
Annals of Fuzzy Mathematics and Informatics

Volume 5, No. 1, (January 2013), pp. 213–228

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Non-probabilistic sensitivity and uncertainty
analysis of atmospheric dispersion

Rituparna Chutia, Supahi Mahanta, D. Datta

Received 4 June 2012; Accepted 19 July 2012

Abstract. Sensitivity and uncertainty analysis have been carried
out on Gaussian atmospheric dispersion model. Here sensitivity and un-
certainty refers to non-probabilistic analysis. Fuzzy set theory is vastly
applied to quantify non-probabilistic sensitivity and uncertainty analysis.
Transformation method for optimization of interval at α-cut level in fuzzy
arithmetic has been applied for entire process of calculation. Wind speed,
discharge velocity, ambient temperature and gas exit temperature are con-
sidered as uncertain parameters, due to their imprecise measured value,
here uncertain reflex fuzzy number. The model is run for the stability
categories unstable, neutral and stable. Hartley-like measure to estimate
the most sensitive parameter among the uncertain parameters has been
considered. Fuzziness measure for the estimate of uncertainty in ground
level concentration due to the sensitive parameters is used. Finally, uncer-
tainty due to most sensitive parameters wind speed and discharge velocity
on the pollutant concentration is compared for the stability categories un-
stable, neutral and stable. Computer codes are generated, for the model,
in Matlab.
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1. Introduction

Atmospheric diffusion model is a mathematical expression relating emission of
material into atmosphere to downwind ambient concentration of the material. The
main aim of the modelling process is to estimate the concentration of a pollutant at a
particular receptor point by calculation from the basic information about the source
of pollutant and meteorological conditions. Concentration of air pollutant at a given
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place is a function of a number of variables, such as rate of emission, distance of the
receptor from the source and atmospheric conditions. The most important atmo-
spheric conditions are wind speed, wind direction and vertical temperature structure
of local atmosphere. Air pollution dispersion models are subject to scientific uncer-
tainty, but the way this is handled for air quality management policy is different
depending on the of modelling and impact under consideration [30].

Information about dispersion model parameters can be gained through measure-
ment, calibration, expert judgement etc. However, value of these parameters may
be subject to uncertainty due to lack of measurement point and over-calibration
or inaccurate expert judgement. Inherent uncertainty of the input parameter is
one of the main causes of uncertainty in model output. Parameter uncertainty is
present because not always a single value of a parameter can completely character-
ize a modelling domain [7]. Traditionally, the available information is interpreted
in a probabilistic sense and probability theory has been used to describe this in-
formation. Probability theory has certain input requirements and whenever these
requirements are met, probability theory will provide powerful results. However, it
is clear that not all uncertainties in data or model parameters are random; other
source of imprecision that may lead to uncertainty are scare or imprecise data, mea-
surement error or data obtained from expert judgement or subjective interpretation
of available information. These kinds of uncertainties cannot be treated solely by
probability theory. Thus, usefulness and applicability of other mathematical tools,
such as fuzzy set theory or possibility theory should be explored. In the cases when
not much data are available, or design values can be only estimated by an expert, the
fuzzy set theory is useful as it assigns each value a degree of credibility [29]. The use
of fuzzy numbers are proposed as a suitable tools for handling atmospheric disper-
sion criteria and tackling decisions made under uncertainty. Fuzzy analysis based
on fuzzy set introduced by Zadeh [29] is widely used to represent such uncertain
knowledge.

Sensitivity analysis aims to quantify relative importance of input variables in de-
termining value of an assigned output variable. Several sensitivity analysis methods
exist, including one-at-a-time (OAT) method, fractional experiments, differential
analysis, Fourier Amplitude Sensitivity Test (FAST), Sobol’s, Monte Carlo Analysis
and Response Surface Method etc. [26]. Several sensitivity analysis of various dis-
persion software tools have been carried out using OAT method ([6], [19], [21]). It
can be used as an aid to identifying the important uncertainties for the purpose of
prioritizing additional data collection or research [12]. A Sensitivity study examines
the way a particular model responds to variations in values of input variables or
internal parameters [10]. Parameter sensitivity refers to the case where the out-
put function values are largely effected by variations in the values of one or more
parameters. Traditional and most used method of sensitivity analysis is the deriv-
ative method which provides local sensitivity analysis. Local sensitivity analysis is
based on derivatives of evaluated at particular point and indicates how output will
change if the base-line input values are perturbed slightly. But due to the implicit
correlation of the parameters under investigation, we need a global sensitivity anal-
ysis. Global sensitivity analysis method is based on stepwise regression and this
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rigorous computational procedure is shortened by carrying out the correlation ma-
trix method. Many global sensitivity analysis techniques are now available, such
as Fourier Amplitude Sensitivity Test (FAST) [11], regression-based methods [14]
and Sobol’s method [9]. A survey of sampling-based methods has been presented
in [20]. However, all these require specific probability distribution of all the pa-
rameters of interest. In practice, probability distributions of the parameters are
not always possible due to their lack of measurement and spare behaviour in their
prediction. Accordingly, imprecise method of sensitivity analysis is searched. The
Hartley-like measure is the method of sensitivity analysis with imprecise parame-
ter, because non-specificity is quantified using the Hartley-like measure. Parameter
sensitivity analysis by Hartley-like measure is a method from imprecise probability
theory. When the information about the parameters consists of a central value and a
coefficient or range of variation then the Hartley-like measure method of sensitivity
analysis is employed [23]. The basic strategy for arriving at a sensitivity analysis or
assessment is by successively fixing the input parameters and drawing the effect on
the variability of the output. Minimum value to Hartley-like measure of the output
with respect to fixing a particular parameter to the most likely value, for a particular
point of observation, is considered to be the most sensitive parameter.

A large number of mathematical methods have been developed for handling un-
certainties. Probabilistic and statistical methods available are usually preferred for
analysis of aleatory uncertainty. Some of the existing methods of aleatory uncer-
tainty analysis are Monte Carlo Simulation [28], First-order second-moment analysis
[18], stochastic response surface methods [15], Polynomial Chaos expansion Method
[8] and Reliability analysis based approaches [5]. On the other hand, several compet-
ing approaches have been suggested when both aleatory and epistemic uncertainties
are present. The most important methods of handling epistemic uncertainties consist
of interval analysis [1], possibility theory [2] and fuzzy set theory [29]. Uncertainty
analysis aims at quantifying amount of fuzziness exits in fuzzy output of a system
due to fuzzy inputs. Fuzziness measure in the fuzzy theory is a measure of uncer-
tainty analysis. This measure gives us the amount of fuzziness associated in the
output model due to the fuzziness in the input parameters.

In this article, an attempt has been made for sensitivity and uncertainty analy-
sis of atmospheric dispersion under a fuzzy environment. Literature review admits
that there exist lots of method for sensitivity and uncertainty analysis under proba-
bilistic environment. However, under fuzzy environment few literature are available.
Here, an attempt has been made to fill that gap in atmospheric dispersion. Sensi-
tivity analysis is being carried out using the Hartley-like measure and the sensitive
parameters are drawn out. Uncertainty of the final response due to the sensitive
parameters are expressed in terms of the Fuzziness measure.

2. Non-probabilistic sensitivity and uncertainty analysis

2.1. Fuzzy set theory. The notion of fuzzy set was introduced by Zadeh [29], since
then its application has been evident in different field of study. The notion of fuzzy
number arises from experiences of everyday life when any phenomena which can
be quantified are not characterised in terms of absolutely precise numbers. Fuzzy
numbers are convex and normalised fuzzy sets which are defined on the set of real

215



Rituparna Chutia et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 213–228

numbers. Membership function of fuzzy number assigns degree of 1 to the most
probable value, also called the mean value and lower degrees to other numbers which
reflect their proximity to the most probable value according to the used membership
function. Thus, the membership function decreases from 1 to 0 on both sides of the
most probable value. α-level set or the α-cut of a fuzzy number is an interval defined
for a specific value of the membership function.

2.2. Transformation method. The Transformation method introduced by Hanss
[13] uses a fuzzy α-cut technique, which is based on interval arithmetic. Given a
problem with n independent parameters. These parameters are uncertain in the
sense that they are fuzzy numbers. Let these fuzzy numbers be represented as
x̃1, x̃n, · · · , x̃n , and the function output q = f(x̃1, x̃n, · · · , x̃n) is also a fuzzy number.
Using the α-cuts technique, each input parameters is decomposed into a set Pi, i =
1, 2, · · · , n of m + 1 intervals X

(j)
i , j = 1, 2, · · · , m where

Pi = {X(0)
I , X

(1)
I , · · · , X

(m)
I }

with
X

(j)
i = [a(j)

i , b
(j)
i ], a(j)

i < b
(j)
i , i = 1, 2, · · · , n, j = 1, 2, · · ·m

where, a
(j)
i , b

(j)
i denote the lower and upper bound of the interval at the member-

ship level µj . Instead of applying standard interval arithmetic, intervals are now
transformed into arrays X̂

(j)
i of the following form:

X̂
(j)
i =




2i−1pairs︷ ︸︸ ︷
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i , · · · , b
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The evaluation of function f is now carried out by evaluating the expression sep-
arately at each of the positions of the arrays using the conventional arithmetic.
Results obtained is deterministic in decomposed and transformed form which can
be re-transformed to get fuzzy valued result using a correction procedure known
as recursive approximation. The fuzzy valued result q(j) of the function f can be
achieved in its decomposed form

Z(j) = [a(j), b(j)], j = 1, 2, · · · ,m

By re-transforming the arrays Ẑj by a correction procedure using the recursive
formulae

a(j) = min
k

(a(j+1),k ẑ(j)), b(j) = max
k

(b(j+1),k ẑ(j)), j = 1, 2, · · · ,m

and
a(m) = min

k
(kẑ(j)) = max

k
(kẑ(j)) = b(m)
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where, kẑ(j) is the kth element of the array Ẑ(j) given by

kẑ(j) = f(kx̂
(j)
1 ,k x̂

(j)
2 , · · · ,k x̂(j)

n )

and kx̂
(j)
i is denotes the kth elements of the array X̂

(j)
i

2.3. The Hartley-like measure. Hartley measure is well established measure of
uncertainty in the classical set theory ([3], [22]). This type of measure quantifies
the most fundamental type of uncertainty, one expressed in terms of a finite set of
possible alternatives. The type of uncertainty quantified by the Hartley measure is
well captured by the term non-specificity. This theory was generalised to fuzzy set
by Higashi and Klir ([16],[24]). The generalised measure H for any non-empty fuzzy
set A defined on a finite universal set X has the form

H(A) =
1

h(A)

h(a)∫

0

log2|Aα|dα

where Aα denotes the cardinality of the α-cuts of the fuzzy set A and h(A) height
of A. For fuzzy intervals or numbers on the real line, the Hartley-like measure is
defined as

HL(A) =

1∫

0

log2(1 + λ(Aα))dα

where λ(Aα) is the Lebesgue measure of Aα [16]. Mathematically, for a fuzzy number
A = [aL, am, aR] given by the membership function

(2.1) µA(x) =





x−aL

am−aL
, if aL ≤ x ≤ am

x−aR

am−aR
, if am ≤ x ≤ aR

0, otherwise

the Hartley-like measure is given by the expression below, which is valid for any type
of triangular fuzzy number.

HL(A) =
1

(aR − aL)ln(2)
([1 + (aR − aL)]ln[1 + (aR − aL)]− (aR − aL))

2.4. Fuzziness measure. Probabilistic uncertainty is quantified in terms of coeffi-
cient of variation defined as the ratio of the standard deviation to the mean. However
we are dealing with non-probabilistic uncertainty quantification, hence we will mea-
sure the uncertainty in terms of fuzziness measure. Fuzziness of a fuzzy set [3] is
defined as the sum of the lack of distinction of the set and its complement. The lack
of distinction is measured by

1− |2A(x)− 1|
The measure of fuzziness f(A) is then obtained by adding all these measurements

f(A) =
∑

xεA

(1− |2A(x)− 1|)
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For a symmetric triangular fuzzy number, A = [aL, am, aR] given by the membership
function can be written as follows

f(A) =

am∫

aL

(
1− |2 x− aL

am − aL
− 1|

)
dx +

am∫

aR

(
1− |2 x− aR

am − aR
− 1|

)
dx

3. The Gaussian Model

Gaussian type models are widely used in atmospheric dispersion modelling, in
particular for regulatory purposes. The Gaussian plume function can be used to
predict the ground level pollutant concentration under different stability conditions
given a pollution source. The ground level concentration directly downwind is of
interest, since pollution concentration will be highest along that axis. Accordingly
the value of pollutant concentration is calculated as [17]

χ(x, 0, 0) =
Q

πuσyσz
exp(−H2

2σ2
z

)

where, Q is the emission rate (g/sec), σy, σz are the dispersion coefficients in cross-
wind and vertical direction (m), U is the wind speed (m/sec), H is the effective
stack height (m) and x is the downwind distance (m).

The dispersion coefficients σy and σz depend on the atmospheric stability class
and increases with the downwind distance from the pollution source. They are the
fundamental of all Gaussian based air pollution models. They can be determined
very roughly by reading off a graph, but they can more accurately be determined
by the mathematical expression by Eimutis and Konicek [4], which are as

σy = Ay(s)x0.9071 and σz = Az(s)xq(s) + R(s)

where Ay, Az, q and R are parameters which depend upon the stability s and
distance x.

The effective stack height is the sum of the physical stack height h(m) and the
plume rise 4h(m) , which is given by Moses and Carson equation [25] as follows:

4h = Ad
w0

u
+

B
√

QH

u

where, QH = rπw0Cp(Ts−Ta) heat release rate (Cal/sec) and d is the stack diameter
(m), r is the stack radius (m), w0 is the discharge velocity (m/sec), Cp is the specific
heat at constant pressure (Cal/kg−K), Ta is the ambient temperature (K) and Ts is
the gas exit temperature (K). The parameters A and B depends upon the stability
classes and are given by A = 3.47, B = 0.333 for unstable, A = 0.35, B = 0.17 for
neutral and A = −1.04, B = 0.17 for stable stability classes.

4. Analyzing technique

The basic strategy for arriving at a sensitivity analysis or assessment is by suc-
cessively fixing the input parameters and drawing the effect on the variability of
the output. The minimum value to Hartley-like measure of the output with respect
to fixing a particular parameter to the most likely value, for a particular point of
observation, leads to finding the most sensitive parameter.
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Evaluation of the output along the downwind distances is carried out by the
transformation method, and fuzziness measure for uncertainty analysis on the pol-
lutant concentration due to a parameter is evaluated. This is done by keeping one of
the parameters as fuzzy and the other parameters fixed at their most likely values.
The fuzzy bound of the output due to the concerned parameter and the respective
fuzziness measure are evaluated to analyse uncertainty. The wider the bounds of the
output, the more the fuzziness measure, and hence uncertainty would increase when
fuzziness increases. Finally the whole process is done for different stability classes
and the results thus found can be compared.

Tables 1 and 2 below depict uncertain and crisp inputs to the model. The con-
centration is evaluated for downwind distance starting from x = 1 to 3000 m away
along the horizontal direction. These crisp input data are taken from the analysis
of [27], also the uncertain parameters are modelled by taking the mean to be the
most likely value and considering some degree of variability to get triangular fuzzy
numbers. However, membership function of these parameters can be modelled from
the actual site data by some methods of construction of the membership function.

Table 1. Triangular fuzzy numbers representing uncertain parameters

Parameters Lower Bound Middle Value Upper Bound
Wind Speed u(m/sec) 2.27 3.57 4.6
Discharge Velocity w0(m/sec) 7.2 11.8 16.4
Ambient Temperature Ta(K) 273 276 279
Gas Exit Temperature Ts(K) 315 355 395

Table 2. Crisp Input Values

Parameters Values
Specific heat (Cp) 0.24(Cal/kg −K)
Physical stack height (h) 55(m)
Emission rate (Q) 1(g/sec)
Stack diameter (d) 4(m)

5. Results and discussions

The main aim of sensitivity analysis is to estimate the change of output of a model
with respect to the changes in the model inputs. Sensitivity analysis is the study of
how uncertainty in the output of a model can be appropriated to different sources
of uncertainty in the input. It will in turn instruct users as to the relative impor-
tance of the inputs in determining the output. Sensitivity analysis provides useful
risk insights, but alternative approaches are also needed to understand which of the
parameters show up as important and why they show up as important. Hartley-like
measure of the output concentration has been evaluated for various downwind dis-
tances starting from x = 1 to 3000 m. Hartley-like measure of the output pollution
concentration under different uncertain parameters were obtained for the stability

219



Rituparna Chutia et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 213–228

classes A (unstable), D (neutral) and F (stable) which are shown in figs. 1, 2 and
3, which are obtained by successively fixing the uncertain parameters to the most
likely values. It has been found that the Hartley-like measure under all stability
categories is the least for wind speed, followed by discharge velocity, and that the
other uncertain parameters - ambient temperature and gas exit temperature are
higher compared to them. Thus wind speed is the most sensitive parameter followed
by discharge velocity compared to other uncertain parameters. However under the
stability classes A and D in figs. 1 and 2, the Hartley-like measure is lower in case of
pollutant concentration, fixing the discharge velocity around 500 m and 900 m away
from the pollution source respectively. This is because around the stack, discharge
velocity has a significant role in pollution concentration under unstable and neutral
stability classes and as we move away from the stack, concentration is governed by
wind speed, which means that discharge velocity has no more roles to play in con-
centration away from the pollution source. Just around the pollution source, under
considered fuzzy variability, the uncertain parameters remain insensitive around 100
m, 400 m and 500 m away from the pollution source under the stability classes A,
D and F respectively. These analyses show that the fuzzy variability of the in-
put parameters is insensitive around the stack, but gradually their sensitivity starts
playing a role.
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Figure 1. Hartley-like measure of pollutant concentration along
the downwind distance under stability class A.

Fuzzy bounds of output pollution concentration due to the parameters wind speed
and discharge velocity have been depicted in figs. 4, 5, 6 and figs. 7, 8, 9 respectively
under stability classes A, D and F. The fuzziness measures due to wind speed and
discharge velocity are shown in figs. 10, 11 and 12. For the unstable stability class
A, fuzzy bounds of pollutant concentration due to discharge velocity at downwind
distance 320 m are [2.145E − 6, 4.138E − 6, 7.211E − 6](mg/m3) (fig. 7) and the
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Figure 2. Hartley-like measure of pollutant concentration along
the downwind distance under stability class D.
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Figure 3. Hartley-like measure of pollutant concentration along
the downwind distance under stability class F .

respective fuzziness measure is 2.511E − 6 (fig. 10) is the highest. The respective
fuzzy bounds due to wind speed are [2.461E − 6, 4.138E − 6, 4.689E − 6](mg/m3)
(fig. 4) and the fuzziness measure is 1.139E − 6 (fig. 10). Gradually the fuzzy
bounds as well as the fuzziness measure of pollutant concentration due to discharge
velocity decrease when distance increases. Thus the effect of fuzzy variability of
discharge velocity on concentration gets lowered as we move away from the source.
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Figure 4. Bounds of pollutant concentration taking only wind
speed as uncertain under stability class A.
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Figure 5. Bounds of pollutant concentration taking only wind
speed as uncertain under stability class D.

This is so because discharge velocity at a distance far from the pollution source
should be negligible. Fuzzy bound of concentration due to wind speed at 280 m
is [8.338E − 6, 2.346E − 6, 3.248E − 6](mg/m3) which is highest with the highest
fuzziness measure (= 1.197E − 6) with respect to this concerned bound. Gradually
bounds as well as the fuzziness measure decrease, which is evident from figs. 4
and 10. At this downwind distance, fuzzy bounds due to discharge velocity are
[8.584E−6, 2.346E−6, 5.485E−6](mg/m3) and the fuzziness measure is 2.322E−6.
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Figure 6. Bounds of pollutant concentration taking only wind
speed as uncertain under stability class F .
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Figure 7. Bounds of pollutant concentration taking only discharge
velocity as uncertain under stability class A.

This means, the measurement of wind speed at a distance far from the pollution
source is more accurate than that at the vicinity. Fig. 10 shows also that the
fuzziness measure of discharge velocity is more, compared to wind speed at distance
between 100 m to 500 m. Gradually the fuzziness measure for discharge velocity
decreases more rapidly as we cross downwind distance 500 m. This is because at
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Figure 8. Bounds of pollutant concentration taking only discharge
velocity as uncertain under stability class D.
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Figure 9. Bounds of pollutant concentration taking only discharge
velocity as uncertain under stability class F .

the vicinity of the stack, plume is dominated by discharge velocity and as we move
away from the source, plume is driven by wind speed.

Pollutant concentration calculations under the neutral stability class D were per-
formed for downwind distances, x = 1 to 3000 m. Minimum, most likely and max-
imum concentration due to the parameters wind speed and discharge velocity are
shown in figs. 5 and 8. Fuzzy bounds of concentration due to wind speed are very
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Figure 10. Fuzziness measure of pollutant concentration due to
wind speed and discharge velocity under stability class A.
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Figure 11. Fuzziness measure of pollutant concentration due to
wind speed and discharge velocity under stability class D.

narrow around the stack and widen up away from the source. Similar behaviour is
seen in the case of discharge velocity. However, bounds become narrow at a far end.
Thus the fuzziness measure with respect to wind speed increases along the down-
wind direction and it decreases with respect to discharge velocity. With reference to
wind speed as the fuzzy bounds become wider, uncertainty measured by fuzziness
measure increases. This can be seen from fig. 11.
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Figure 12. Fuzziness measure of pollutant concentration due to
wind speed and discharge velocity under stability class F .

Fuzzy bounds of concentration and fuzziness measure under the stability class F
were found out for the same downwind distances as that were done for the unstable
and the neutral stability classes. Concentration bounds, (figs. 6 and 9), due to wind
speed and discharge velocity are almost negligible around 600 m away from the
pollution source and so is the fuzziness measure shown in fig. 12. But as we move
away from the pollution source, bounds start increasing and so does the fuzziness
measure. However the fuzziness measure of concentration always remains higher in
the case of wind speed. This is because the most sensitive parameter in this case is
wind speed throughout the downwind distances.

We have thus seen that the uncertainty due to wind speed is the maximum. Some
uncertainty could be attributed to discharge velocity at the vicinity of the pollution
source. The plume is driven by the discharge velocity at the vicinity of the stack
but this effect is dissipated by wind speed as the plume move away from the source.

6. Conclusions

This paper demonstrates the applicability of the fuzzy set theory for account-
ing non-probabilistic uncertainty and sensitivity analysis of atmospheric dispersion.
Sensitivity and uncertainty analysis to different physical phenomenon are often done
probabilistically; here an attempt has been made to carry out the sensitivity and
uncertainty analysis non-probabilistically using the theory of fuzzy sets. The sen-
sitivity analysis by the Hartley-like measure yields that the parameter wind speed
is the most sensitive parameter concerning to the pollutant concentration followed
by the discharge velocity. And the uncertainty analysis by fuzziness measure to
the sensitive parameter revels that uncertainty due to the most sensitive parameter
wind speed is more as compared to the discharge velocity, however this uncertainty
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can be minimized by gaining more knowledge to the concerned parameter. Non-
probabilistic uncertainty and sensitivity analysis can be further carried out using
trapezoidal and Gaussian membership function. Since these type of numbers are
more informative and knowledge base future research in this line can be encouraged.
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