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Abstract. The aim of this paper is to introduce the concepts of T -
locality groups, where T stands for any continuous triangular norm. Our
construct mainly will deal and relate with both fuzzy T -locality spaces and
fuzzy TL-uniform spaces. We establish some basic results and characteri-
zation theorems of T -locality groups. We give the necessary and sufficient
conditions for a group structure and a fuzzy T -locality system to be com-
patible. Moreover, we show that all initial and final lifts exist uniquely
in the concrete category of T -locality groups and hence all initial and fi-
nal T -locality groups exist and can be characterized. As consequences the
T -locality subgroups, T -locality product groups and T -locality quotient
groups are exist.
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1. Introduction

In 1995, N. N. Morsi introduced the fuzzy T -locality spaces, for each continu-
ous triangular norm T . In 2006, we deduced the fuzzy TL-uniform spaces which
compatible with fuzzy T -locality spaces. In this manuscript, we introduce a new
structure of T -locality groups. We show that these structure is conforms well with
fuzzy T -locality spaces. We give some other important results of T -locality groups
and we give the notions of the left and right translations for a T -locality group. Also,
we show that every T -locality group is TL-uniformizable and we characterize the
uniformly continuous functions. Moreover, we study the initial and final T -locality
groups.

We proceed as follows : In Section 2, we present some basic definitions and ideas
on the classes of fuzzy sets, I-topological spaces, fuzzy T -locality spaces and fuzzy
TL-uniform spaces. In Section 3, we introduce our definition of T -locality groups
and we prove some of their properties, we show that for the T -locality group, the
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left and right translations are homeomorphisms. Some other results for these T -
locality groups are studied. We also generalize the two important characterization
theorems, which give necessary and sufficient conditions for a T -locality system and
a group structure to be compatible. Moreover, we study the relations between T -
locality groups and fuzzy TL-uniform spaces. Some examples of T -locality groups
are given. In Section 4, we show that all initial lifts exist uniquely in the concrete
category T -LocGrp of T -locality groups and hence all initial T -locality groups exist
and can be characterized, thus the category T -LocGrp is a topological category.
Therefore all final lifts and all final T -locality groups also exist. The subgroups and
the product groups of T -locality groups in the categorical sense are special initial
T -locality groups and hence exist and can be characterized. The quotient groups of
T -locality groups are characterized as special final T -locality groups.

2. Preliminaries

A triangular norm T (cf. [18]) is a binary operation on the unit interval I = [0, 1]
that is associative, symmetric, isotone in each argument and has neutral element 1.
The basic three (continuous) triangular norms are their simplest, namely Min (also
denoted by ∧),

∏
(product) and Tm (the Lukasiewicz conjunction), where for all

α, β ∈ I, α
∏

β = αβ and αTmβ = (α + β)∧1. The binary operation ∧ above is the
truncated subtraction, defined on non-negative real numbers by

r∧s = max{r − s, 0}, r, s ≥ 0.

A continuous triangular norm T is uniformly continuous, that is for all ε > 0
there is θ = θT,ε > 0 such that for every (α, β) ∈ I × I, we have

(2.1) (αTβ)− ε ≤ (α− θ)T (β − θ) ≤ αTβ ≤ (α + θ)T (β + θ) ≤ (αTβ) + ε.

Obviously, for every real numbers r, s ≥ 0, ε > 0 and the above θ = θT,ε > 0, we
have

(2.2) (rTs)∧ε ≤ (r∧θ)T (s∧θ).

For a continuous triangular norm T the following binary operation on I,

(2.3) (α, γ) = sup{θ ∈ I : αTθ ≤ γ}, α, γ ∈ I,

is called the residual implication of T [15]. For this implication, we shall use the
following property [17], ∀α, β, θ, γ ∈ I :

(2.4) (α, α) = 1.

(2.5) (αTβ, θTγ) ≥ (α, θ)T(β, γ).

A fuzzy set λ in a universe set X, introduced by Zadeh in [19], is a function
λ : X → I = [0, 1]. The collection of all fuzzy sets of X is denoted by IX . The
height of a fuzzy set λ is the following real number :

hgtλ = sup{λ(x) : x ∈ X}.
If H ⊆ X, then its characteristic function is denoted by 1H and the set of all (crisp)
subsets of X is denoted by 2X . We also denote the constant fuzzy set of X with
value α ∈ I by α.
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Given two fuzzy sets µ, λ ∈ IX , we denote by µTλ the following fuzzy set of X :
(µTλ)(x) = µ(x)Tλ(x), x ∈ X. The degree of containment of µ in λ according to 
is the real number in I [7], defined by :

 < µ, λ >= inf
x∈X

(µ(x), λ(x)).

We follow Lowen’s definition of a fuzzy interior operator on a set X [12]. This is
an operator o : IX → IX that satisfies µo ≤ µ, (µ ∧ λ)o = µo ∧ λo for all µ, λ ∈ IX

and αo = α for all α ∈ I. We may define an an I-topology in the usual way, namely
assuming a fuzzy set µ to be open if and only if µo = µ. We denote this I-topology
by τ. The pair (X,o ) is called an I-topological space.

A function f : (X,o ) = (X, τ) → (Y,o\ ) = (Y, τ\), between two I-topological
spaces, is said to be continuous [12] if f←(µ) ∈ τ for all µ ∈ τ\, where (f←(µ))(x) =
µ(f(x)), ∀x ∈ X. It is said to be open if f(λ) ∈ τ\ for all λ ∈ τ .

In [13], Lowen introduced the concepts of Initial and final I-topological spaces.
Consider a family of I-topological spaces (Yr, τr)r∈Λ and for each r ∈ Λ, a mapping
fr : X → Yr. The initial I-topology of (τr)r∈Λ with respect to (fr)r∈Λ is meant
the I-topology τ on X for which the conditions of an initial lift in the category of
I-topological spaces are fulfilled, that is,

(i) All mappings fr : (X, τ) → (Yr, τr) are continuous,
(ii) For any I-topological space (Z, σ) and any mapping f : (Z, σ) → (X, τ) is

continuous if and only if for all r ∈ Λ the mappings fr ◦ f : (Z, σ) → (Yr, τr) are
continuous. The union

⋃

r∈Λ

f←r (τr) of the family (f←r (τr))r∈Λ where

f←r (τr) = {f←r (µ) : µ ∈ τr},
is a subbase for an I-topology on X, for which the conditions (i) and (ii) of the initial
lift in the category of I-topological spaces are fulfilled [12, 13], called the initial I-
topology of (τr)r∈Λ with respect to (fr)r∈Λ, and f←r (τr) is the initial I-topology of
τr with respect to fr. Therefore, all initial lifts and all initial I-topological spaces
exist uniquely in the category of I-topological spaces and hence the category of
I-topological spaces is a topological category. Consequently, all final lifts also exist.

Assume that fr : Xr → Y is a mapping of Xr to Y . By the final I-topology of
(τr)r∈Λ with respect to (fr)r∈Λ we mean the I-topology τ on Y which fulfills the
conditions of a final lift in the category of I-topological spaces, that is,

(i) All mappings fr : (Xr, τr) → (Y, τ) are continuous,
(ii) For any I-topological space (Z, σ) and any mapping f : (Y, τ) → (Z, σ) is

continuous if and only if for all r ∈ Λ the mappings f ◦ fr : (Xr, τr) → (Z, σ) are
continuous. It is shown in [13] that the infimum

⋂

r∈Λ

fr(τr) of the family (fr(τr))r∈Λ

with respect to the finer relation on I-topologies, where

fr(τr) = {λ ∈ IY : f←r (λ) ∈ τr}
is the final I-topology of (τr)r∈Λ with respect to (fr)r∈Λ.

I-filters and I-filterbases were introduced by R. Lowen in [14]. An I-filter in a
universe X is a nonempty collection J ⊂ IX which satisfies ; 0 6∈ J, J is closed
under finite meets and contains all the fuzzy supersets of its individual members.
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An I-filterbase in X is a nonempty collection B ⊂ IX which satisfies 0 6∈ B and the
meets of two members of B contain a member of B.

Definition 2.1 ([16]). The T -saturation operator is the operator ∼T which sends
an I-filterbase B in X to the following subsets of IX

B∼T = {µ ∈ IX :
∨

γ∈I1

(γTµγ) ≤ µ, where ∀γ ∈ I1, µγ ∈ B},

said to be the T -saturation of B.

The fuzzy T -locality spaces (T -locality spaces, for short) were introduced by
N.N.Morsi, for more definitions and properties, we can refer to [16].

Definition 2.2 ([16]). A T -locality space is an I-topological space (X,o ) whose
fuzzy interior operator is induced by some indexed family B = (B(x))x∈X , of I-
filerbases in X, in the following manner :

(2.6) µo(x) = sup
ν∈B(x)

J < ν, µ >, µ ∈ IX , x ∈ X.

The family B is said to be a T -locality basis for (X,o ), and B∼T is called a
T -locality system of (X,o ). The I-topology of (X,o ) will be denoted by τ(B). Also,
a T -locality base B and a T -locality system B∼T induce the same T -locality space,
that is τ(B) = τ(B∼T ).

Theorem 2.3 ([16]). A family of I-filterbases in X, B = (B(x))x∈X , will be a
T -locality base in X if and only if it satisfies the following two conditions, for all
x ∈ X

(TLB 1) ν(x) = 1 for all ν ∈ B(x).
(TLB 2) Every ν ∈ B(x) has a T -kernel. This consists of two families (νγ ∈

B(x))γ∈I1 and (νyγθ ∈ B(y))(y,γ,θ)∈X×I1×I0 such that for all (y, γ, θ) ∈ X × I1× I0,
[(γTνγ(y))∧θ]Tνyγθ ≤ ν.

Definition 2.4 ([9]). A T -locality space (X, τ(B)) is said to be L-Regular, if for
every (H,x, ε) ∈ 2X ×X × I0 are such that there is ν ∈ B(x) with hgt(ν ∧ 1H) < ε,
then there are an open set µ and ρ ∈ B(x) such that, 1H ≤ µ and hgt(ρTµ) < ε.

Theorem 2.5 ([16]). Let (X,o ) and (Y,o\ ) be T -locality spaces with T -locality basis
B and E, respectively, and x ∈ X. Then a function f : (X,o ) → (Y,o\ ) will
be continuous at the point x ∈ X, if and only if for all ρ ∈ E(f(x)), we have
f←(ρ) ∈ (B(x))∼T if and only if for all ρ ∈ E(f(x)) and all γ ∈ I1 there is ργ ∈ B(x)
such that γTργ ≤ f←(ρ) if and only if for all ρ ∈ E(f(x)) and all γ ∈ I1 there is
ργ ∈ B(x) such that γTf(ργ) ≤ ρ. If follows that f will be continuous if it is
continuous at all points of its domain.

Now, we deduce the following result on the T -locality spaces.

Proposition 2.6. Let (X, τ(B1)) and (Y, τ(B2)) be two T -locality spaces with basis
B1 = (B1(x))x∈X and B2 = (B2(y))y∈Y in X and Y , respectively. Then their
T -product (X×Y, τ(B1)⊗T τ(B2)) is a T -locality space with a base B = B1⊗T B2,
defined by

B(x, y) = {ν1 ⊗T ν2 : ν1 ∈ B1(x), ν2 ∈ B2(y)}.
where (ν1 ⊗T ν2)(x, y) = ν1(x)Tν2(y), for every (x, y) ∈ X × Y .

196



K. A. Hashem/Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 193–212

Proof. First, we show that for each (x, y) ∈ X × Y , B(x, y) is an I-filterbase. Ob-
viously, B 6= ∅ and 0 6∈ B. Let λ1, λ2 ∈ B(x, y). Then there are ν1, ν2 ∈ B1(x)
and µ1, µ2 ∈ B2(y) such that λ1 = ν1 ⊗T µ1 and λ2 = ν2 ⊗T µ2. So, for every
(x, y) ∈ X × Y , we have

(λ1 ∧ λ2)(x, y) = λ1(x, y) ∧ λ2(x, y) = (ν1 ⊗T µ1)(x, y) ∧ (ν2 ⊗T µ2)(x, y)

= [ν1(x)Tµ1(y)] ∧ [ν2(x)Tµ2(y)]

≥ [ν1(x) ∧ ν2(x)]T [µ1(y) ∧ µ2(y)], clear

= (ν1 ∧ ν2)(x)T (µ1 ∧ µ2)(y)

≥ ν(x)Tµ(y), by hypothesis, where ν ∈ B1(x) and µ ∈ B2(y)

= (ν ⊗T µ)(x, y)

= λ(x, y), where λ = (ν ⊗T µ) ∈ B(x, y).

Hence, the intersection of any two members of B(x, y) contain a member of B(x, y),
which proving that B(x, y) is an I-filterbase in X × Y .
Now, we fulfill the conditions of Theorem 2.3 :
(TLB 1) For every λ ∈ B(x, x) and (x, x) ∈ X × Y , we have

λ(x, x) = (ν ⊗T µ)(x, x), for some ν ∈ B1(x) and µ ∈ B2(x)

= ν(x)Tµ(x)
= 1T1, by hypothesis
= 1.

(TLB 2) Let λ ∈ B(x, y) and (x, y) ∈ X × Y . Then there are ν ∈ B1(x) and
µ ∈ B2(x) such that λ = ν ⊗T µ.
Now, since ν has a T -kernel, that is a two families (νγ ∈ B1(x))γ∈I1 and (νzγθ ∈
B1(z))(z,γ,θ)∈X×I1×I0 such that for all (z, γ, θ) ∈ X × I1 × I0,

[(γTνγ(z))∧θ]Tνzγθ ≤ ν.

Also, since µ has a T -kernel, that is a two families (µγ ∈ B2(y))γ∈I1 and (µsγθ ∈
B2(s))(s,γ,θ)∈Y×I1×I0 such that for all (s, γ, θ) ∈ Y × I1 × I0,

[(γTµγ(s))∧θ]Tνsγθ ≤ µ.

Hence, for every α ∈ I1 and ε ∈ I0, we can get, by continuity of T , γ ∈ I1 in such
a way that α = γTγ and then θ = θT,ε be as in (2.1). For all which by taking
λα = νγ ⊗T µγ ∈ B(x, y) and λzsαε = νzγθ ⊗T µsγθ ∈ B(x, y), we have

[(αTλα(z, s))∧ε]Tλzsαε = {[γTγT (νγ ⊗T µγ)(z, s)]∧ε}Tλzsαε

= {[γTγTνγ(z)Tµγ(s)]∧ε}T{νzγθ ⊗T µsγθ}
≤ [(γTνγ(z))∧θ]T [(γTµγ(s))∧θ]T [νzγθ ⊗T µsγθ], by(2.2)
= {[(γTνγ(z))∧θ]Tνzγθ} ⊗T {[(γTµγ(s))∧θ]Tµsγθ}, clear
≤ ν ⊗T µ = λ.

This proves that λ has a T -kernel and thus B satisfies (TLB 2). Which winds up
the proof. ¤
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In [10], Höhle defines for every ψ,ϕ ∈ IX×X and λ ∈ IX :
The T -section of ψ over λ by

(ψ < λ >T )(x) = sup
z∈X

[λ(z)Tψ(z, x)], x ∈ X.

The T -composition of ψ,ϕ by

(ψoT ϕ)(x, y) = sup
z∈X

[ϕ(x, z)Tψ(z, y)], x, y ∈ X.

The symmetric of ψ by sψ(x, y) = ψ(y, x), x, y ∈ X.
The fuzzy TL-uniform spaces (TL-uniform spaces, for short) were introduced by

K. A. Hashem and N. N. Morsi, for more definitions and properties, we can refer to
[9].

Definition 2.7 ([9]). (i) A TL-uniform base on a set X is a subset ∂ ⊂ IX×X which
fulfills the following properties

(TLUB 1) ∂ is an I-filterbase,
(TLUB 2) For all ϕ ∈ ∂ and x ∈ X, we have ϕ(x, x) = 1,
(TLUB 3) For all ϕ ∈ ∂ and γ ∈ I1, there is ϕγ ∈ ∂ with γT (ϕγoT ϕγ) ≤ ϕ,
(TLUB 4) For all ϕ ∈ ∂ and γ ∈ I1, there is ϕγ ∈ ∂ with γTϕγ ≤s ϕ.
(ii) A TL-uniformity on X is a T -saturated TL-uniform base on X.
(iii) If Σ is a TL-uniformity on X, then we shall say that ∂ is a basis for Σ if ∂

is an I-filterbase and ∂∼T = Σ.
It follows that for a TL-uniformity Σ on a set X and all ϕ ∈ Σ, we find that

sϕ ∈ Σ. The pair (X, Σ) consisting of a set X and a TL-uniformity Σ on X is called
TL-uniform space.

Definition 2.8 ([9]). Let (X, Σ) and (Y, ω) be TL-uniform spaces, with bases ∂ and
∂\, respectively, and f : X → Y be a function. We say that f is uniformly continuous
if for every ϕ ∈ ∂\ and γ ∈ I1, there is ψ ∈ ν such that γTψ ≤ (f × f)←(ϕ).

Proposition 2.9 ([9]). If Σ is a TL-uniformity on a set X, then the indexed family
(Σ(x))x∈X given by Σ(x) = {ψ < 1x >T : ψ ∈ Σ} is a T -locality system on X.

3. T -locality groups

The concept of T -locality group is introduce in this section and some of their
properties and results are deduced, we show that for a given T -locality group the left
and right translations are homeomorphisms. Also, we study the relations between
T -locality groups and TL-uniform spaces. Precisely, we show that every T -locality
group is TL-uniformizable and induces TL-uniformities.

In what follows, we consider (G, ∗) as a group with e as the identity element, and
for every λ : G → I, we define sλ : G → I, as sλ(x) = λ(x−1), for each x ∈ G, where
x−1 is the inverse element of x.

Now, we define the structure of T -locality groups as follows:
Let (G, ∗) be a group and (G, τ(B)) a T -locality space with base B on G. Then

the triple (G, ∗, τ(B)) is called a T -locality group if the following mappings Γ :
198



K. A. Hashem/Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 193–212

(G×G, τ(B)⊗T τ(B)) → (G, τ(B)) defined by

Γ(x, y) = x ∗ y = xy for all x, y ∈ G ;

Υ : (G, τ(B)) → (G, τ(B)) defined by Υ(x) = x−1, for all x ∈ G, are continuous.

Theorem 3.1. For any group (G, ∗), we have (G, ∗, τ(B)) is a T -locality group if
and only if the mapping Ω : (G×G, τ(B)⊗T τ(B)) → (G, τ(B)) defined by

Ω(x, y) = xy−1 for all x, y ∈ G ;

is continuous.

Proof. Let (G, ∗, τ(B)) be a T -locality group and h : (G × G, τ(B) ⊗T τ(B)) →
(G × G, τ(B) ⊗T τ(B)) the mapping defined by h(x, y) = (x, y−1). Then h is
the product of the identity mapping JG and the continuous mapping Υ, therefore
obviously, h is continuous. Hence, Ω = Γ ◦ h is the composition of continuous
mappings Γ and h, that is, Ω is continuous.

On the other hand, let Ω be a continuous mapping and i : (G, τ(B)) → (G ×
G, τ(B) ⊗T τ(B)) the canonical injection map defined by i(x) = (e, x), where e is
the identity element of G. Then Υ = Ω◦i is the composition of continuous mappings
and therefore is continuous. Since Γ = Ω ◦ h and since h = JG × Υ is the product
of continuous mappings JG and Υ, then h is continuous and therefore Γ also is
continuous. Hence (G, ∗, τ(B)) is a T -locality group. ¤

If ∗ is a binary operation on G, then we define a binary operation ¯T on IG by,
for all λ, ν ∈ IG and x ∈ G

(λ¯T ν)(x) = sup
yz=x∈G

[λ(y)Tν(z)].

Lemma 3.2. If (G, ∗) is a group and λ : G → I, then for all x, y ∈ G, we have

(1x ¯T λ)(y) = λ(x−1y) and (λ¯T 1x)(y) = λ(yx−1).

Proof. Let λ : G → I and x, y ∈ G. Then
(1x ¯T λ)(y) = sup

zs=y
[1x(z)Tλ(s)] = sup

xs=y
λ(s)

= sup
s=x−1y

λ(s) = λ(x−1y).

Analogously, we can show that (λ ¯T 1x)(y) = λ(yx−1). Which winds up the
proof. ¤

For each group (G, ∗) and α ∈ G, the left and right translations are the homo-
morphisms Lα : (G, ∗) → (G, ∗) defined by Lα(x) = αx and Rα : (G, ∗) → (G, ∗),
defined by Rα(x) = xα, for each x ∈ G, respectively.

The left and right translation in T -locality groups fulfill the following results.

Proposition 3.3. Let (G, ∗, τ(B)) be a T -locality group. Then for each α ∈ G, we
have

(i) Lα and Rα are homeomorphisms,
(ii) (1α ¯T λ) = Lα(λ) and (λ¯T 1α) = Rα(λ), for every λ ∈ IG,
(iii) ν ∈ (B(e))∼T if and only if Lα(ν) ∈ (B(α))∼T if and only if Rα(ν) ∈

(B(α))∼T ,
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(iv) ν ∈ (B(α))∼T if and only if Lα−1(ν) ∈ (B(e))∼T if and only if Rα−1(ν) ∈
(B(e))∼T ,

(v) If B is T -saturated, then λ ∈ B(e) if and only if (1α ¯T λ) ∈ B(α).

Proof. (i) The left translation Lα is the composition of the mapping Γ defined above
and the injection map i : (G, τ(B)) → (G × G, τ(B) ⊗T τ(B)) defined by i(x) =
(α, x), that is Lα = Γ◦i. Hence, Lα is continuous and bijective. Since (Lα)← = Lα−1 ,
then (Lα)← is also continuous. Therefore, Lα is a homeomorphism. Similarly, one
can prove that Rα is a homeomorphism.

(ii) Let λ ∈ IG and α ∈ G. Then for every y ∈ G, we have

(Lα(λ))(y) = sup{λ(z) : z ∈ (Lα)←(y)}
= sup{λ(z) : z ∈ Lα−1(y)}
= sup{λ(z) : z = α−1y}
= λ(α−1y)

= (1α ¯T λ)(y), by Lemma 3.2.

That is, (1α ¯T λ) = Lα(λ). Similarly, we can prove (λ¯T 1α) = Rα(λ).
(iii) Let ν ∈ (B(e))∼T . Then for every γ ∈ I1, there is

νγ ∈ B(e) = B(α−1α) = B(Lα−1(α)) such that γTνγ ≤ ν.

Since Lα−1 is continuous, then in view of Theorem 2.5, we get for every θ ∈ I1,
there is νγθ ∈ B(α) such that θTνγθ ≤ (Lα−1)←(νγ) = Lα(νγ), Thus γTθTνγθ ≤
γTLα(νγ) = Lα(γTνγ) ≤ Lα(ν). By putting β = (γTθ) ∈ I1 and νβ = νγθ ∈ B(α),
we have βTνβ ≤ Lα(ν), which implies Lα(ν) ∈ (B(α))∼T .

Conversely, let Lα(ν) ∈ (B(α))∼T . Then for every γ ∈ I1, there is νγ ∈ B(α) =
B(αe) = B(Lα(e)) such that γTνγ ≤ Lα(ν). Since Lα is continuous, then again
by Theorem 2.5, we get for every θ ∈ I1, there is νγθ ∈ B(e) such that θTνγθ ≤
(Lα)←(νγ). By putting β = (γTθ) ∈ I1 and νβ = νγθ ∈ B(e), we get

βTνβ = γTθTνγθ ≤ γT (Lα)←(νγ) = (Lα)←(γTνγ)

≤ (Lα)←(Lα(ν)) = ν, for Lα is ingective.

This implies that ν ∈ (B(e))∼T . Analogously, we can show that ν ∈ (B(e))∼T iff
Rα(ν) ∈ (B(α))∼T .

(iv) Follows immediately from (iii).
(v) Let B be a T -saturated I-filterbase. Then

λ ∈ B(e)
iff λ ∈ B(α−1α) = B(Lα−1(α)), α ∈ G
iff ∃ν ∈ B(Lα−1(α)) such that ν ≤ λ
iff ∃ν ∈ B(Lα−1(α)), for which (Lα−1)←(ν) ∈ (B(α))∼T and ν ≤ λ, by Theorem

2.5
iff ∃ν ∈ B(Lα−1(α)), for which Lα(ν) ∈ B(α) and ν ≤ λ, by hypothesis
iff ∃ν ∈ B(Lα−1(α)), for which Lα(ν) ∈ B(α) and Lα(ν) ≤ Lα(λ)
iff Lα(λ) ∈ B(α)
iff (1α ¯T λ) ∈ B(α), by (ii).

This completes the proof. ¤
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We shall now give some characterization theorems of T -locality groups. The
first gives necessary and sufficient conditions for a group structure and a T -locality
system to be compatible and the second gives necessary and sufficient conditions for
an I-filterbase to be a T -locality group.

Theorem 3.4. If (G, ∗) is a group, then the triple (G, ∗, τ(B)) is a T -locality group
if and only if the following are hold :

(i) for every x ∈ G, we have (B(x))∼T = {(1x ¯T ν) : ν ∈ (B(e))∼T },
(ii) for all ν ∈ B(e) and γ ∈ I1, there is νγ ∈ B(e), with γT (νγ¯T sνγ) ≤ ν.

Proof. Let (G, ∗, τ(B)) be a T -locality group. Then (i) follows from Proposition 3.3.
Now, since the map Ω : (G × G, τ(B) ⊗T τ(B)) → (G, τ(B)) is continuous at all
(x, y) ∈ G × G. Then, by view of Proposition 2.6 and Theorem 2.5, we have for
every ν ∈ B(e) = B(ee−1) = B(Ω(e, e)) and γ ∈ I1, there is (νγ ⊗T νγ) ∈ B(e, e)
such that γTΩ(νγ ⊗T νγ) ≤ ν.
Hence, for every x ∈ G, we get

ν(x) ≥ [γTΩ(νγ ⊗T νγ)](x)

= γT (Ω(νγ ⊗T νγ))(x)

= γT sup{νγ(y)Tνγ(z) : (y, z) ∈ Ω←(x)}
= γT sup{νγ(y)Tνγ(z) : Ω(y, z) = x}
= γT sup{νγ(y)Tνγ(z) : yz−1 = x}
= γT sup{νγ(y)Tsνγ(z−1) : yz−1 = x}
= γT (νγ ¯T sνγ)(x),

that is, γT (νγ ¯T sνγ) ≤ ν.
Which holds (ii).

Conversely, let the stated conditions be hold. If ν ∈ B(Ω(e, e)) = B(ee−1) = B(e)
and γ ∈ I1, then from (ii) we can get νγ ∈ B(e) such that γT (νγ ¯T sνγ) ≤ ν.
So, as above, we can reach to γTΩ(νγ ⊗T νγ) ≤ ν, which meaning, by view of The-
orem 2.5, that the mapping Ω : (G × G, τ(B) ⊗T τ(B)) → (G, τ(B)) is continuous
at (e, e) ∈ G×G.
Also, as it follows from (i) and Proposition 3.3, that the left translation Lα is con-
tinuous at the elements α−1, e ∈ G. Therefore, the continuity of the mapping Ω
follows from the following composition :
Ω = Lαθ−1 ◦ Ω ◦ (Lα−1 × Lθ−1) : G × G → G, where we have (α, θ) → (e, e) →
(ee−1) → e → αθ−1, for all (α, θ) ∈ G×G.
Completing, by Theorem 3.1, that (G, ∗, τ(B)) is a T -locality group. This proves
our assertion. ¤

Theorem 3.5. Let (G, ∗) be a group and consider a collection F ⊂ IG, which
satisfies that :

(i) F is an I-filterbase;
(ii) For all λ ∈ F , we have λ(e) = 1;
(iii) For all λ ∈ F , we get sλ ∈ F ;
(iv) For all λ ∈ F and γ ∈ I1, there is λγ ∈ F , with γT (λγ ¯T λγ) ≤ λ.

Then there exists a unique T -locality system compatible with the group structure of
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G such that F is a T -locality basis at e ∈ G. This T -locality system is given by, for
every x ∈ G

(3.1) (B(x))∼T = {(1x ¯T λ) ∈ IG : λ ∈ F}∼T .

Moreover (G, τ(B)) is an L-Regularity T -locality space.

Proof. It follows already from the preceding theorem that if a T -locality system
exists, compatible with the group structure of G, it must be given by (3.1) and so
it is unique. Now, we show that B = (B(x))x∈G is a T -locality base in G as :
Obviously, B(x) is an I-filterbase.

(TLB1) For every ν ∈ B(x) and x ∈ G, we have

ν(x) = (1x ¯T λ)(x), for some λ ∈ F
= λ(x−1x), by Lemma 3.2

= λ(e)

= 1, by (ii).

(TLB2) Let ν ∈ B(x). Then for every z ∈ G, we have

ν(z) = (1x ¯T λ)(z), for some λ ∈ F
= λ(x−1z), by Lemma 3.2

≥ [γT (λγ ¯T λγ)](x−1z), by (iv)

= γT sup
z∈G

[λγ(x−1y)Tλγ(y−1z)]

≥ γT sup
z∈G

{λγ(x−1y)T [αT (λγα ¯T λγα)](y−1z)}, by (iv) again

= γTαT sup
z∈G

{λγ(x−1y)T sup
rs=y−1z

[λγα(r)Tλγα(s)]}

≥ γTαTλγ(x−1y)Tλγα(y−1z)Tλγα(e)

= γTαT (1x ¯T λγ)(y)T (1y ¯T λγα)(z)T1, by Lemma 3.2 and (ii)

Since, for all θ ∈ I0, we can get (by continuity of T ) α = αθ ∈ I1, for which
[γTαT (1x¯T λγ)(y)] ≥ [(γT (1x¯T λγ)(y))∧θ], hence by taking νxγ = (1x¯T λγ) ∈
B(x) and νyγθ = (1y ¯T λγα) ∈ B(y), we get [(γTνxγ(y))∧θ]Tνyγθ ≤ ν. That is ν
has a T -kernel, and therefore B = (B(x))x∈G is a T -locality base in G. We show that
the T -locality space (G, τ(B)) is an L-Regularity as follows : Let H ∈ 2G, x ∈ G and
ε ∈ I0 be are given such that there is ν ∈ B(x) with hgt(ν ∧ 1H) < ε. Consequently,
we can find ε0 very small such that hgt(ν ∧ 1H) + ε0 < ε. Since ν ∈ B(x), then for
all γ ∈ I1 there are λ, λγ ∈ F such that ν = (1X ¯T λ) and λ ≥ γT (λγ ¯T λγ).
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Hence

ε > hgt[(1x ¯T λ) ∧ 1H ] + ε0

= sup
z∈H

(1x ¯T λ)(z) + ε0

= sup
z∈H

λ(x−1z) + ε0

≥ supz∈H [γT (λγ ¯T λγ)](x−1z) + ε0, by (iv)

= sup
z∈H

sup
y∈G

[γTλγ(x−1y)Tλγ(y−1z)] + ε0

≥ (γ + θ)T sup
z∈H

sup
y∈G

[λγ(x−1y)Tλγ(y−1z)], θ = θT,ε0 as in (2.1)

= (γ + θ)T sup
y∈G

[λγ(x−1y)T sup
z∈H

sλγ(z−1y)]

= (γ + θ)T sup
y∈G

[(1x ¯T λγ)(y)T sup
z∈H

(1z ¯T sλγ)(y)]

= (γ + θ)T sup
y∈G

[(1x ¯T λγ)T sup
z∈H

(1z ¯T sλγ)](y).

Choose γ0 ∈ I1 for which (γ0 + θ) = 1, and taking

ρ = (1x ¯T λγ0), µ = [∨z∈H(1z ¯T sλγ0)]
o,

we get ρ ∈ B(x) and µ is an open set which satisfy, 1H ≤ µ and hgt(ρTµ) < ε.
Since, for every x ∈ H, we have

µ(x) = [∨z∈H(1z ¯T sλγ0)]
o(x) ≥ (1x ¯T sλγ0)

o(x)

= sup
ν∈B(x)

 < ν, 1x ¯T sλγ0 >, by (2.6)

≥  < 1x ¯T sλγ0 , 1x ¯T sλγ0 >, since 1x ¯T sλγ0 ∈ B(x), by (iii)

= 1, by (2.4).

This proves the L-Regularity of (G, τ(B)) and completing the proof. ¤

Proposition 3.6. Let (G, ∗) be a group and for all λ ∈ IG, we define λL, λR :
G × G → I, by λL(x, y) = λ(x−1y), λR(x, y) = λ(yx−1), x, y ∈ G. Then for every
ν ∈ IG, the foolowing hold :

(i) λL < ν >T = ν ¯T λ and λR < ν >T = λ¯T ν ;
(ii) (λTν)L = λLTνL and (λTν)R = λRTνR ;
(iii) (sλ)L = s(λL) and (sλ)R = s(λR) ;
(iv) (λ¯T ν)L = νL ◦T λL and (λ¯T ν)R = νR ◦T λR.

Proof. (i) For every ν ∈ IG and y ∈ G, we have

(λL < ν >T )(y) = sup
z∈G

[ν(z)TλL(z, y)] = sup
z∈G

[ν(z)Tλ(z−1y)]

= sup
z,s=z−1y

[ν(z)Tλ(s)] = sup
zs=y

[ν(z)Tλ(s)]

= (ν ¯T λ)(y),
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and
(λR < ν >T )(y) = sup

z∈G
[ν(z)TλR(z, y)] = sup

z∈G
[ν(z)Tλ(yz−1)]

= sup
z,s=yz−1

[ν(z)Tλ(s)] = sup
z,s=yz−1

[λ(s)Tν(z)]

= sup
sz=y

[λ(s)Tν(z)] = (λ¯T ν)(y).

This proves the required equalities.
(ii) Obviously hold.
(iii) Let λ ∈ IG and x, y ∈ G. Then

(sλ)L(x, y) = xλ(x−1y) = λ((x−1y)−1) = λ(y−1x) = λL(y, x)

= s(λL)(x, y).

Thus (sλ)L = s(λL), and similarly we can prove (sλ)R = s(λR).
(iv) For λ, ν ∈ IG and x, y ∈ G, we have

(λ¯T ν)L(x, y) = (λ¯T ν)(x−1y) = sup
rs=x−1y

[λ(r)Tν(s)]

= sup
(x−1z)(z−1y)=x−1y

[λ(x−1z)Tν(z−1y)]

= sup
z∈G

[λL(x, z)TνL(z, y)] = (νL ◦T λL)(x, y), and

(λ¯T ν)R(x, y) = (λ¯T ν)(yx−1) = sup
rs=yx−1

[λ(r)Tν(s)]

= sup
(zx−1)(yz−1)=yx−1

[λ(zx−1)Tν(yz−1)]

= sup
z∈G

[λR(x, z)TνR(z, y)] = (νR ◦T λR)(x, y).

Rendering (iv) and winds up the proof. ¤

In the following, we devote to proving that every T -locality group is TL-uniformizable.
In doing so, we introduce the concepts of left and right TL-uniformities. Generally,
these two TL-uniformities are not equal unless the group under consideration is
commutative.

Theorem 3.7. Let (G, ∗, τ(B)) be a T -locality group, if we define ∂L = {λL ∈
IG×G : λ ∈ B(e)} and ∂R = {λR ∈ IG×G : λ ∈ B(e)}, then ∂L and ∂R are
TL-uniform bases.

Proof. If (G, ∗, τ(B)) be a T -locality group, then (G, τ(B)) is a T -locality space
with T -locality basis B = (B(x))x∈G. We claim that ∂L is TL-uniform base.

(TLUB1) Obviously ∂L is an I-filterbase.
(TLUB2) If ϕ ∈ ∂L, then there is λ ∈ B(e) such that ϕ = λL, and for all x ∈ G,

we get ϕ(x, x) = λL(x, x) = λ(x−1x) = λ(e) = 1.
(TLUB3) If ϕ ∈ ∂L, then there exists a λ ∈ B(e) such that ϕ = λL. Thus

by virtue of Theorem 3.4 (i), for all γ ∈ I1, we can find λγ ∈ B(e) for which
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γT (λγ¯T λγ
) ≤ λ. By taking ϕγ = (λγ)L ∈ ∂L, we can obtain

γT (ϕγ ◦T ϕγ) = γT [(λγ)L ◦T (λγ)L)]

= γT [λγ ¯T λγ ]L, by Proposition 3.6 (iv)

= [γT (λγ ¯T λγ)]L, clear
≤ λL = ϕ.

(TLUB4) If ϕ ∈ ∂L, then there is λ ∈ B(e) such that ϕ = λL. Consequently,
by Theorem 3.4 (ii), for all γ ∈ I1, there exists a λγ ∈ B(e) for which γTλγ ≤ sλ.
Therefore, by Proposition 3.6 (iii), we get

γT (λγ)L = (γTλγ)L ≤ (sλ)L = s(λL) implies γTϕγ ≤ sϕ.

This shows in accordance with Definition 2.7, that the collection ∂L is a TL-uniform
base, which in turn gives rise to a TL-uniformity ΣL = ∂∼T

L , and similarly for ∂R.
This compleres the proof. ¤

We will call ΣL and ΣR, respectively, the left and right TL-uniformity associated
with B.

Definition 3.8. An I-topological space (X, τ) is called TL-uniformizable if there is
a TL-uniformity Σ on X such that τ = τ(Σ).

Theorem 3.9. Every T -locality group is TL-uniformazable.

Proof. Let (G, ∗, τ(B)) be a T -locality group. Then (G, τ(B)) is a T -locality space
with the T -locality system B∼T = ((B(x))∼T )x∈G. Now, suppose that (Σ(x))x∈G

is a T -locality system associated with the left TL-uniformity Σ. Then we get
Σ(x) = {ψ < 1x >T : ψ ∈ Σ}, by Proposition 2.9

= {λL < 1x >T : λ ∈ (B(e))∼T }, by Theorem 3.5

= {1x ¯T λ : λ ∈ (B(e))∼T }, clear

= (B(x))∼T , by Proposition 3.3 (iv)

Therefore, in view of Definition 2.2, we have τ(B) = τ(B∼T ) = τ(Σ). Which proves
that (G, ∗, τ(B)) is TL-uniformizable. ¤

Proposition 3.10. Let (G, ∗, τ(B)) and (E, ], τ(ξ)) be T -locality groups. If ∂∼T

and W∼T are the associated left TL-uniformities on G and E, respectively, then
f : (G, ∂∼T ) → (E,W∼T ) is uniformly continuous if and only if for all ρ ∈ ξ(e\)
and γ ∈ I1, there is λ ∈ B(e) such that γT (1x ¯T λ) ≤ f←(1f(x) ÄT ρ), for each
x ∈ G, where e and e\ are identity elements of G and E, respectively.

Proof. In view of Definition 3.8, we have f : (G, ∂∼T ) → (E,W∼T ) is uniformly
continuous

iff ∀ϕ ∈ W, γ ∈ I1∃ψ ∈ ∂ such that γTψ ≤ (f × f)←(ϕ)
iff ∀ρ ∈ ξ(e\), γ ∈ I1∃λ ∈ B(e) such that γTλL ≤ (f × f)←(ρL)
iff ∀ρ ∈ ξ(e\), γ ∈ I1∃λ ∈ B(e) such that γTλL(x, y) ≤ ρL(f(x), f(y)), ∀x, y ∈ G

iff ∀ρ ∈ ξ(e\), γ ∈ I1∃λ ∈ B(e) such that γTλ(x−1y) ≤ ρ((f(x))−1, f(y)), ∀x, y ∈
G
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iff ∀ρ ∈ ξ(e\), γ ∈ I1∃λ ∈ B(e) such that γT (1x¯T λ)(y) ≤ (1f(x)ÄT ρ)(f(y)), ∀x, y ∈
G, by Lemma 3.2

iff ∀ρ ∈ ξ(e\), γ ∈ I1∃λ ∈ B(e) such that γT (1x ¯T λ) ≤ f←(1f(x) ÄT ρ), ∀x ∈ G.
This winds up the proof. ¤
Proposition 3.11. Let (G, ∗, τ(B)) and (E, ], τ(ξ)) be T -locality groups, with e and
e\ as the identity elements of G and E, respectively. Then

(i) If ∂∼T and W∼T are the associated right TL-uniformities on G and E, re-
spectively, then f : (G, ∂∼T → (E,W∼T ) is uniformly continuous if and only if for
all ρ ∈ ξ(e\) and γ ∈ I1, there is λ ∈ B(e) such that γT (λ¯T 1x) ≤ f←(ρÄT 1f(x)),
for each x ∈ G.

(ii) If ∂∼T
L and W∼T

R (resp. ∂∼T
R and W∼T

L )are the associated left and right
(resp. right and left) TL-uniformities on G and E, respectively, then f : G → E is
uniformly continuous if and only if for all ρ ∈ ξ(e\) and γ ∈ I1, there is λ ∈ B(e)
such that γT (1x¯T λ) ≤ f←(ρÄT 1f(x)) (resp. γT (λ¯T 1x) ≤ f←(1f(x) ÄT ρ)), for
each x ∈ G.

Proof. Analogous to that of Proposition 3.10. ¤

Proposition 3.12. Let (G, ∗, τ(B)) and (E, ], τ(ξ)) be T -locality groups. If ∂∼T

and W∼T are the associated left TL-uniformities on G and E, respectively, then a
continuous homomorphism f : G → E is uniformly continuous.

Proof. Let f : G → E be a continuous homomorphism, γ ∈ I1 and ρ ∈ ξ(e\) =
ξ(f(e)). Then by Theorem 2.5, there is λ ∈ B(e) such that γTλ ≤ f←(ρ) and
hence, we obtain for every x, y ∈ G that

[γT (1x ¯T λ)](y) = γT (1x ¯T λ)(y) = γTλ(x−1y), by Lemma 3.2

≤ (f←(ρ))(x−1y) = ρ(f(x−1y)),
= ρ(f(x−1)f(y)), for f homomorphism
= ρ((f(x))−1f(y)), clear
= (1f(x) ÄT ρ)(f(y)), by Lemma 3.2 again
= [f←(1f(x) ÄT ρ)](y).

That is γT (1x¯T λ) ≤ f←(1f(x) ÄT ρ), which proves that f is uniformly continuous.
¤

Definition 3.13. A T -locality space (G,o ) is called homogeneous space if for all
x, y ∈ G, there is a homeomorphism h : (G,o ) → (G,o ) such that h(x) = y.

Proposition 3.14. Every T -locality group is a homogeneous space.

Proof. This follows easily from the fact that, if (G, ∗, τ(B)) is a T -locality group,
then for all α, θ ∈ G, the function Rα−1θ : (G, ∗) → (G, ∗) for which, Rα−1θ(α) =
αα−1θ = θ, is a homomorphism. ¤

Example 3.15. (i) For every topological group (G, ∗,T), we have the topolog-
ically generated group (G, ∗,W(T)) is a T -locality group, since all topologically
generated spaces are T -locality spaces (cf. [16]). Where, W(T) = {Σ ∈ IG :
Σ is lower semicontinuous from (G, T) into [0, 1]}.
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(ii) Let (G, ∗) be a group and for every x ∈ G, take B(x) = {(1x ∨ α) ∈ IG : α ≥
1/2}. Then obviously B = (B(x))x∈G is a T -locality base, because for every x ∈ G,
B(x) is an I-filterbase. Moreover, for every ∂ ∈ B(x), we have

∂(x) = (1x ∨ α)(x), for some α ≥ 1/2
= 1,

Which holds (TLB1). Also, for every ∂ ∈ B(x) and all (y, γ, θ) ∈ X × I1 × I0, we
can take ∂γ = (1x ∨ 1

2 ) ∈ B(x) and ∂yγθ = (1y ∨ 1
2 ∨ γ ∨ θ) ∈ B(y), which satisfy

[(γT∂γ(y))∧θ]T∂yγθ ≤ ∂. Holds (TLB2). That is (G, ∗, τ(B)) is a T -locality group.
Furthermore the left TL-uniform base induced by (G, ∗, τ(B)) is ∂ = {λL ∈ IG×G :
λ ∈ B(e)} = {(1e ∨ α)L ∈ IG×G : α ≥ 1/2}.

(iii) The set R+ of all positive real numbers equipped with the usual multiplication
is a group. Now, if we take

F = {(11 ∨ 1(H∪sH) ∨
1
2
) ∈ IR+

: H ⊆ R+} ⊂ IR+
,

then, we have the collection F satisfies the conditions in Theorem 3.5, thus there is
a T -locality base B = (B(x))x∈R+ in R+, given by for all x ∈ R+,

B(x) = {[1x ¯T (11 ∨ 1(H∪sH) ∨
1
2
)] ∈ IR+

: H ⊆ R+}.

Moreover, (R+, τ(B)) is an L-Regularity T -locality space.

4. Initial and final T -locality groups

This section shows that the category T -LocGrp of T -locality groups is a topolog-
ical category [1] and hence all initial and final T -locality groups exist and can be
characterized.

For any class Λ, let ((Hr, τr))r∈Λ be a family of T -locality groups and (fr)r∈Λ a
family of homomorphisms of a group G into groups Hr. For any T -locality group
(G, τ), the family (fr : (G, τ) → (Hr, τr))r∈Λ is called an initial lift of (fr : G →
(Hr, τr))r∈Λ in the category T -LocGrp provided that (G, τ) is the T -locality group
for which the following conditions are fulfilled :

(i) All mappings fr : (G, τ) → (Hr, τr) are continuous homomorphisms;
(ii) For any T -locality group (H, σ) and any mapping f : (H,σ) → (G, τ) is

continuous homomorphism if and only if for all r ∈ Λ the mappings fr ◦f : (H, σ) →
(Hr, τr) are continuous homomorphisms.

By an initial T -locality group we mean the T -locality group which provides an
initial lift in the category T -LocGrp. To prove that all initial lifts and all initial T -
locality groups exist in T -LocGrp we have to prove first that in the case fr : G → Hr

is an injective homomorphism for each r ∈ Λ, and τ is the initial T -locality of (τr)r∈Λ

with respect to (fr)r∈Λ we get that (G, τ) also is a T -locality group.
First, we shall consider the case of Λ being a singleton:

Proposition 4.1. Let (H,σ) be a T -locality group and let f : G → H be an injective
homomorphism of a group G into H. Then the initial T -locality space (G, f←(σ))
of (H, σ) with respect to f also is a T -locality group.
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Proof. Let ΩG : (G×G, f←(σ)× f←(σ)) → (G, f←(σ)) and ΩH : (H ×H,σ×σ) →
(H, σ) be defined as in Theorem 3.1 and let λ ∈ f←(σ). Then, there is Σ ∈ σ such
that λ = f←(Σ). Since (H, σ) is a T -locality group, it follows that ΩH is continuous
and hence Ω←H (Σ) ∈ σ×σ. Now, since f is a homomorphism, then for every x, y ∈ G,
we have

Ω←G (λ)(x, y) = λ(ΩG(x, y)) = (f←(Σ))(xy−1) = Σ(f(xy−1))

= Σ(f(x)f(y−1)) = Σ(f(x)(f(y))−1)

= Σ(ΩH(f(x), f(y))) = (Ω←H (Σ))(f(x), f(y))

= [(f × f)←(Ω←H (Σ))](x, y),

that is, Ω←G (λ) = (f × f)←(Ω←H (Σ)). Since f←(σ) is the initial I-topology of σ with
respect to f , then f : (G, f←(σ)) → (H, σ) is continuous and hence f × f : G×G →
H ×H is obviously continuous. Therefore,

Ω←G (λ) = (f × f)←(Ω←H (Σ)) ∈ (f × f)←(σ × σ) = f←(σ)× f←(σ)),

which means that ΩG is continuous and hence, by Theorem 3.1, (G, f←(σ)) is T -
locality group. ¤

Now, consider the case of any class Λ :

Proposition 4.2. Let ((Hr, σr))r∈Λ be a family of T -locality groups and for all
r ∈ Λ, let fr : G → Hr be an injective homomorphism of a group G into Hr. Let
τ be the initial I-topology of (σr)r∈Λ with respect to (fr)r∈Λ. Then (G, τ) also is
T -locality group.

Proof. Let ΩG : (G × G, τ × τ) → (G, τ) and ΩHr : (Hr ×Hr, σr × σr) → (Hr, σr)
be defined as in Theorem 3.1. Since fr ◦ ΩG = ΩHr ◦ (fr × fr) and ΩHr , fr are
continuous, then fr ◦ ΩG is continuous. From condition (ii) of the initial lift in the
category of I-topological spaces, it follows that ΩG is continuous and thus (G, τ) is
T -locality group. ¤

The following theorem shows that the T -locality group mentioned in Propositions
4.1 and 4.2 fulfills the conditions of an initial lift in the concrete category T -LocGrp.

Theorem 4.3. Let ((Hr, σr))r∈Λ be a family of T -locality groups and for all r ∈ Λ,
let fr : G → Hr be an injective homomorphism of a group G into Hr and let τ
be the initial I-topology of (σr)r∈Λ with respect to (fr)r∈Λ. Then (fr : (G, τ) →
(Hr, σr))r∈Λ is an initial lift of (fr : G → (Hr, σr))r∈Λ in the category T -LocGrp.

Proof. First, Propositions 4.1 and 4.2 show that (G, τ) is a T -locality group. From
condition (i) of an initial lift in the category of I-topological spaces, we get that
condition (i) of initial lift in T -LocGrp holds, that is, all fr : (G, τ) → (Hr, σr)
are continuous homomorphisms. Here, let (H, σ) be a T -locality group and f be a
mapping from H into G. Then from condition (ii) of an initial lift in the category
of I-topological spaces, we get f : (H,σ) → (G, τ) is continuous if and only if all
fr ◦ f : (H,σ) → (Hr, σr) are continuous. Now, if f is a homomorphism and we
have all fr are homomorphisms, then all fr ◦ f are homomorphisms. Conversely, let
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all fr ◦ f be homomorphisms. Since all fr are homomorphisms we have for every
x, y ∈ H, that

fr(f(x, y)) = (fr ◦ f)(xy) = [(fr ◦ f)(x)][(fr ◦ f)(y)]

= [fr(f(x))][fr(f(y))] = fr(f(x)f(y)).

Moreover, since fr is injective, we get f(xy) = f(x)f(y), that is, f is a homomor-
phism. Hence, f : (H, σ) → (G, τ) is continuous homomorphism if and only if all
fr ◦ f : (H, σ) → (Hr, σr) are continuous homomorphisms, that is, condition (ii) of
an initial lift in T -LocGrp is fulfilled. ¤

Theorem 4.3 states that all initial lifts exist uniquely in the concrete category
T -LocGrp and this means that the category T -LocGrp is a topological category [1].
Hence, all initial T -locality groups exist.

By means of Theorem 4.3, the T -locality groups introduced in Propositions 4.1
and 4.2 coincide with the initial T -locality groups, that is, if ((Hr, σr))r∈Λ is a family
of T -locality groups, and for each r ∈ Λ, fr is an injective homomorphism of a group
G into Hr and τ is the initial I-topology of (σr)r∈Λ with respect to (fr)r∈Λ, then
(G, τ) is the initial T -locality group.

T -locality subgroups and T -locality product groups are special initial T -locality
groups and hence the above implies the following result.

Corollary 4.4. (i) If (G, τ) is a T -locality groups and S a subgroup of G, then the
I-topological subspace (G, τS) also is T -locality group, called a T -locality subgroup.

(ii) If ((Gr, τr))r∈Λ is a family of T -locality groups and G is the product Πr∈ΛGr

of the family (Gr)r∈Λ of a groups and τ = Πr∈Λτr is the product of the family (τr)r∈Λ

of I-topologies, then (G, τ) also is T -locality group, called a T -locality product group.

Now, since the concrete category T -LocGrp is topological category, then all final
lifts also uniquely exist [1]. This even means that also all final T -locality groups
exist.

If ((Gr, τr))r∈Λ is a family of T -locality groups and (fr)r∈Λ a family of homomor-
phisms of Gr into a group H, indexed by any class Λ. For any T -locality group (H, σ),
the family (fr : (Gr, τr) → (H, σ))r∈Λ is called a final lift of (fr : (Gr, τr) → H)r∈Λ

in the category T -LocGrp provided that (H, σ) is the T -locality group for which
fulfills the following conditions :

(i) All mappings fr : (Gr, τr) → (H, σ) are continuous homomorphisms;
(ii) For any T -locality group (G, τ) and any mapping f : (H, σ) → (G, τ) is

continuous homomorphism if and only if for all r ∈ Λ the mappings f◦fr : (Gr, τr) →
(G, τ) are continuous homomorphisms.

By a final T -locality group we mean a T -locality group which provides a final lift
in the category T -LocGrp.

The following propositions show that if for each r ∈ Λ, fr : (Gr, τr) → (H, σ) is
a surjective homomorphism and σ is the final T -locality of (τr)r∈Λ with respect to
(fr)r∈Λ, then (H,σ) also is a T -locality group.

To prove these results we need the following proposition which can be proved
easily by means of the properties of the T -locality group.
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Proposition 4.5. If f : (G, τ) → (H, f(τ)) is a surjective homomorphism from a
T -locality group (G, τ) to a group H equipped with the final I-topology f(τ) of τ with
respect to f , then f is an open function.

Consider the case of Λ being a singleton :

Proposition 4.6. Let (G, τ) be a T -locality group and let f : (G, τ) → H be a
homomorphism of a group G onto H. Then the final T -locality space (H, f(τ)) of
(G, τ) with respect to f also is a T -locality group.

Proof. Let ΩG : (G×G, τ × τ) → (G, τ) and ΩH : (H ×H, f(τ)× f(τ)) → (H, f(τ))
be defined as in Theorem 3.1. Now, since f is a surjective homomorphism, then for
every Σ ∈ IH and x, y ∈ H, we have

(Ω←H (Σ))(x, y) = Σ(ΩH(x, y))

= sup{Σ(ΩH(f(r), f(s))) : r, s ∈ G, (f × f)(r, s) = (x, y)}
= sup{Σ(f(r)(f(s))−1) : (r, s) ∈ (f × f)←(x, y)}, clear

= sup{Σ(f(r)(f(s−1)) : (r, s) ∈ (f × f)←(x, y)}
= sup{Σ(f(rs−1)) : (r, s) ∈ (f × f)←(x, y)}
= sup{(f←(Σ))(rs−1) : (r, s) ∈ (f × f)←(x, y)}
= sup{(f←(Σ))(ΩG(r, s)) : (r, s) ∈ (f × f)←(x, y)}
= sup{(Ω←G (f←(Σ)))(r, s) : (r, s) ∈ (f × f)←(x, y)}
= [(f × f)(Ω←G (f←(Σ)))](x, y),

that is, Ω←H (Σ) = (f × f)(Ω←G (f←(Σ))). If Σ ∈ f(τ), then f←(Σ) ∈ τ , and from
continuity of ΩG we get Ω←G (f←(Σ)) ∈ τ × τ . But from Proposition 4.5, we have f
is an open, hence f × f : G×G → H ×H is obviously an open. Therefore,

Ω←H (Σ) = (f × f)(Ω←G (f←(Σ))) ∈ f(τ)× f(τ).

Which proves the continuity of ΩH and this implies that (H, f(τ)) is T -locality
group. ¤

For any class Λ we have the following :

Proposition 4.7. Let ((Gr, τr))r∈Λ be a family of T -locality groups and for all
r ∈ Λ, let fr : Gr → H be a homomorphism of a group Gr onto a group H. Let σ
be the final I-topology of (τr)r∈Λ with respect to (fr)r∈Λ. Then (H, σ) is a T -locality
group.

Proof. Let µ ∈ σ. Since fr : (Gr, τr) → (H, σ) is cintinuous, then f←r (µ) ∈ τr

for all r ∈ Λ. But from continuity of ΩGr : (Gr × Gr, τr × τr) → (Gr, τr), we get
Ω←Gr

(f←r (µ)) ∈ τr×τr. Now, by a similar way to the proof of Proposition 4.6, we have
Ω←H (µ) = (fr × fr)(Ω←Gr

(f←r (µ))), where ΩH : (H × H,σ × σ) → (H, σ), moreover
all fr × fr are open, hence Ω←H (µ) ∈ σ × σ. This proves that ΩH is continuous and
thus (H, σ) is a T -locality group. ¤

Now we are going to show that the T -locality group given in Propositions 4.6 and
4.7 fulfills the conditions of a final lift in the concrete category T -LocGrp.
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Theorem 4.8. Let ((Gr, τr))r∈Λ be a family of T -locality groups and for all r ∈ Λ,
let fr : Gr → H be a surjective homomorphism of a group Gr into H and let σ be the
final I-topology of (τr)r∈Λ with respect to (fr)r∈Λ. Then (fr : (Gr, τr) → (H, σ))r∈Λ

is a final lift of (fr : Gr → H)r∈Λ in the category T -LocGrp. The proof goes
similarly, using Propositions 4.6 and 4.7 and the properties of final lift in the category
T -LocGrp, as in case of Theorem 4.3.

From Theorem 4.8 we get that the T -locality groups introduced in Propositions
4.6 and 4.7 can be considered as the final T -locality groups.

T -locality quotient group is special final T -locality group and hence the above
implies the following result.

Corollary 4.9. If N is a normal subgroup of a T -locality group (G, τ) and G/N is
the corresponding quotient group and if h : G → G/N is the canonical homomor-
phism defined by h(x) = xN for all x ∈ G, then the I-topological quotient space
(G/N, h(τ)) also is T -locality group, called a T -locality quotient group.
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