Annals of Fuzzy Mathematics and Informatics Volume 5, No. 1, (January 2013), pp. 183–192

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Fuzzy h-ideals with operators in Γ-hemirings

DENG PAN, JIANMING ZHAN

Received 24 May 2012; Revised 13 June 2012; Accepted 14 June 2012

ABSTRACT. In this paper, we introduce the concept of fuzzy left h-ideals with operators in Γ -hemirings and establish a new fuzzy left h-ideal with operators. In particular, we consider the characterizations of M-Noetherian M- Γ -hemirings. Finally, we investigate cartesian products of M-fuzzy left h-ideals in M- Γ -hemirings.

2010 AMS Classification: 16Y60; 13E05; 03G25.

Keywords: M- Γ -hemiring, M-fuzzy left h-ideal, Left M-h-ideal, Cartesian product.

Corresponding Author: JIANMING ZHAN (zhanjianming@hotmail.com)

1. Introduction

Semirings play an important role in studying matrices and determinants. Many researchers studied the theory of matrices and determinants over semirings [11, 14]. A special semiring with a zero and endowed with the commutative addition is said to be a hemiring. Although ideals in semirings are useful for ways, they do not in general coincide with the usual ring ideals if S is a ring. Indeed, many results in rings apparently have no analogues in semirings using only ideals. We note that the ideals of semirings play a crucial role in the structure theory. Henriksen [9] defined a more restricted class of ideals in semirings, which is called k-ideals, a still more restricted of ideals in hemirings has been given by Iizuka [11]. In 2004, Jun [15] considered the fuzzy h-ideals of hemirings. By using the fuzzy h-ideals, Zhan et al. described the h-hemiregular hemirings [22]. Furthermore, many researchers gave some basic definitions and results related with fuzzy h-ideals of hemirings [3, 5, 20].

The concept of Γ -ring was first introduced in 1966 by Barnes [1], a concept more general than a ring. After the paper of Barnes, many researchers are engaged in studying some particular Γ -ring. In 1992, applying the concept of fuzzy sets to the theory of Γ -ring, Y. B. Jun and C. Y. Lee [13] gave the notion of fuzzy ideals in Γ -ring and some properties of fuzzy ideals of Γ -ring. After that, Hong and Jun

[10] defined the normalized fuzzy ideals and fuzzy maximal ideals in a Γ -ring and Jun [12] further characterized the fuzzy prime ideals of a Γ -ring. In particular, Dutta-Chanda studied the fuzzy ideals of a Γ -ring and characterized the Γ -fields and Notherian Γ -rings by considering the fuzzy ideals via operator rings of Γ -rings. The concept of Γ -semiring was introduced by M. K. Rao [18], these concepts are extended by Dutta and Sardar [7]. And some properties of such Γ -semiring have been studied, for example, see [8, 17, 19, 23].

Dudek [4, 6] discussed quasigroups and BCC-algebras with operators, respectively. In 2007, Zhan et al. [21] investigated fuzzy h-ideals with operators in hemirings. Now, in this paper, we consider this theory to Γ-hemirings, we introduce the concept of fuzzy left h-ideals with operators in M-Γ-hemirings S and establish a new fuzzy left h-ideal with operators. Using the left M-h-ideals, we establish M-fuzzy left h-ideals of S. Moreover, we introduce the concept of M-Noetherian M-Γ-hemirings and cartesian product of M-fuzzy left h-ideals, we prove that if μ and ν are M-fuzzy left h-ideals of S, then $\mu \times \nu$ is an M-fuzzy left h-ideal of $S \times S$.

2. Preliminaries

Definition 2.1 ([23]). Let S and Γ be two additive semigroups. Then S is said to be a Γ -semiring if there exists a mapping $S \times \Gamma \times S \to S$ (images to be denoted by $a\alpha b$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$) satisfies the following conditions:

- (i) $a\alpha(b+c) = a\alpha b + a\alpha c$;
- $(ii) (a+b)\alpha c = a\alpha c + b\alpha c;$
- (iii) $a(\alpha + \beta)c = a\alpha c + a\beta c;$
- $(iv) \ a\alpha(b\beta c) = (a\alpha b)\beta c.$

By a zero of a Γ -semiring S, we mean an element $0 \in S$ such that $0\alpha x = x\alpha 0 = 0$ and 0 + x = x + 0 = x for all $x \in S$ and $\alpha \in \Gamma$. A Γ -semiring with zero is said to be a Γ -hemiring.

A left ideal of a Γ -hemirings S is a subset A of S which is closed under the addition such that $S\Gamma A \subseteq A$, where $S\Gamma A = \{x\alpha y | x, y \in S, \alpha \in \Gamma\}$.

A left ideal A of Γ -hemirings S is called a left h-ideal of S, respectively, if for any $x, z \in S$ and $a, b \in A$, x + a + z = b + z implies $x \in A$.

Right h-ideals are defined similarly.

Definition 2.2 ([23]). A fuzzy set μ of Γ -hemirings S is said to be a fuzzy left h-ideal of S if it satisfies the following conditions:

```
(i) \mu(x+y) \ge \min\{\mu(x), \mu(y)\}\ for\ all\ x, y \in S,
```

(ii) $\mu(x\alpha y) \ge \mu(y)$ for all $x, y \in S$ and $\alpha \in \Gamma$,

 $(iii)x+a+z=b+z \ implies \ \mu(x)\geq \min\{\mu(a),\mu(b)\} \ for \ all \ a,b,x,z\in S.$

Fuzzy right h-ideals of S are defined similarly.

Example 2.3 ([23]). Let S be a hemiring with the multiplicative identity 1. Then S is a Γ -hemirings, where $\Gamma = S$ and $a\alpha b$ denotes the product of elements a, α, b in S. Now any fuzzy h-ideal of the hemiring S is a fuzzy h-ideal of the Γ -hemiring S.

3. M-fuzzy left h-ideals

Definition 3.1. A Γ-hemiring S with operators is an algebraic system consisting of a Γ-hemiring S, a set M and a function defined in the product set $M \times \Gamma \times S$ and having values in S such that if the product $m\alpha x$ denotes the elements in S determined by the element m of M, x of S and the element α , β of Γ , then

$$m\alpha(x+y) = m\alpha x + m\alpha y$$

and

$$m\alpha(x\beta y) = (m\alpha x)\beta(m\alpha y)$$

hold for any $x, y \in S$, $m \in M$ and $\alpha, \beta \in \Gamma$. We usually use the phrase "S is an M- Γ -hemiring" instead of a " Γ -hemiring with operators".

Example 3.2. Let (S, +) be a semigroup, where S is the sets of all non-negative integers and the operation als the usual additive operation. Let $(\Gamma, +) = \{1\}$. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by $a\alpha b = a \cdot \alpha \cdot b$ for all $a, b \in S$ and $\alpha \in \Gamma$, where "·" is usual multiplication. Then, it can be easily verified that S, under the above multiplication and the structure Γ-mapping, is a Γ-hemiring. We consider $M = \{0, 1\}$, then S is an M-Γ-hemiring.

Definition 3.3. A left h-ideal I of an M- Γ -hemiring S is called a left M-h-ideal of S if $m\alpha x \in I$ for all $m \in M, x \in I$ and $\alpha \in \Gamma$.

Definition 3.4. Let S be an M- Γ -hemiring and μ a fuzzy h-ideal of S. If the inequality $\mu(m\alpha x) \geqslant \mu(x)$ holds for any $x \in S$, $m \in M$ and $\alpha \in \Gamma$, then μ is said to be a fuzzy left h-ideal with operators of S. We use the phrases "an M-fuzzy left h-ideal of S" instead of "an fuzzy h-ideal with operators of S".

Proposition 3.5. Let A be a non-empty subset of an M- Γ -hemiring S, and μ a fuzzy set in S defined by

$$\mu(x) = \left\{ \begin{array}{ll} s, & if \quad x \in A; \\ t, & otherwise, \end{array} \right.$$

for all $x \in S$, where s > t in [0,1]. Then μ is an M-fuzzy left h-ideal of S if and only if A is a left M-h-ideal of S.

Proof. Suppose that A is a left M-h-ideal of S. we know that μ is a fuzzy left h-ideal of S. Let $x \in S$, $m \in M$ and $\alpha \in \Gamma$. If $x \in A$, then $m\alpha x \in A$ as A is a left M-h-ideal of S, and so $\mu(m\alpha x) = s = \mu(x)$. If $x \notin A$, then $\mu(x) = t \leqslant \mu(m\alpha x)$. Thus μ is an M-fuzzy left h-ideal of S.

Conversely, if μ is an M-fuzzy left h-ideal of S, then it is easy to show that A is a left h-ideal of S. Then, for any $x \in A$, $m \in M$ and $\alpha \in \Gamma$, $\mu(m\alpha x) \geqslant \mu(x) = s$ and so, $\mu(m\alpha x) = s$. This shows that $m\alpha x \in A$. Consequently, A is a left M-h-ideal of S.

For any subset A of a Γ -hemiring S, χ_A will denote the characteristic function of A.

Corollary 3.6. Let A be a non-empty subset of an M- Γ -hemirings S. Then A is a left M-h-ideal of S if and only if χ_A is an M-fuzzy left h-ideal of S.

Proposition 3.7. Let μ be an M-fuzzy left h-ideal of an M- Γ -hemiring S. For any $m \in M$, $\alpha \in \Gamma$, define a fuzzy set $\mu[m\alpha]$ in S by $\mu[m\alpha](x) = \mu(m\alpha x)$, $\forall x \in S$. Then $\mu[m\alpha]$ is a fuzzy left h-ideal of S.

Proof. It is obvious. \Box

For any $t \in [0,1]$, the set

$$U(\mu;t) = \{x \in S | \mu(x) \ge t\}$$

is called a level subset of μ .

The following is a simple consequence of the transfer principle for fuzzy sets in [16].

Lemma 3.8 ([23]). A fuzzy set μ in a Γ -hemiring S is a fuzzy left h-ideal of S if and only if the each non-empty level subset $U(\mu;t)$, $t \in (0,1)$, of μ is a left h-ideal of S.

Theorem 3.9. A fuzzy set μ in an M- Γ -hemiring S is an M-fuzzy left h-ideal of S if and only if the each non-empty level subset $U(\mu;t)$ of μ is a left M-h-ideal of S.

Proof. Let μ be an M-fuzzy left h-ideal of S, and assume that $U(\mu;t) \neq \emptyset$ for $t \in [0,1]$. Then by Lemma 3.8, $U(\mu;t)$ is a left h-ideal of S. For every $x \in U(\mu;t)$, $\alpha \in \Gamma$, and $m \in M$, we have

$$\mu(m\alpha x) \geqslant \mu(x) \geqslant t$$
,

and so $m\alpha x \in U(\mu;t)$. Hence $U(\mu;t)$ is a left M-h-ideal of S.

Conversely, suppose that $U(\mu;t) \neq \emptyset$ is a left M-h-ideal of S. Then μ is a fuzzy left h-ideal of S by Lemma 3.8. Now assume that there exist $y \in S$, $\gamma \in \Gamma$ and $k \in M$ such that

$$\mu(k\gamma y) < \mu(y).$$

Taking

$$t_0 = \frac{1}{2}(\mu(k\gamma y) + \mu(y)),$$

we get $t_0 \in [0, 1]$ and

$$\mu(k\gamma y) < t_0 < \mu(y)$$

This implies that $k\gamma y \notin U(\mu; t_0)$ and $y \in U(\mu; t_0)$, this leads a contradiction. And therefor

$$\mu(k\gamma y) \ge \mu(y),$$

for all $y \in S$, $\gamma \in \Gamma$ and $k \in M$. This completes the proof.

Proposition 3.10. Let μ and ν be two fuzzy sets in an M- Γ -hemiring S. If they are M fuzzy left h-ideals of S, then so is $\mu \cap \nu$, where $\mu \cap \nu$ is defined by

$$(\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\} \quad x \in S.$$

Proof. For $a, b \in S$,

$$\begin{array}{rcl} (\mu\cap\nu)(a+b) & = & \min\{\mu(a+b),\nu(a+b)\} \\ & \geq & \min\{\min\{\mu(a),\mu(b)\},\min\{\nu(a),\nu(b)\}\} \\ & = & \min\{\min\{\mu(a),\nu(a)\},\min\{\mu(b),\nu(b)\}\} \\ & = & \min\{(\mu\cap\nu)(a),(\mu\cap\nu)(b)\}. \\ & & 186 \end{array}$$

For all $\alpha \in \Gamma$, since $\mu(a\alpha b) \ge \mu(b)$, and $\nu(a\alpha b) \ge \mu(b)$, it follows that

$$\begin{array}{lcl} (\mu\cap\nu)(a\alpha b) & = & \min\{\mu(a\alpha b),\nu(a\alpha b)\}\\ & \geq & \min\{\mu(b),\nu(b)\}\\ & = & (\mu\cap\nu)(b). \end{array}$$

Now, $\mu \cap \nu$ is a fuzzy left ideal of S. Let $a,b,x,z \in S$ be such that x+a+z=b+z. Then

$$\begin{array}{lcl} (\mu\cap\nu)(x) & = & \min\{\mu(x),\nu(x)\} \\ & \geq & \min\{\min\{\mu(a),\mu(b)\},\min\{\nu(a),\nu(b)\}\} \\ & = & \min\{\min\{\mu(a),\nu(a)\},\min\{\mu(b),\nu(b)\}\} \\ & = & \min\{(\mu\cap\nu)(a),(\mu\cap\nu)(b)\}. \end{array}$$

Therefore $\mu \cap \nu$ is a fuzzy left h-ideal of S. Let $m \in M$, $\alpha \in \Gamma$ we have

$$\begin{array}{rcl} (\mu\cap\nu)(m\alpha x) & = & \min\{\mu(m\alpha x),\nu(m\alpha x)\}\\ & \geq & \min\{\mu(x),\nu(x)\}\\ & = & (\mu\cap\nu)(x). \end{array}$$

Consequently, $\mu \cap \nu$ is an M-fuzzy left h-ideal of S.

Theorem 3.11 ([23]). Let $\{A_t|t\in\Lambda\subseteq[0,1]\}$ be a collection of M-h-ideals of an M- Γ -hemiring S such that

(i)
$$S = \bigcup_{t \in \Lambda} A_t$$
,

(ii) t < s if and only if $A_s \subset A_t$ for all $t, s \in \Lambda$.

Define a fuzzy set μ in S by

$$\mu(x) = \sup\{t \in \Lambda | x \in A_t\}, \quad \forall x \in S.$$

Then μ is an M-fuzzy left h-ideal of S.

Definition 3.12. An M- Γ -hemiring S is said to satisfy the ascending (descending) chain condition (briefly, ACC(DCC)) if for every ascending (descending) sequence $A_1 \subseteq A_2 \subseteq \cdots (A_1 \supseteq A_2 \supseteq \cdots)$ of left M-h-ideals of S there exists a nature number n such that

$$A_i = A_n, \ \forall i \ge n.$$

Definition 3.13. An M- Γ -hemiring S is said to M-Noetherian if every left M-h-ideals of S satisfies ACC for left M-h-ideals.

Theorem 3.14. Let $\{A_n | n \in N\}$ be a family of left M-h-ideals of an M- Γ -hemiring S which is nested, that is, $S = A_1 \supset A_2 \supset \cdots$ Let μ be a fuzzy set in S defined by

$$\mu(x) = \begin{cases} \frac{n}{n+1}, & for \ x \in A_n/A_{n+1}, \ n = 1, 2, 3, \dots; \\ 1, & for \ x \in \bigcap_{n=1}^{\infty} A_n, \end{cases}$$

for all $x \in S$. Then μ is an M-fuzzy left h-ideal of S.

Proof. Suppose that $x \in A_k/A_{k+1}$ and $y \in A_r/A_{r+1}$ for $k = 1, 2, \dots; r = 1, 2, \dots$. Without loss of generality, we may assume that $k \leq r$. Then clearly $y \in A_k$, so $x + y \in A_k$. Hence

$$\mu(x+y) \ge \frac{k}{k+1} = \min{\{\mu(x), \mu(y)\}}.$$

If $x, y \in \bigcap_{n=1}^{\infty} A_n$, then $x + y \in \bigcap_{n=1}^{\infty} A_n$, and clearly that

$$\mu(x+y) = 1 = \min\{\mu(x), \mu(y)\}.$$

If $x \in \bigcap_{n=1}^{\infty} A_n$, and $y \notin \bigcap_{n=1}^{\infty} A_n$, then there exits $l \in N$ such that $y \in A_l/A_{l+1}$, it follows that $x + y \in A_l$, so that

$$\mu(x+y) \ge \frac{l}{l+1} = \min{\{\mu(x), \mu(y)\}}.$$

Similarly, we know that

$$\mu(x+y) \ge \frac{l}{l+1} = \min{\{\mu(x), \mu(y)\}}.$$

whenever $x \notin \bigcap_{n=1}^{\infty} A_n$, and $y \in \bigcap_{n=1}^{\infty} A_n$. Now if $y \in A_r/A_{r+1}$ for some $r = 1, 2, \dots$, then $x\alpha y \in A_r$ for all $x \in S$ and $\alpha \in \Gamma$. Hence

$$\mu(x\alpha y) \ge \frac{r}{r+1} = \mu(y).$$

If $y \in \bigcap_{n=1}^{\infty} A_n$, then $x \alpha y \in \bigcap_{n=1}^{\infty} A_n$ for all $x \in S$ and $\alpha \in \Gamma$. So

$$\mu(x\alpha y) = 1 = \mu(y).$$

Let $a, b, x, z \in S$ be such that x + a + z = b + z. If $a, b \in A_r/A_{r+1}$ for some $r=1,2,\cdots$, then $x\in A_r$ as A_r is a left M-h-ideal of S. Thus

$$\mu(x) \ge \frac{r}{r+1} = \min\{\mu(a), \mu(b)\}.$$

If $a, b \in \bigcap_{n=1}^{\infty} A_n$, then $x \in \bigcap_{n=1}^{\infty} A_n$, and so

$$\mu(x) = 1 = \min{\{\mu(a), \mu(b)\}}.$$

Assume that $a \in A_r/A_{r+1}$ for some $r = 1, 2, \dots$, and $b \in \bigcap_{n=1}^{\infty} A_n$, (or, $a \in \bigcap_{n=1}^{\infty} A_n$ for some and $b \in A_r/A_{r+1}$ for some $r = 1, 2, \dots$). Then $x \in A_r$, and so

$$\mu(x) = \frac{r}{r+1} = \min{\{\mu(a), \mu(b)\}}.$$

Consequently, μ is a fuzzy left h-ideal of S.

The last, let $x \in \bigcap_{n=1}^{\infty} A_n$, $m \in M$ and $\alpha \in \Gamma$. Then $\mu(x) = 1$ and $m\alpha x \in \Gamma$ $\bigcap_{n=1}^{\infty} A_n$, so

$$\mu(m\alpha x) = 1 = \mu(x).$$

If $x \in A_r/A_{r+1}$, $m \in M$ and $\alpha \in \Gamma$, then $m\alpha x \in A_r$, we have

$$\mu(m\alpha x) \ge \frac{r}{r+1} = \mu(x).$$

So, μ is an M-fuzzy left h-ideal of S.

4. Cartesian product of M-fuzzy left h-ideals

A fuzzy relation on any set S is a fuzzy set $\mu: S \times S \longrightarrow [0,1]$.

If μ is a fuzzy relation on a set S and ν is a fuzzy set in S, then μ is a fuzzy relation on ν if $\mu(x,y) \leq \min\{\nu(x),\nu(y)\}, \ \forall x,y \in S$.

Definition 4.1 ([2]). Let μ and ν be fuzzy sets in a set S. Then the Cartesian product of μ is defined by $(\mu \times \nu)(x,y) = \min\{\mu(x),\nu(y)\} \ \forall x,y \in S$.

Lemma 4.2 ([2]). Let μ and ν be fuzzy sets in a set S. Then

- (i) $\mu \times \nu$ is a fuzzy relation on S,
- (ii) $U(\mu \times \nu; t) = U(\mu; t) \times U(\nu; t)$ for all $t \in [0, 1]$.

Definition 4.3 ([2]). If ν is a fuzzy set in a set S, then the strongest fuzzy relation on S that is a fuzzy relation on ν is μ_{ν} , which is given by $\mu_{\nu}(x,y) = \min\{\nu(x), \nu(y)\} \ \forall x, y \in S$.

Lemma 4.4 ([2]). For a given fuzzy set ν on a set S, let μ_{ν} be strongest fuzzy relation on S. Then for $t \in [0,1]$, we have that $U(\mu_{\nu};t) = U(\nu;t) \times U(\nu;t)$.

The following proposition is an immediate consequence of Lemma 4.4, and we omit the proof.

Proposition 4.5. If ν is a fuzzy left h-ideal of an M- Γ -hemiring S. Then the level left h-ideals of μ_{ν} are given by $U(\mu_{\nu};t) = U(\nu;t) \times U(\nu;t) \quad \forall t \in [0,1].$

Let S_1 and S_2 be two M- Γ -hemirings. Now we can easy to check that $S_1 \times S_2$ is an M- Γ -hemiring by the operations which we define as follows:

```
(i) (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2);
```

- (ii) $(x_1, x_2)\alpha(y_1, y_2) = (x_1\alpha y_1, x_2\alpha y_2);$
- (iii) $m\alpha(x_1, x_2) = (m\alpha x_1, m\alpha x_2),$

for all $x_1, x_2, y_1, y_2 \in S$, $\alpha \in \Gamma$ and $m \in M$.

Theorem 4.6. Let μ and ν be M-fuzzy left h-ideals of an M- Γ -hemiring S. Then $\mu \times \nu$ is an M-fuzzy left h-ideal of $S \times S$.

Proof. Let $(x_1, x_2), (y_1, y_2) \in S \times S$ and $\alpha \in \Gamma$. Then we have

```
\begin{array}{lll} (\mu \times \nu)((x_1,x_2) + (y_1,y_2)) & = & (\mu \times \nu)(x_1 + y_1,x_2 + y_2) \\ & = & \min\{\mu(x_1 + y_1),\nu(x_2 + y_2)\} \\ & \geq & \min\{\min\{\mu(x_1),\mu(y_1)\},\min\{\nu(x_2),\nu(y_2)\}\} \\ & = & \min\{\min\{\mu(x_1),\nu(x_2)\},\min\{\mu(y_1),\nu(y_2)\}\} \\ & = & \min\{(\mu \times \nu)(x_1,x_2),(\mu \times \nu)(y_1,y_2)\}, \end{array}
```

and then

$$\begin{array}{lcl} (\mu \times \nu)((x_1, x_2)\alpha(y_1, y_2)) & = & (\mu \times \nu)(x_1\alpha y_1, x_2\alpha y_2) \\ & = & \min\{\mu(x_1\alpha y_1), \nu(x_2\alpha y_2)\} \\ & \geq & \min\{\mu(y_1), \nu(y_2)\} \\ & = & (\mu \times \nu)(y_1, y_2). \end{array}$$

Now let $(a_1, a_2), (b_1, b_2), (x_1, x_2), (z_1, z_2) \in S \times S$ be such that

$$(x_1, x_2) + (a_1, a_2) + (z_1, z_2) = (b_1, b_2) + (z_1, z_2),$$

i.e. $(x_1 + a_1 + z_1, x_2 + a_2 + z_2) = (b_1 + z_1, b_2 + z_2)$, it follows that

$$x_1 + a_1 + z_1 = b_1 + z_1, x_2 + a_2 + z_2 = b_2 + z_2,$$

so that

$$\begin{array}{lcl} (\mu \times \nu)(x_1, x_2) & = & \min\{\mu(x_1), \nu(x_2)\} \\ & \geq & \min\{\min\{\mu(a_1), \mu(b_1)\}, \min\{\nu(a_2), \nu(b_2)\}\} \\ & = & \min\{\min\{\mu(a_1), \nu(a_2)\}, \min\{\mu(b_1), \nu(b_2)\}\} \\ & = & \min\{(\mu \times \nu)(a_1, a_2), (\mu \times \nu)(b_1, b_2)\}. \\ & & 189 \end{array}$$

Therefor $\mu \times \nu$ is a fuzzy left h-ideal of $S \times S$. Now let $x = (x_1, x_2) \in S \times S, m \in M$, then

```
(\mu \times \nu)(m\alpha x) = (\mu \times \nu)(m\alpha(x_1, x_2))
= (\mu \times \nu)(m\alpha x_1, m\alpha x_2)
= \min\{\mu(m\alpha x_1), \nu(m\alpha x_2)\}
\geq \min\{\mu(x_1), \nu(x_2)\}
= (\mu \times \nu)(x_1, x_2)
= (\mu \times \nu)(x).
```

Hence, $\mu \times \nu$ is an M-fuzzy left h-ideal of $S \times S$.

Theorem 4.7. Let ν be a fuzzy set in an M- Γ -hemiring S and let μ_{ν} be the strongest fuzzy relation on S. Then ν is an M-fuzzy left h-ideal of S if and only if μ_{ν} is an M-fuzzy left h-ideal of $S \times S$.

Proof. Assume that ν is an M-fuzzy left h-ideal of S. Let $(x_1, x_2), (y_1, y_2) \in S \times S$, and $\alpha \in \Gamma$. Then

```
\begin{array}{rcl} \mu_{\nu}((x_{1},x_{2})+(y_{1},y_{2})) & = & \mu_{\nu}(x_{1}+y_{1},x_{2}+y_{2}) \\ & = & \min\{\nu(x_{1}+y_{1}),\nu(x_{2}+y_{2})\} \\ & \geq & \min\{\min\{\nu(x_{1}),\nu(y_{1})\},\min\{\nu(x_{2}),\nu(y_{2})\}\} \\ & = & \min\{\min\{\nu(x_{1}),\nu(x_{2})\},\min\{\nu(y_{1}),\nu(y_{2})\}\} \\ & = & \min\{\mu_{\nu}(x_{1},x_{2}),\mu_{\nu}(y_{1},y_{2})\}, \end{array}
```

and

$$\begin{array}{lcl} \mu_{\nu}((x_1,x_2)\alpha(y_1,y_2)) & = & \mu_{\nu}(x_1\alpha y_1,x_2\alpha y_2) \\ & = & \min\{\nu(x_1\alpha y_1),\nu(x_2\alpha y_2)\} \\ & \geq & \min\{\nu(y_1),\nu(y_2)\} \\ & = & \mu_{\nu}(y_1,y_2). \end{array}$$

Now let $(a_1, a_2), (b_1, b_2), (x_1, x_2), (z_1, z_2) \in S \times S$ be such that

$$(x_1, x_2) + (a_1, a_2) + (z_1, z_2) = (b_1, b_2) + (z_1, z_2).$$

So

$$x_1 + a_1 + z_1 = b_1 + z_1, x_2 + a_2 + z_2 = b_2 + z_2.$$

Thus

$$\begin{array}{lll} \mu_{\nu}(x_1,x_2) & = & \min\{\nu(x_1),\nu(x_2)\} \\ & \geq & \min\{\min\{\nu(a_1),\nu(b_1)\},\min\{\nu(a_2),\nu(b_2)\}\} \\ & = & \min\{\min\{\nu(a_1),\nu(a_2)\},\min\{\nu(b_1),\nu(b_2)\}\} \\ & = & \min\{\mu_{\nu}(a_1,a_2),\mu_{\nu}(b_1,b_2)\}. \end{array}$$

Therefor μ_{ν} is a fuzzy left h-ideal of $S \times S$. Now, for any $(x_1, x_2) \in S \times S, m \in M$, we have

$$\begin{array}{lcl} \mu_{\nu}(m\alpha(x_{1},x_{2})) & = & \mu_{\nu}(m\alpha x_{1},m\alpha x_{2}) \\ & = & \min\{\nu(m\alpha x_{1}),\nu(m\alpha x_{2})\} \\ & \geq & \min\{\nu(x_{1}),\nu(x_{2})\} \\ & = & \mu_{\nu}(x_{1},x_{2}). \end{array}$$

Thus μ_{ν} is an M-fuzzy left h-ideal of $S \times S$.

Conversely, suppose that μ_{ν} is an M-fuzzy left h-ideal of $S \times S$. By Theorem 4.12 in [15], we know that ν is a fuzzy left h-ideal of S. Now, for any $x_1, x_2, y_1, y_2 \in S$, and $\alpha \in \Gamma$, by using Proposition 4.7 in [15], we have

```
\begin{array}{lcl} \min\{\nu(x_{1}\alpha y_{1}),\nu(x_{2}\alpha y_{2})\} & = & \mu_{\nu}(x_{1}\alpha y_{1},x_{2}\alpha y_{2}) \\ & = & \mu_{\nu}((x_{1},x_{2})\alpha(y_{1},y_{2})) \\ & \geq & \mu_{\nu}(y_{1},y_{2}) \\ & = & \min\{\nu(y_{1}),\nu(y_{2})\}, \end{array}
```

and so $\nu(x_1 \alpha y_1) \ge \min\{\nu(y_1), \nu(y_2)\}$. Taking $x_1 = x, y_1 = y$ and $y_2 = 0$, we get $\nu(x \alpha y) \ge \min\{\nu(y), \nu(0)\} = \nu(y)$.

Then let $m \in M$, we have

```
\min\{\nu(m\alpha x_1), \nu(m\alpha x_2)\} = \mu_{\nu}(m\alpha x_1, m\alpha x_2) 
 = \mu_{\nu}(m\alpha(x_1, x_2)) 
 \geq \mu_{\nu}(x_1, x_2) 
 = \min\{\nu(x_1), \nu(x_2)\}.
```

Taking $x_1 = x_2 = x$, we have $\nu(m\alpha x) \ge \nu(x)$. Consequently, ν is an M-fuzzy left h-ideal of S.

Acknowledgements. The authors are extremely grateful to the referees and Editor-in-Chief, Prof. Y.B. Jun, for giving them many valuable comments and helpful suggestions which help to improve the presentation of this paper.

This research is partially supported by a grant of National Natural Science Foundation of China, # 61175055 and a grant of Innovation Term of Higher Education of Hubei Province, China, # T201109.

References

- [1] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966) 411–422.
- [2] P. Bhattacharya and N. P. Mukherjee, Fuzzy relations and fuzzy groups, Inform. Sci. 36(1985) 267–282.
- [3] W.A. Dudek, Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft Comput. 12(2008) 359–364.
- [4] W.A. Dudek, Fuzzy subquasigroups, Quasigroups Related Systems 5(1998) 81-98.
- [5] W.A. Dudek, Intuitionistic fuzzy h-ideals of hemirings, WSEAS Trans. Math. 12(2009) 1315– 1331.
- [6] W.A. Dudek, Y.B. Jun and Z. Stojakovic, On fuzzy ideals in BCC-algebras, Fuzzy Sets and Systems 123(2001) 251–258.
- [7] T.K. Dutta and S. K. Sardar, On the operator semirings of a Γ -semirings, Southeast Asian Bull. Math. 26(2002) 203–213.
- [8] T.K. Dutta and S.K. Sardar, Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad J. Math. 30(2000) 97–108.
- [9] M. Henriksen, Ideals in semirings with commutive addition, Am. Math. Soc. Notices 6(1958) 321.
- [10] S.M. Hong and Y.B. Jun, A note on fuzzy ideals in gamma-rings, Bull. Honam Math. Soc. 12(1995) 39–48.
- [11] K. Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J. 11(2) (1959) 409–421.
- [12] Y.B. Jun, On fuzzy prime ideals of Γ-rings, Soochow J. Math. 21(1)(1996) 41–48.
- [13] Y.B. Jun and C.Y. Lee, Fuzzy $\Gamma-{\rm rings},$ Pusan Kyŏngnam Math. J. 8(1992) 163–170.
- [14] Y.B. Jun, J. Neggers and H. S. Kim, On L-fuzzy ideals in semirings (I), Czechoslovak Math. J. 48(123)(1998) 669-675.

- [15] Y.B. Jun, M.A. Öztürk and S. Z. Song, On fuzzy h-ideals in hemirings, Inform. Sci. 162(2004) 211–226.
- $[16]\,$ M. Kondo and W. A. Dudek, On the transfer principle in fuzzy theory, Mathware Soft Comput. 12(2005)~41–55.
- [17] X. Ma and J. Zhan, Fuzzy h-ideals in h-hemiregular and h-semisimple Γ -hemirings, Neural Comput. & Applic. 19(2010) 477–485.
- [18] M.K. Rao, Γ-semirings-1, Southeast Asian Bull. Math. 19(1995) 49–54.
- [19] S.K. Sardar and U. Dasgupta, On primitive Γ -semirings, Novi Sad J. Math. 34(2004) 1–12.
- [20] Y. Yin, X. Huang, D. Xu and H. Li, The characterization of h-semisimple hemirings, Int. J. Fuzzy Syst. 11 (2009) 116–122.
- [21] J. Zhan and B. Davvaz, L-fuzzy h-ideals with operators in hemirings, Northeast Math. J. 23(1)(2007) 1–14.
- [22] J. Zhan and W. A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sci. 177(2007) 876-886.
- [23] J. Zhan and K. P. Shum, On fuzzy h-ideals in Γ -hemirings, Neural Comput. & Applic. 20(2011) 495–505.

<u>DENG PAN</u> (154094271@qq.com)

Department of Mathematics, Hubei University for Nationalities Enshi, Hubei Province 445000, China

JIANMING ZHAN (zhanjianming@hotmail.com)

Department of Mathematics, Hubei University for Nationalities Enshi, Hubei Province 445000, China