqueness easily follows from ψ-contractive condition. ¤
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