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ABSTRACT. The aim of this paper is to introduce the concepts of T-
locality groups, where T stands for any continuous triangular norm. Our
construct mainly will deal and relate with both fuzzy T-locality spaces and
fuzzy T L-uniform spaces. We establish some basic results and characteri-
zation theorems of T-locality groups. We give the necessary and sufficient
conditions for a group structure and a fuzzy T-locality system to be com-
patible. Moreover, we show that all initial and final lifts exist uniquely
in the concrete category of T-locality groups and hence all initial and fi-
nal T-locality groups exist and can be characterized. As consequences the
T-locality subgroups, T-locality product groups and T-locality quotient
groups are exist.
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1. INTRODUCTION

In 1995, N. N. Morsi introduced the fuzzy T-locality spaces, for each continu-
ous triangular norm 7. In 2006, we deduced the fuzzy T L-uniform spaces which
compatible with fuzzy T-locality spaces. In this manuscript, we introduce a new
structure of T-locality groups. We show that these structure is conforms well with
fuzzy T-locality spaces. We give some other important results of T-locality groups
and we give the notions of the left and right translations for a T-locality group. Also,
we show that every T-locality group is T L-uniformizable and we characterize the
uniformly continuous functions. Moreover, we study the initial and final T-locality
groups.

We proceed as follows : In Section 2, we present some basic definitions and ideas
on the classes of fuzzy sets, I-topological spaces, fuzzy T-locality spaces and fuzzy
T L-uniform spaces. In Section 3, we introduce our definition of T-locality groups
and we prove some of their properties, we show that for the T-locality group, the
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left and right translations are homeomorphisms. Some other results for these T-
locality groups are studied. We also generalize the two important characterization
theorems, which give necessary and sufficient conditions for a T-locality system and
a group structure to be compatible. Moreover, we study the relations between T-
locality groups and fuzzy T L-uniform spaces. Some examples of T-locality groups
are given. In Section 4, we show that all initial lifts exist uniquely in the concrete
category T-LocGrp of T-locality groups and hence all initial T-locality groups exist
and can be characterized, thus the category T-LocGrp is a topological category.
Therefore all final lifts and all final T-locality groups also exist. The subgroups and
the product groups of T-locality groups in the categorical sense are special initial
T-locality groups and hence exist and can be characterized. The quotient groups of
T-locality groups are characterized as special final T-locality groups.

2. PRELIMINARIES

A triangular norm T (cf. [18]) is a binary operation on the unit interval I = [0, 1]
that is associative, symmetric, isotone in each argument and has neutral element 1.
The basic three (continuous) triangular norms are their simplest, namely Min (also
denoted by A), [] (product) and T, (the Lukasiewicz conjunction), where for all
a,fel, a]]B =apf and oT,,08 = (o + B)AL. The binary operation A above is the
truncated subtraction, defined on non-negative real numbers by

rAs = max{r — s,0},r,s > 0.

A continuous triangular norm 7' is uniformly continuous, that is for all € > 0
there is § = 67 > 0 such that for every (a,3) € I x I, we have

(21)  (aTB) —e< (a—O)T(B—0) < aTB < (a+0)T(B+0) < (aTh) +e.

Obviously, for every real numbers r,s > 0,¢ > 0 and the above 8 = 07, > 0, we
have

(2.2) (rTs)Ae < (rA0)T(sNF).
For a continuous triangular norm T the following binary operation on I,
(2.3) Ha,v)=sup{f €1:aT0 <~},a,y€ 1,

is called the residual implication of T [15]. For this implication, we shall use the
following property [17], Vo, 8,60,y € I :

(2.4) o, ) = 1.

(2.5) )(aTB,0T) = j(e, 0)T5(B,7)-

A fuzzy set A in a universe set X, introduced by Zadeh in [19], is a function
A: X — I =10,1. The collection of all fuzzy sets of X is denoted by IX. The
height of a fuzzy set A is the following real number :

hgt\ = sup{A(z) : x € X}.

If H C X, then its characteristic function is denoted by 15 and the set of all (crisp)
subsets of X is denoted by 2X. We also denote the constant fuzzy set of X with
value a € I by a.
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Given two fuzzy sets u, A € IX, we denote by uT\ the following fuzzy set of X :
(uTA)(x) = p(x)TA(z),z € X. The degree of containment of y in A according to )
is the real number in I [7], defined by :

<A >= b j(u(z), Az))-

We follow Lowen’s definition of a fuzzy interior operator on a set X [12]. This is
an operator © : IX — IX that satisfies u® < p, (W A X)° = u® A X° for all pu, A € IX
and a° = « for all « € I. We may define an an I-topology in the usual way, namely
assuming a fuzzy set p to be open if and only if u® = p. We denote this I-topology
by 7. The pair (X,°) is called an I-topological space.

A function f : (X,°) = (X,7) — (Y,°\) = (Y,7\), between two I-topological
spaces, is said to be continuous [12] if £ (u) € 7 for all € 7\, where (f~(u))(x) =
p(f(z)),Vz € X. Tt is said to be open if f(\) € 7\ for all A € 7.

In [13], Lowen introduced the concepts of Initial and final I-topological spaces.
Consider a family of I-topological spaces (Y;., 7,.)rea and for each r € A, a mapping
fr + X — Y. The initial I-topology of (7,)rea with respect to (f,)rca is meant
the I-topology 7 on X for which the conditions of an initial lift in the category of
I-topological spaces are fulfilled, that is,

(i) All mappings f, : (X,7) — (Y, 7-) are continuous,

(ii) For any I-topological space (Z,0) and any mapping [ : (Z,0) — (X,7) is
continuous if and only if for all » € A the mappings f,. o f : (Z,0) — (Y,.,7,.) are
continuous. The union U £ () of the family (f7(7))rea where

reA

() ={f (W) pemnt,

is a subbase for an I-topology on X, for which the conditions (i) and (ii) of the initial
lift in the category of I-topological spaces are fulfilled [12] [13], called the initial I-
topology of (7:)rea with respect to (fi)rea, and f;(7,) is the initial I-topology of
7 with respect to f,.. Therefore, all initial lifts and all initial I-topological spaces
exist uniquely in the category of I-topological spaces and hence the category of
I-topological spaces is a topological category. Consequently, all final lifts also exist.

Assume that f. : X, — Y is a mapping of X, to Y. By the final I-topology of
(1+)rea with respect to (f)rca we mean the I-topology 7 on Y which fulfills the
conditions of a final lift in the category of I-topological spaces, that is,

(i) All mappings f, : (X, 7.) — (Y, 7) are continuous,

(ii) For any I-topological space (Z,0) and any mapping f : (Y,7) — (Z,0) is
continuous if and only if for all » € A the mappings f o f, : (X,,7) — (Z,0) are
continuous. It is shown in [13] that the infimum ﬂ fr (1) of the family (f(7))rea

reA
with respect to the finer relation on I-topologies, where

fr(m)={ eI¥: fm(\) e}

is the final I-topology of (7 )rea with respect to (fi)rea-

I-filters and I-filterbases were introduced by R. Lowen in [14]. An I-filter in a
universe X is a nonempty collection J C I X which satisfies ; 0 ¢ J, J is closed
under finite meets and contains all the fuzzy supersets of its individual members.
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An I-filterbase in X is a nonempty collection B C IX which satisfies 0 ¢ B and the
meets of two members of B contain a member of 8.

~T

Definition 2.1 ([16]). The T-saturation operator is the operator which sends

an I-filterbase B in X to the following subsets of IX

BT ={perI™: \/ (YTpy) < p, where Vy € Iy, iy € B},
yel
said to be the T-saturation of B.

The fuzzy T-locality spaces (T-locality spaces, for short) were introduced by
N.N.Morsi, for more definitions and properties, we can refer to [16].

Definition 2.2 ([16]). A T-locality space is an I-topological space (X,°) whose
fuzzy interior operator is induced by some indexed family B = (B(z)).ex, of I-
filerbases in X, in the following manner :
(2.6) pl(z) = sup J<v,u>pcl® zcX.

veB(x)

The family 9B is said to be a T-locality basis for (X,°), and B~7T is called a
T-locality system of (X,°). The I-topology of (X,°) will be denoted by 7(%8). Also,
a T-locality base B and a T-locality system B~ induce the same T-locality space,
that is 7(B) = 7(B~7T).

Theorem 2.3 ([16]). A family of I-filterbases in X, B = (B(x))zecx, will be a
T-locality base in X if and only if it satisfies the following two conditions, for all
rzeX

(TLB 1) v(z) =1 for all v € B(x).

(TLB 2) Every v € B(x) has a T-kernel. This consists of two families (v, €
B(x))yer, and (Vyyo € B(Y))(y,y.0)ex x1x1, Such that for all (y,v,0) € X x I x Iy,
[(YTv (y)) A0 Tvyr0 < v

Definition 2.4 ([9]). A T-locality space (X, 7(28)) is said to be L-Regular, if for
every (H,z,€) € 2% x X x I are such that there is v € B(x) with hgt(v A 1g) < ¢,
then there are an open set 1 and p € B(x) such that, 15 < p and hgt(pTu) < e.

Theorem 2.5 ([16]). Let (X,°) and (Y,°\) be T-locality spaces with T-locality basis
B and €, respectively, and v € X. Then a function f : (X,°) — (Y,°\) will
be continuous at the point x € X, if and only if for all p € E(f(x)), we have
I (p) € (B(z))~7T if and only if for all p € €(f(x)) and ally € I; there is p,, € B(x)
such that YT'p, < f<(p) if and only if for all p € E€(f(x)) and all v € I there is
py € B(x) such that YT f(py) < p. If follows that f will be continuous if it is
continuous at all points of its domain.

Now, we deduce the following result on the T-locality spaces.

Proposition 2.6. Let (X,7(%B1)) and (Y, 7(B2)) be two T-locality spaces with basis
B = (B1(x))zex and By = (Ba(y))yey n X and Y, respectively. Then their
T-product (X xY,7(5B1) @7 7(B2)) is a T-locality space with a base B = B @1 B,
defined by
%({E,y) = {V1 KRr v iV € %1(1‘),V2 S %Q(y)}
where (11 @1 v2)(x,y) = v1(x)Tra(y), for every (z,y) € X X Y.
196



K. A. HAsHEM/Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 193-212

Proof. First, we show that for each (z,y) € X XY, B(x,y) is an [-filterbase. Ob-
viously, B # @ and 0 € B. Let A\, A2 € B(x,y). Then there are vy,vs € B1(x)
and p1,ps € Bo(y) such that A\ = 11 @7 py and A = vy @7 ps. So, for every
(z,y) € X x Y, we have
(A A X2)(z,y) = M, y) A do(z,y) = (11 @ ) (2, y) A (v2 @1 p2) (2, y)
= [ (@)Tpa ()] A [v2(2) Tz (y)]
> [p1(x) Ava ()T pa (y) A pa(y)], clear
= (1 Aw2)(@)T(p1 A pi2)(y)

> v(z)Tu(y), by hypothesis, where v € B;(x) and p € Ba(y)

= (v @7 p)(2,y)

= Mx,y), where A = (v @1 p) € B(x,y).
Hence, the intersection of any two members of B(z, y) contain a member of B(x,y),
which proving that B(z,y) is an I-filterbase in X x Y.
Now, we fulfill the conditions of Theorem 2.3 :
(TLB 1) For every A € B(z,z) and (z,z) € X XY, we have

Az, z) = (v @1 p)(x, x), for some v € B4 (x) and p € Ba(x)

— (@) Tp(z)

= 1T'1, by hypothesis

=1.
(TLB 2) Let A € B(z,y) and (z,y) € X x Y. Then there are v € B;(x) and
€ Bo(x) such that A = v @7 p.

Now, since v has a T-kernel, that is a two families (v, € B1(z))yer, and (V.49 €
B1(2))(2,7,0)ex x 1, x I, Such that for all (z,v,6) € X x I x Iy,

[(/VTV’Y(Z))AG]TVZ'yG S v.

Also, since p has a T-kernel, that is a two families (1y € B2(y))yer, and (usyo €
B2(5)) (s,7,0)cY x 1 x I, Such that for all (s,7,0) € Y x I; x Iy,

(VT 11y (8)) A0 Tvsy9 < pi.
Hence, for every o € I; and € € I, we can get, by continuity of T, v € I in such
a way that o = 4Ty and then 6 = Op, be as in (2.1). For all which by taking
>\oz = Uy QT My S %(%y) and )\zsae = Vzy0 QT Hs~o € %(xvy)y we have
[(ozT/\a(Z, 3))/\6}T)‘zsae = {['YT'YT(VV T /’("Y)(Z? 5)]A€}T/\zsoce
— (VT Tv ()T 11 () AYT {0 O prano}

< [V Ty () AT (VT 11 (8)) AT (V240 Q1 prse], DY (2-2)

= {l(VTvy (2) A0 Tvor0} @1 {{(VT 11y (8)) AOI T pr5ve }, clear

<vrpu=A
This proves that A has a T-kernel and thus 9B satisfies (TLB 2). Which winds up
the proof. O
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In [10], Hohle defines for every ¢, € I**X and A € I :
The T-section of i over A by

(W < A>p)(z) = ng[A(z)Tw(z,x)], r e X.

The T-composition of ¥, ¢ by

(org)(z,y) = suplp(z, 2)TY(z, )], 2.y € X.
zE
The symmetric of ¥ by s (x,y) = ¥(y,x), z,y € X.
The fuzzy T L-uniform spaces (T L-uniform spaces, for short) were introduced by

K. A. Hashem and N. N. Morsi, for more definitions and properties, we can refer to

Definition 2.7 ([9]). (i) A T L-uniform base on a set X is a subset 9 C I**¥ which
fulfills the following properties

(TLUB 1) 0 is an I-filterbase,

(TLUB 2) For all ¢ € 9 and = € X, we have p(z,z) = 1,

(TLUB 3) For all ¢ € 0 and v € I, there is ¢, € 9 with vT'(p,0r¢,) < ¢,

(TLUB 4) For all ¢ € 0 and v € I, there is ¢, € 0 with 7Ty, <, ¢.

(ii) A T L-uniformity on X is a T-saturated T L-uniform base on X.

(iii) If ¥ is a T'L-uniformity on X, then we shall say that J is a basis for 3 if 9
is an I-filterbase and ™7 = .

It follows that for a T'L-uniformity ¥ on a set X and all ¢ € X, we find that
s € X. The pair (X, X) consisting of a set X and a T L-uniformity ¥ on X is called
T L-uniform space.

Definition 2.8 (][9]). Let (X, X) and (Y, w) be T L-uniform spaces, with bases 0 and
0\, respectively, and f : X — Y be a function. We say that f is uniformly continuous
if for every ¢ € 0\ and 7 € I, there is 1) € v such that YT < (f < f) ().

Proposition 2.9 ([9]). If ¥ is a T L-uniformity on a set X, then the indexed family
(2(x))zex given by E(z) = {¢p < 1, >r: b € B} is a T-locality system on X.

3. T-LOCALITY GROUPS

The concept of T-locality group is introduce in this section and some of their
properties and results are deduced, we show that for a given T-locality group the left
and right translations are homeomorphisms. Also, we study the relations between
T-locality groups and T L-uniform spaces. Precisely, we show that every T-locality
group is T L-uniformizable and induces T L-uniformities.

In what follows, we consider (G, ) as a group with e as the identity element, and
for every A : G — I, we define ;A\ : G — I, as ;\(z) = A(2~1), for each 2 € G, where
27! is the inverse element of x.

Now, we define the structure of T-locality groups as follows:

Let (G, ) be a group and (G, 7(8)) a T-locality space with base B on G. Then
the triple (G, *,7(9%)) is called a T-locality group if the following mappings T :
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(G x G,7(B) @r 7(B)) — (G, 7(B)) defined by

D(z,y) =z*xy==ay forall z,y € G ;
T : (G, 7(B)) — (G, 7(B)) defined by T(z) =z~ 1, for all z € G, are continuous.
Theorem 3.1. For any group (G,x*), we have (G,*,7(B)) is a T-locality group if
and only if the mapping  : (G x G, 7(B) @7 7(B)) — (G, 7(B)) defined by

Qz,y) =xy~ ! for all z,y € G ;

18 continuous.
Proof. Let (G,*,7(B)) be a T-locality group and h : (G x G,7(B) @ 7(B)) —
(G x G,7(®B) ®r 7(B)) the mapping defined by h(z,y) = (z,y~!). Then h is
the product of the identity mapping Js and the continuous mapping Y, therefore
obviously, h is continuous. Hence, 2 = I o h is the composition of continuous
mappings I and h, that is,  is continuous.

On the other hand, let Q be a continuous mapping and i : (G,7(8B)) — (G x
G,7(B) ®r 7(B)) the canonical injection map defined by i(z) = (e, x), where e is
the identity element of G. Then T = Qo1 is the composition of continuous mappings
and therefore is continuous. Since I' = Q2 o h and since h = Jg X Y is the product
of continuous mappings Jo and Y, then h is continuous and therefore I' also is
continuous. Hence (G, ,7(B)) is a T-locality group. O

If * is a binary operation on G, then we define a binary operation ®7 on I¢ by,
for all \,v € I¢ and z € G

A Orv)(z) = yziliréG[A(y)TV(Z)}

Lemma 3.2. If (G, %) is a group and A : G — I, then for all z,y € G, we have
(1o ©7 A)(y) = Az ""y) and (A Or 1o)(y) = Aya™").
Proof. Let A\: G — I and z,y € G. Then
(1z ©1 A)(y) = sup [Lo(2)TA(s)] = sup A(s)

zs=y rs=y
= sup A(s) = Az ty).
s=zx—1ly
Analogously, we can show that (A ©®7 1,)(y) = A(yz~!). Which winds up the
proof. O

For each group (G, ) and a € G, the left and right translations are the homo-
morphisms £, : (G,*) — (G, *) defined by £,(x) = ax and R, : (G,*) — (G, *),
defined by R, ( ) = za, for each = € G, respectively.

The left and right translation in T-locality groups fulfill the following results.

Proposition 3.3. Let (G,*,7(B)) be a T-locality group. Then for each o € G, we
have
(i) £4 and Ry are homeomorphisms,
(ii) (14 @T A) = Lo\ and (A O7 1) = Ra(N), for every A € 19,
(iii) v € (B(e))™T if and only if £,(v) € (B(a))~T if and only if Ra(v) €
(%B(a))~"
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(iv) v € (B(a)~T if and only if £,-1(v) € (B(e))~T if and only if Ro-1(v) €
(%B(e))~7,
(v) If B is T-saturated, then A € B(e) if and only if (1, O A) € B(a).

Proof. (i) The left translation £, is the composition of the mapping I" defined above
and the injection map i : (G,7(B)) — (G x G,7(B) @ 7(B)) defined by i(z) =
(o, ), that is £, = I'oi. Hence, £, is continuous and bijective. Since (£,)" = £,-1,
then (£,) is also continuous. Therefore, £, is a homeomorphism. Similarly, one
can prove that R, is a homeomorphism.

(ii) Let A € I¢ and o € G. Then for every y € G, we have

(£a(MN)(y) = sup{A(z) : z € (£a)" (1)}
=sup{A(2) : 2 € L1y }
=sup{\(z): z = a 1y}
=a"ly)
= (1o ©r N)(y), by Lemma 3.2.

That is, (14 ©1 A) = £4(A). Similarly, we can prove (A Or 1,) = Ra(A).
(iii) Let v € (B(e))~T. Then for every v € Iy, there is

vy € B(e) = B(a ' a) = B(L,-1(a)) such that yTv, < v.

Since £,-1 is continuous, then in view of Theorem 2.5, we get for every 6 € Iy,
there is v, € B(a) such that §Tv,y < (£4-1)7 (vy) = La(vy), Thus YT0Tvy <
YTLa(vy) = La(¥Tvy) < L4(v). By putting 3 = (vT0) € I and vg = 49 € B(a),
we have fTvz < £4(v), which implies £,(v) € (B(a))~".

Conversely, let £,(v) € (B(a))~T. Then for every v € Iy, there is v, € B(a) =
B(ae) = B(La(e)) such that yTv, < £4(v). Since £, is continuous, then again
by Theorem 2.5, we get for every 0 € I, there is vyg € B(e) such that 0Tv,p <
(£4)7 (vy). By putting 8 = (vT0) € I and vz = 1,9 € B(e), we get

BT = ATOT 19 < AT(E2)~ (1) = (£a)~(1Tr)
< (La)7(La(v)) = v, for £, is ingective.

This implies that v € (B(e))~T. Analogously, we can show that v € (B(e))~7 iff
Ra(v) € (B(a))~T.

(iv) Follows immediately from (iii).

(v) Let B be a T-saturated [-filterbase. Then

A € B(e)

iff A € B(a™ta) =B(Ly-1(a), a € G

iff v € B(L,-1()) such that v < A

iff v € B(L,-1(a)), for which (£,-1)(v) € (B(a))~T and v < A, by Theorem
2.5

iff v € B(L4-1(ax)), for which £, (v) € B(a) and v < A, by hypothesis

iff v € B(L4-1()), for which £,(v) € B(a) and L4(v) < £4(N)

iff £,(\) € B(a)

iff (1o ©1 A) € B(a), by (ii).
This completes the proof. O
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We shall now give some characterization theorems of T-locality groups. The
first gives necessary and sufficient conditions for a group structure and a T-locality
system to be compatible and the second gives necessary and sufficient conditions for
an [-filterbase to be a T-locality group.

Theorem 3.4. If (G, *) is a group, then the triple (G, *,7(B)) is a T-locality group
if and only if the following are hold :

(i) for every x € G, we have (B(x))~T ={(1, ©rv) :v € (B(e))~T},

(ii) for all v € B(e) and v € Ir, there is vy, € B(e), with VT (v, Orsvy) < V.

Proof. Let (G, *,7(B)) be a T-locality group. Then (i) follows from Proposition 3.3.
Now, since the map Q : (G x G,7(B) @r 7(B)) — (G,7(W)) is continuous at all
(z,y) € G x G. Then, by view of Proposition 2.6 and Theorem 2.5, we have for
every v € B(e) = Blee ') = B(Qe,e)) and vy € Iy, there is (vy ®7 vy) € B(e,e)
such that YT'Q(v, @7 vy) < v.
Hence, for every z € G, we get

v(z) = [y TQ(vy @1 vy))(2)

=T (vy @1 v4))(x)
T sup{iy (1) Ty (2) : (5, 2) € ()}

(2) :

(2) :

)

= Tsup{v,(y)Tv,(2) : Qy, ) =}
)
)

=T sup{v,(y)Tv,(z) 1 yz~ =z}

=T sup{v, (y)Tsvs (z71) : yzfl =z}
=T (vy Or svy) (),

that is, ¥T'(vy O svy) <V
Which holds (ii).

Conversely, let the stated conditions be hold. If v € B(Q(e,e)) = B(ee ) = B(e)
and vy € Iy, then from (ii) we can get v, € B(e) such that vT'(vy Or svy) < v.
So, as above, we can reach to YT'Q)(vy ®r v,) < v, which meaning, by view of The-
orem 2.5, that the mapping  : (G x G,7(B) @1 7(8B)) — (G, 7(B)) is continuous
at (e,e) € G x G.
Also, as it follows from (i) and Proposition 3.3, that the left translation £, is con-
tinuous at the elements a~!,e € G. Therefore, the continuity of the mapping
follows from the following composition :
Q= Lp-1000(L£y4-1 X £g-1) : G x G — G, where we have (a,0) — (e,e) —
(ee71) = e — af™1, for all (o,0) € G x G.
Completing, by Theorem 3.1, that (G,x*,7(%8)) is a T-locality group. This proves
our assertion. 0

Theorem 3.5. Let (G, %) be a group and consider a collection F C I¢, which
satisfies that :

(i) F is an I-filterbase;

(ii) For all A € F, we have M) =1

(iii) For all N € F, we get s\ € F;

(iv) For all X € F and v € I, there is Ay € F, with yT'(Ay, O Ay) < A
Then there exists a unique T-locality system compatible with the group structure of
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G such that F is a T-locality basis at e € G. This T-locality system is given by, for
every x € G

(3.1) (B(x)™T ={1, 00\ eI : e F}T.

Moreover (G, 7(*B)) is an L-Regularity T-locality space.

Proof. Tt follows already from the preceding theorem that if a T-locality system
exists, compatible with the group structure of G, it must be given by (3.1) and so
it is unique. Now, we show that B = (B(x)),eq is a T-locality base in G as :
Obviously, B(z) is an I-filterbase.

(TLB1) For every v € B(z) and x € G, we have

v(z) = (1, ©r N)(x), for some \ € F
= Mz~ 'z), by Lemma 3.2
= Ae)
=1, by (ii).

(TLB2) Let v € B(x). Then for every z € G, we have

v(z) = (1, O M) (2), for some A € F
= A7 '2), by Lemma 3.2
> T\ O1 A\y))(z™'2), by (iv)
= AT supIh (@™ ') T (v 2)]

> AT Sug{kw(x‘ly)T[QT(Ma Or Ma)l(y™2)}, by (iv) again
z€E

=9TaT sup{A, @ 9T s [T ()]}

rs=y~1lz
> yTaTA (x7 Y) T Ay~ 2) TAya(e)
=TaT(1, Or A\y)(Y)T(1y Or Aya)(2)T1, by Lemma 3.2 and (ii)

Since, for all § € Iy, we can get (by continuity of T) o = ap € I, for which
YT'aT (1, ©1 Ay)(y)] = [(VT'(1e ©1 Ay)(y))A0], hence by taking vey = (1, Or Ay) €
B(x) and vy,9 = (1, Or A\ya) € B(y), we get [(YTvey(y))A8]Tvyyg < v. That is v
has a T-kernel, and therefore B = (B(x))zeq is a T-locality base in G. We show that
the T-locality space (G, 7(8)) is an L-Regularity as follows : Let H € 2¢ 2 € G and
e € I be are given such that there is v € B(z) with hgt(v Alg) < e. Consequently,
we can find € very small such that hgt(v A 1g) +e¢ < €. Since v € B(x), then for
all v € I; there are A\, A\, € F such that v = (1x O A) and A > 7T(A, O A,).
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Hence
e > hgt[(l, ©r A) Alg] + o

= sup (1, Or A)(2) + €0
zeH

= sup Mz 7'2) + &0
z€H
> sup.eg YT (Ay Or Av)](x_lz) + &g, by (iv)

= sup sup[yTA, (z~'y)TA, (y~'2)] + &0

z€H yeG
> (v + 0)T sup sup[\, (7 y)TA, (y™12)],0 = 07, as in (2.1)
zeH yeG
= (v +0)T sup[\, (&~ 'y)T sup A, (27 "y)]
ye@ z€H

= ('Y + 9)T SUP[(lw Or /\7)(y)T SUP(lz Or s)‘v)(y)}
yelG z€H

= (y+0)T'sup[(1z O A\y)T sup (1 OF sAy)|(y).
ye@ z€H

Choose vy € I for which (v + ) = 1, and taking

pP= (11 Or >"Yo)7 n= [\/ZEH(lz Or SA"/O)]Ov

we get p € B(z) and p is an open set which satisfy, 1y < p and hgt(pTp) < e.
Since, for every z € H, we have

,u(l‘) = [\/ZEH(IZ ®T s>\’yo)]o(x) Z (1'r ®T s)\'yo)o(z)
= sup J<v1l; Or Ay, >, by (2.6)

veEB(z)
> 1< 13 OT sAyg, 1o O sAyy >, since 15 O Ay, € B(z), by (iii)
=1, by (2.4).
This proves the L-Regularity of (G, 7(28)) and completing the proof. O

Proposition 3.6. Let (G, *) be a group and for all X € I¢, we define A\p, g :
GxG—1I, by M(2,y) = Mz~ ), Ar(2,y) = Myz~Y), 2,y € G. Then for every
v € I9, the foolowing hold :

()AL <v>r=vOrAand \g <V >r=AOrV ;

(11) ()\TZ/)L = )\LTI/L and ()\TI/)R = )\RTZ/R 5y

(ili) (sA)r = s(AL) and (sA)r = s(Ar) ;

(iV) ()\ O V)L = vr o AL and ()\ O V)R = VR OT AR.

Proof. (i) For every v € I¢ and y € G, we have

(AL <v >7)(y) = sup[v(2)TAL(2,y)] = sup[v(2)TA(z""y)]

z2€G z€G
= s:upil v(2)TA(s)] = ZsSu:%[V(z)T)\(S)]
= (v or A)(y),
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and
(Ar <v>1)(y) = igg[V(Z)T Ar(2,y)] = jlelg[V(Z)TA(yZ’l)]
= s:upfl[V(z)TA(S)b s:upfl[A(S)TV(Z)]
= EL%[A(S)TV(Z)] = (A oOrv)(y).

This proves the required equalities.
(if) Obviously hold.
(iii) Let A € I¢ and z,y € G. Then

(Me(z,y) =A@ y) = M("ly) ™) = My '2) = AL(y. )
= S()\L)(x)y)

Thus (sA)r, = s(AL), and similarly we can prove (sA)r = s(AR).
(iv) For \,v € I¢ and z,y € G, we have

Aorv)L(z,y) = Aorv)(z 'y = sup, A(r)Tv(s)]
= sup Az '2)Tv(z"y)
(z=12)(z7ly)=2~1y
= sup[Ar(z, 2)Tvr(z,9)] = (v or AL)(x,y), and

z€G
(A o7 v)r(z,y) = (AOrv)(y2™') = sup_ A(r)Tw(s)]
= sup Mza™)Tw(y="")]

(zz=1)(yz=1)=ya 1
= sug[)\R(a:, 2)Tvr(z,9)] = (vr or Ar) (2, ).
zE

Rendering (iv) and winds up the proof. O

In the following, we devote to proving that every T-locality group is T'L-uniformizable.
In doing so, we introduce the concepts of left and right T'L-uniformities. Generally,
these two T L-uniformities are not equal unless the group under consideration is
commutative.

Theorem 3.7. Let (G,x,7(B)) be a T-locality group, if we define dp, = {\r, €
IGXG . X € B(e)} and Or = {Ar € I€*CY : X\ € B(e)}, then O and Or are
T L-uniform bases.

Proof. It (G,*,7(B)) be a T-locality group, then (G,7(9%)) is a T-locality space
with T-locality basis B = (B(z)),eq. We claim that 01, is T L-uniform base.

(TLUBL) Obviously dr, is an I-filterbase.

(TLUB2) If ¢ € O, then there is A € B(e) such that ¢ = Ar, and for all x € G,
we get p(x,7) = A (2, 2) = Mz~ 1z) = Ae) = 1.

(TLUB3) If ¢ € Jr, then there exists a A € B(e) such that ¢ = Ap. Thus
by virtue of Theorem 3.4 (i), for all v € I;, we can find A\, € B(e) for which

204



K. A. HAsHEM/Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 193-212

YT (Morr,) < A By taking ¢, = (\y)L € O, we can obtain

YT (o o1 07) = AT[(Ay)L o1 (Ay)L)]
=T [A\y ©r A\y]L, by Proposition 3.6 (iv)
= [T(A\y Or Ay)]L, clear
<AL=
(TLUB4) If ¢ € Oz, then there is A € B(e) such that ¢ = A\. Consequently,
by Theorem 3.4 (ii), for all v € I3, there exists a Ay € B(e) for which YTA, < A
Therefore, by Proposition 3.6 (iii), we get
YT'(M)r = (Y TAy) L < (sA)r = s(Ar) implies YT'p, < 0.
This shows in accordance with Definition 2.7, that the collection 0y, is a T'L-uniform
base, which in turn gives rise to a T L-uniformity >; = 8ZT, and similarly for dg.
This compleres the proof. O

We will call ¥, and ¥ g, respectively, the left and right T'L-uniformity associated
with B.

Definition 3.8. An I-topological space (X, 7) is called T'L-uniformizable if there is
a T L-uniformity ¥ on X such that 7 = 7(X).

Theorem 3.9. FEvery T-locality group is T L-uniformazable.

Proof. Let (G,*,7(%B)) be a T-locality group. Then (G, 7(9B)) is a T-locality space
with the T-locality system B~ = ((B(x))~7T).eq. Now, suppose that (3())zcq
is a T-locality system associated with the left T'L-uniformity Y. Then we get
Y(x) ={¢ < 1, >pr: ¥ € X}, by Proposition 2.9
={\r <1, >7r: A€ (B(e))~"}, by Theorem 3.5
={l, Or A: A€ (B(e))™"}, clear
= (B(z))~", by Proposition 3.3 (iv)

Therefore, in view of Definition 2.2, we have 7(8) = 7(8~7T) = 7(X). Which proves
that (G, *,7(%)) is T L-uniformizable. O

Proposition 3.10. Let (G,*,7(B)) and (E,4,7(£)) be T-locality groups. If 0~T
and W~T are the associated left T L-uniformities on G and E, respectively, then
f:(G,0°T) — (BE,W~T) is uniformly continuous if and only if for all p € £(e\)
and v € Iy, there is X € B(e) such that YT'(1, O X\) < f~ (1) Or p), for each
x € G, where e and e\ are identity elements of G and E, respectively.

Proof. In view of Definition 3.8, we have f : (G,0~T) — (E,W~T) is uniformly
continuous
iff Vo € W, € I;3¢ € 9 such that T < (f x f) ()
iff Vp € £(e\),y € 13X € B(e) such that yT'AL < (f x )" (pL)
iff Vp € £(e\),y € 13X € B(e) such that YT AL (z,y) < pr(f(z)
f

(f(2), [(y), Yo,y € G
iff Vp € £(e\),y € I,3N € Be) such that yTA(z'y) < p((f(x))

 f(Y), Ve, y €
G
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iff Vp € £(e\),y € 13X € B(e) such that YT (1,07A)(y) < (15 Orp)(f(y)), Yo,y €
G, by Lemma 3.2

iff Vp € £(e), v € 13N € B(e) such that 7T (1, Or A) < [~ (@) Orp), Ve €G.
This winds up the proof. O

Proposition 3.11. Let (G, *,7(B)) and (E,f,7(£)) be T-locality groups, with e and
e\ as the identity elements of G and E, respectively. Then

(i) If 0~T and W~T are the associated right T L-uniformities on G and E, re-
spectively, then f : (G,0~T — (E,W™T) is uniformly continuous if and only if for
all p € £(e)) and v € I, there is X\ € B(e) such that YT(AO1 1) < f(pOr 14,
for each x € G.

(ii) If 0T and WHT (resp. OxT and Wi'T )are the associated left and right
(resp. right and left) T L-uniformities on G and E, respectively, then f: G — E is
uniformly continuous if and only if for all p € &(e\) and ~ € I, there is A € B(e)
such that YT (1, ©7 A) < fT(pOr Lfm)) (resp. YT (A Or 1) < [~ (1f2) O p)), for
each x € G.

Proof. Analogous to that of Proposition 3.10. 0

Proposition 3.12. Let (G,*,7(8)) and (E,4,7(£)) be T-locality groups. If 0~T
and W™T are the associated left T L-uniformities on G and E, respectively, then a
continuous homomorphism f : G — E is uniformly continuous.

Proof. Let f : G — E be a continuous homomorphism, v € I; and p € £(e\) =
£(f(e)). Then by Theorem 2.5, there is A € B(e) such that yT'A < f~(p) and
hence, we obtain for every z,y € G that

WT (1, Or N](y) = v¥T(1, &7 N)(y) = yTA(z~'y), by Lemma 3.2

< (f )™y = p(f(z™1y)),
= p(f(z71)f(y)), for f homomorphism
= p((f(=)) "' f(y)), clear
= (1) ©1 p)(f(y)), by Lemma 3.2 again
= [~ (4@ 1 p)(y)-
That is 7T (1, ©1 A) < f~(15(4) Or p), which proves that f is uniformly continuous.
O

Definition 3.13. A T-locality space (G,°) is called homogeneous space if for all
x,y € G, there is a homeomorphism h : (G,°) — (G,%) such that h(z) = y.

Proposition 3.14. Every T-locality group is a homogeneous space.

Proof. This follows easily from the fact that, if (G, *,7(98)) is a T-locality group,
then for all a, 0 € G, the function Ry-19 : (G, *) — (G, *) for which, R,-19(a) =
aa~ 9 = 0, is a homomorphism. O

Example 3.15. (i) For every topological group (G,#,T), we have the topolog-
ically generated group (G, x,20(T)) is a T-locality group, since all topologically
generated spaces are T-locality spaces (cf. [16]). Where, 20(T) = {X € I¢ :
¥ is lower semicontinuous from (G, T) into [0, 1]}.
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(ii) Let (G, ) be a group and for every = € G, take B(z) = {(1, Va) € I¢ :a >
1/2}. Then obviously B = (B(z)).cq is a T-locality base, because for every = € G,
B(x) is an [-filterbase. Moreover, for every 0 € B(x), we have

d(z) = (1 V a)(z), for some o > 1/2
= 17

Which holds (TLB1). Also, for every 0 € B(z) and all (y,v,6) € X x I} x Iy, we
can take 9, = (1, V 3) € B(x) and 9y = (1, V 5 VvV 0) € B(y), which satisfy
[(YT04(y))AOTDyre < 0. Holds (TLB2). That is (G, *,7(B)) is a T-locality group.
Furthermore the left T'L-uniform base induced by (G, *, 7(98)) is 9 = {\r, € [F%C :
AEBe) ={(1.Va), € IF%F . a >1/2}).

(iii) The set R of all positive real numbers equipped with the usual multiplication
is a group. Now, if we take

1
F={(LVimumVy) € I HCRT IR,
then, we have the collection F satisfies the conditions in Theorem 3.5, thus there is
a T-locality base B = (B(x)),er+ in R, given by for all z € R,

1
B(z) = {[1. Or (11 V L(gu,m) vV 5)} eI HCRT).
Moreover, (R, 7(%8)) is an L-Regularity T-locality space.

4. INITIAL AND FINAL T-LOCALITY GROUPS

This section shows that the category T-LocGrp of T-locality groups is a topolog-
ical category [1] and hence all initial and final T-locality groups exist and can be
characterized.

For any class A, let ((H,,7))rea be a family of T-locality groups and (f,.)rea a
family of homomorphisms of a group G into groups H,. For any T-locality group
(G, 1), the family (f, : (G,7) — (Hy,7))rea is called an initial lift of (f, : G —
(H,,7+))rea in the category T-LocGrp provided that (G, 7) is the T-locality group
for which the following conditions are fulfilled :

(i) All mappings f, : (G,7) — (H,7,) are continuous homomorphisms;

(ii) For any T-locality group (H,o) and any mapping f : (H,0) — (G, 7) is
continuous homomorphism if and only if for all » € A the mappings f,.of: (H,0) —
(H,,7,) are continuous homomorphisms.

By an initial T-locality group we mean the T-locality group which provides an
initial lift in the category T-LocGrp. To prove that all initial lifts and all initial T-
locality groups exist in T-LocGrp we have to prove first that in the case f, : G — H,
is an injective homomorphism for each r € A, and 7 is the initial T-locality of (7,-),ca
with respect to (f,)rea we get that (G, 7) also is a T-locality group.

First, we shall consider the case of A being a singleton:

Proposition 4.1. Let (H, o) be a T-locality group and let f : G — H be an injective
homomorphism of a group G into H. Then the initial T-locality space (G, f~ (o))
of (H, o) with respect to f also is a T-locality group.

207



K. A. HAsuEM/Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 193-212

Proof. Let Q¢ : (GX G, f~(0)x f(0)) = (G, f~(0)) and Qg : (Hx H,0 x0) —
(H, o) be defined as in Theorem 3.1 and let A € f< (o). Then, there is ¥ € o such
that A = f~(X). Since (H,0) is a T-locality group, it follows that Qg is continuous
and hence Q3 (X) € o xo. Now, since f is a homomorphism, then for every z,y € G,
we have

Qg N(2,9) = MQe(x,y)) = (f~(2)(@y™") = S(f(zy™))

S(f@) ™) =S @ W) ™)
—E(QH( (@), F())) = Qg (2)(f(2), f(y))
= [(f x )~ (Qu ()N, y),

that is, Q5 (A) = (f x )~ (25 (X)). Since f (o) is the initial I-topology of o with
respect to f, then f : (G, f~(¢)) — (H, o) is continuous and hence f X f : G x G —
H x H is obviously continuous. Therefore,

Qe = x )" E) e (f x )" (o x0o)=f"(0) x f7(0)),

which means that Q¢ is continuous and hence, by Theorem 3.1, (G, f* (o)) is T-
locality group. O

Now, consider the case of any class A :

Proposition 4.2. Let ((Hy,0v))rea be a family of T-locality groups and for all
r €A, let fr, : G — H, be an injective homomorphism of a group G into H,. Let
T be the initial I-topology of (o)ren with respect to (fr)ren. Then (G,T) also is
T-locality group.

Proof. Let Q¢ : (G x G, 7 x7) — (G,7) and Qp, : (H, X H.,0 X 0,.) — (H,,0,)
be defined as in Theorem 3.1. Since f, o Qg = Qg o (fr x fr) and Qp,, f. are
continuous, then f, o ¢ is continuous. From condition (ii) of the initial lift in the
category of I-topological spaces, it follows that Qg is continuous and thus (G, 7) is
T-locality group. O

The following theorem shows that the T-locality group mentioned in Propositions
4.1 and 4.2 fulfills the conditions of an initial lift in the concrete category T-LocGrp.

Theorem 4.3. Let ((Hy,0.))ren be a family of T-locality groups and for all v € A,
let fr : G — H, be an injective homomorphism of a group G into H, and let T
be the initial I-topology of (oy)ren with respect to (fr)rean. Then (fr : (G,7) —
(Hy,0.))ren s an initial lift of (fr : G — (H,,0.))ren in the category T-LocGrp.

Proof. First, Propositions 4.1 and 4.2 show that (G, ) is a T-locality group. From
condition (i) of an initial lift in the category of I-topological spaces, we get that
condition (i) of initial lift in T-LocGrp holds, that is, all f,. : (G,7) — (Hy,0.)
are continuous homomorphisms. Here, let (H, o) be a T-locality group and f be a
mapping from H into G. Then from condition (ii) of an initial lift in the category
of I-topological spaces, we get f : (H,0) — (G, 7) is continuous if and only if all
frof:(H,o) — (H, o.) are continuous. Now, if f is a homomorphism and we
have all f, are homomorphisms, then all f, o f are homomorphisms. Conversely, let
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all f. o f be homomorphisms. Since all f, are homomorphisms we have for every
x,y € H, that

Fr(f (@, y)) = (fr 0 F)(2y) = [(fr 0 H(@)][(fr 0 ()]
= [£r(FEDIf(f ()] = fr(f(2)f ()

Moreover, since f, is injective, we get f(zy) = f(z)f(y), that is, f is a homomor-
phism. Hence, f : (H,0) — (G, 7) is continuous homomorphism if and only if all
frof:(H,o) — (H,,o0.) are continuous homomorphisms, that is, condition (ii) of
an initial lift in T-LocGrp is fulfilled. U

Theorem 4.3 states that all initial lifts exist uniquely in the concrete category
T-LocGrp and this means that the category T-LocGrp is a topological category [1].
Hence, all initial T-locality groups exist.

By means of Theorem 4.3, the T-locality groups introduced in Propositions 4.1
and 4.2 coincide with the initial T-locality groups, that is, if ((H,, 0, ))rea is a family
of T-locality groups, and for each r € A, f,. is an injective homomorphism of a group
G into H, and 7 is the initial I-topology of (o;),ca with respect to (fi)rea, then
(G, ) is the initial T-locality group.

T-locality subgroups and T-locality product groups are special initial T-locality
groups and hence the above implies the following result.

Corollary 4.4. (i) If (G,7) is a T-locality groups and S a subgroup of G, then the
I-topological subspace (G, 7s) also is T-locality group, called a T-locality subgroup.
(i) If ((Gyy7))ren is a family of T-locality groups and G is the product I1,.cA G,
of the family (G)rea of a groups and 7 = Il,.c AT, is the product of the family (7)rea
of I-topologies, then (G, T) also is T-locality group, called a T-locality product group.

Now, since the concrete category T-LocGrp is topological category, then all final
lifts also uniquely exist [1]. This even means that also all final T-locality groups
exist.

If ((Gr,7r))rea is a family of T-locality groups and (f,),ca a family of homomor-
phisms of G, into a group H, indexed by any class A. For any T-locality group (H, o),
the family (f, : (Gr,7) — (H,0))ren is called a final lift of (£, : (Gr, 7)) = H)rea
in the category T-LocGrp provided that (H, o) is the T-locality group for which
fulfills the following conditions :

(i) Al mappings f, : (G, 7.) — (H, o) are continuous homomorphisms;

(ii) For any T-locality group (G,7) and any mapping f : (H,0) — (G,7) is
continuous homomorphism if and only if for all » € A the mappings fof, : (G,,7) —
(G, T) are continuous homomorphisms.

By a final T-locality group we mean a T-locality group which provides a final lift
in the category T-LocGrp.

The following propositions show that if for each r € A, f,. : (G,,7.) — (H,0) is
a surjective homomorphism and o is the final T-locality of (7;),ca with respect to
(fr)rea, then (H, o) also is a T-locality group.

To prove these results we need the following proposition which can be proved
easily by means of the properties of the T-locality group.
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Proposition 4.5. If f : (G,7) — (H, f(7)) is a surjective homomorphism from a
T-locality group (G, 7) to a group H equipped with the final I-topology f(7) of T with
respect to f, then f is an open function.

Consider the case of A being a singleton :

Proposition 4.6. Let (G,7) be a T-locality group and let f : (G,7) — H be a
homomorphism of a group G onto H. Then the final T-locality space (H, f(T)) of
(G, ) with respect to f also is a T-locality group.

Proof. Let Q¢ : (GxG,7x71)— (G,7) and Qg : (H x H, f(7) x f(7)) — (H, f(1))
be defined as in Theorem 3.1. Now, since f is a surjective homomorphism, then for
every ¥ € Il and z,y € H, we have

Qg (X))@, y) = X(Qu (z,y))
= sup{X(Qu (f(r), f(s))) : s € G, (f x [)(r,8) = (2,9)}

= sup{S(f(r)(f(s)) ™)« (r;5) € (f x /)~ (2, y)}, clear
=sup{X(f(r)(f(s)) : (r,8) € (f x /)" (z,9)}
=sup{E(f(rs™")) : (r,8) € (f x )~ (2,9)}

=sup{(f (D) (rs™") : (r5) € (f x )" (2,9)}

( ( (
= sup{(f~ () Qa(r;9)) : (rs) € (f x )™ (2,9)}
= sup{(Qg (/= (2)(r,5) : (ry8) € (f x /)™ (2,9)}
= [(f x N (= X)), y),

that is, Q7 () = (f x /) (f~(2))). If X € f(7), then f~(¥) € 7, and from
continuity of Q¢ we get Qg (f (X)) € 7 x 7. But from Proposition 4.5, we have f
is an open, hence f X f: G x G — H x H is obviously an open. Therefore,

Q () = (f x Qe (f7 () € f(r) x f(7).
Which proves the continuity of Qpy and this implies that (H, f(7)) is T-locality
group. U

For any class A we have the following :

Proposition 4.7. Let ((Gr,7:))ren be a family of T-locality groups and for all
r e, let f. : G. — H be a homomorphism of a group G, onto a group H. Let o
be the final I-topology of (7,)rea with respect to (f)ren. Then (H, o) is a T-locality
group.

Proof. Let p € o. Since f, : (Gr,7) — (H,0o) is cintinuous, then f~(p) € 7
for all r € A. But from continuity of Qq, : (G, X G, 7 X 7)) — (G, 7y), We get
Qg (fi~(w)) € 7. x 7. Now, by a similar way to the proof of Proposition 4.6, we have
Qi (1) = (fr < fr) Qg (f; (1)), where Qg : (H x H,0 x o) — (H, o), moreover
all f, x f, are open, hence Q% (1) € 0 x . This proves that Qy is continuous and
thus (H, o) is a T-locality group. O

Now we are going to show that the T-locality group given in Propositions 4.6 and
4.7 fulfills the conditions of a final lift in the concrete category T-LocGrp.
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Theorem 4.8. Let ((G,,7))rea be a family of T-locality groups and for all v € A,
let f, : G — H be a surjective homomorphism of a group G, into H and let o be the
final I-topology of (7, )ren with respect to (fr)ren. Then (fr: (Gr,7) — (H,0))rea
is a final lift of (fr : G — H)rea in the category T-LocGrp. The proof goes
similarly, using Propositions 4.6 and 4.7 and the properties of final lift in the category
T-LocGrp, as in case of Theorem 4.3.

From Theorem 4.8 we get that the T-locality groups introduced in Propositions
4.6 and 4.7 can be considered as the final T-locality groups.

T-locality quotient group is special final T-locality group and hence the above
implies the following result.

Corollary 4.9. If N is a normal subgroup of a T-locality group (G,T) and G/N is
the corresponding quotient group and if h : G — G/N is the canonical homomor-
phism defined by h(x) = xN for all x € G, then the I-topological quotient space
(G/N,h(T)) also is T-locality group, called a T-locality quotient group.
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