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Abstract. The purpose of this paper is to prove common fixed point
theorems containing rational term in M-fuzzy metric spaces, while proving
our results, we utilize the idea of compatible mappings of type (*) due to
J.H.Park et.al [12]. Our results suggest a path to rational version of various
fixed point theorems in existing literature of M-fuzzy metric spaces.
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1. Introduction

The theory of fuzzy sets is proposed by Zadeh [14] . Deng [2],Erceg [3], Kaleva
and Seikkala [7] and Kramosil and Michalek [8] introduced the concepts of fuzzy
metric spaces in different ways. George and Veeramani [4] modified the concept of
fuzzy metric spaces due to Kramosil and Michalek [8] and defined the Hausdorff
topology of fuzzy metric spaces. Recently, many authors (Chang et al. [1]; Jung et
al. [6]; Mishra et al. [9]; Park et al. [10] have also studied the fixed point theory
in these fuzzy metric spaces. Sedghi et al. [13] introduced the concept of M-fuzzy
metric spaces which is a generalization of fuzzy metric spaces due to George and
Veeramani [4] and proved common fixed point theorems for two mappings under
the conditions of weak compatible and R-weakly commuting mappings in complete
M-fuzzy metric spaces. In a paper, J. H.Park et al. [11] introduced the concept of
compatible mapping of type (*) in M-fuzzy metric spaces and established common
fixed point theorems for five mappings satisfying some conditions. In this paper we
show that every D∗-metric and fuzzy metric induces a M-fuzzy metric respectively,
further we proved the common fixed point theorems using the idea of compatible
mappings of type (*) and rational inequality satisfying some conditions.
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2. Preliminaries

Definition 2.1 ([13]). Let X be a nonempty set. A generalized metric (or D∗-
metric) on X is a function D : X3 → R+ satisfying the following conditions for all
x, y, z, a ∈ X, satisfying the following conditions:
(D-1) D∗(x, y, z) ≥ 0, for all a ∈ [0, 1],
(D-2) D∗(x, y, z) = 0 if and only if x = y = z,
(D-3) D∗(x, y, z) = D∗(px, y, z) (symmetry), where p is a permutation function
(D-4) D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z) for all a, b, c ∈ [0, 1].

The pair (X,D∗) is called a generalized metric (or D∗-metric) space. Immediate
examples of D∗-metric are

(a) D∗(x, y, z) = max d(x, y), d(y, z), d(z, x),
(b) D∗(x, y, z) = d(x, y)+d(y, z)+d(z, x), where d is the ordinary metric on X.

Definition 2.2 ([12]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a
continuous t-norm if ([0, 1], ∗) is an abelian topological monoid with unit 1 such that
a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norm are a ∗ b = ab and a ∗ b = min (a, b).

Definition 2.3 ([13]). The 3-tuple (X, M, ∗) is called a M-fuzzy metric space if X
is an arbitrary set, ∗ is a continuous t-norm, and M is a fuzzy set on X3 × (0,∞)
satisfying the following conditions for all x, y, z, a ∈ X and t, s > 0,

(FM-1) M(x, y, z, t) > 0,
(FM-2) M(x, y, z, t) = 1 if and only if x = y = z,
(FM-3) M(x, y, z, t) = M(px, y, z, t) (symmetry), where p is a permutation function,
(FM-4) M(x, y, a, t) ∗M(a, z, z, s) ≤ M(x, y, z, t + s),
(FM-5) M(x, y, z, À) : (0,∞)× [0, 1] is continuous.

In the following examples, we know that both D∗-metric and fuzzy metric induce
a M-fuzzy metric.

Example 2.4. Let (X,D, ∗) be a D∗-metric space, where a ∗ b = a × b for all
a, b ∈ [0, 1] and for all x, y, z ∈ X and t > 0, and M(x, y, z, t) = t

t+D∗(x,y,z) . Then
(X, M, ∗) is a M -fuzzy metric space.

Example 2.5. Let (X, M, ∗) be a fuzzy metric space. If we define

M : X3 × (0,∞) → [0, 1]

by M(x, y, z, t) = M(x, y, t)∗M(y, z, t∗M(z, x, t), then (X, M, ∗) is a M -fuzzy metric
space.

Lemma 2.6 ([13]). Let (X,M, ∗) be a M -fuzzy metric space. For any x, y, z ∈ X
and t > 0, we have

(a) M(x, x, y, t) = M(x, y, y, t).
(b) M(x, y, z, À) is nondecreasing.

Definition 2.7 ([13]). Let (X, M, ∗) be a M -fuzzy metric space and xn be a sequence
in X.

(a) xn is said to be convergent to a point x ∈ X (denoted by lim
n→∞

xn = x) if
148
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lim
n→∞

M(x, x, xn, t) = 1 for all t > 0.

(b) xn is called a Cauchy sequence if lim
n→∞

M(x(n + p), x(n + p), xn, t) = 1 for all
t > 0 and p > 0.

(c) A M -fuzzy metric in which every Cauchy sequence is convergent is said to be
complete.

Remark 2.8. Since ∗ is continuous, it follows from (FM-4) that the limit of sequence
is uniquely determined.

Let (X, M, ∗) be a M -fuzzy metric space with the following condition:
(FM-6) lim

n→∞
M(x, y, z, t) = 1 for all x, y, z ∈ X and t > 0.

Lemma 2.9 ([11]). Let xn be a sequence in a M-fuzzy metric space (X,M, ∗) with
the condition (FM-6). If there exists a number k ∈ (0, 1) such that

M(xn+p, xn+p, xn, kt) ≥ M(xn+1, xn, xn, t)
for all t > 0 and n = 1, 2, ..., then xn is a Cauchy sequence in X.

Lemma 2.10 ([11]). Let (X, M, ∗) be a M -fuzzy metric space with the condition
(FM-6). If, for all x, y ∈ X and for a number k ∈ (0, 1),

M(x, y, z, kt) ≥ M(x, y, z, t),
then x = y = z.

3. Compatible mappings of type (*)

Definition 3.1 ([13]). Let A andBbe mappings from a M -fuzzy metric space
(X, M, ∗) into itself. The mappings are said to be compatible if

lim
n→∞

M(ABxn, BAxn, BAxn, t) = 1 for all t > 0,

whenever xn is a sequence in X such that
lim

n→∞
Axn = lim

n→∞
Bxn = z for somez ∈ X.

J. H. Park et al. [11] introduced the concept of compatible mappings of type (∗)
as follows.

Definition 3.2 ([11]). LetA and B be mappings from a M-fuzzy metric space(X, M, ∗)
into itself. The mappings are said to be compatible of type (∗) if

lim
n→∞

M(ABxn, BAxn, BAxn, t) = 1 and lim
n→∞

M(BAxn, AAxn, AAxn, t) = 1 for
all t > 0, whenever xn is a sequence in Xsuch that

limn→∞Axn = limn→∞Bxn = z for some z ∈ X.

Proposition 3.3. Let (X,M, ∗) be a M -fuzzy metric space and A and B be contin-
uous mappings from Xinto itself. Then A and B are compatible if and only if they
are compatible of type (∗).
Proof. Let xn be a sequence in X such that limn→∞Axn = limn→∞Bxn = z for
some z ∈ X. Since A is continuous, we have

lim
n→∞

AAxn = lim
n→∞

ABxn = Az.

Further, since A and B are compatible, we get

lim
n→∞

M(ABxn, BAxn, BAxn, t) = 1,
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for all t > 0. Thus, from the inequality

M(AAxn, BAxn, BAxn, t) ≥ M(AAxn, AAxn, ABxn, t)∗M(ABxn, BAxn, BAxn, t),

it follows that M(AAxn, BAxn, BAxn, t) = 1. Similarly, we also obtain

M(BBxn, BBxn, ABxn, t) = 1.

Hence, A andB are compatible of type (∗).
Conversely, suppose that xn is a sequence in X such that limn→∞Axn = zand

limn→∞Bxn = z for some z ∈ X. Then, since B is continuous, we have

lim
n→∞

BAxn = lim
n→∞

BBxn = Bz.

Since A and B are compatible of type (∗), we get

lim
n→∞

M(ABxn, BBxn, BBxn, t/2) = lim
n→∞

M(BAxn, AAxn, AAxn, t/2) = 1

for all t > 0. Hence, from the inequality

M(ABxn, BAxn, BAxn, t) ≥ M(ABxn, BBxn, BBxn, t)∗M(BBxn, BBxn, BAxn, t),

it follows that limn→∞M(ABxn, BAxn, BAxn, t) ≥ 1 ∗ 1 ≥ 1 and so

lim
n→∞

M(ABxn, BAxn, BAxn, t) = 1.

Hence, A and B are compatible. ¤

Proposition 3.4. Let (X, M, ∗) be a M -fuzzy metric space and A and B be map-
pings from X into itself. If A and B are compatible of type (∗) and Az = Bz for
some z ∈ X, then ABz = BBz = BAz = AAz.

Proof. Let xn be a sequence in X defined by xn = z for some z ∈ X and n = 1, 2...
and Az = Bz. Then we have limn→∞Axn = limn→∞Bxn = Az. Since A and B are
compatible of type (*), we get

M(ABz, BBz, BBz, t) = lim
n→∞

M(ABxn, BBxn, BBxn, t) = 1

and hence ABz = BBz. Similarly, we have BAz = AAz. But, Az = Bz implies
BBz = BAz. Therefore, we obtain ABz = BBz = BAz = AAz. ¤

Proposition 3.5. Let (X, M, ∗) be a M -fuzzy metric space and A and B be map-
pings from X into itself. If A and B are compatible of type (∗) and xn is a sequence
in X such that limn→∞Axn = limn→∞Bxn = z for some z ∈ X, then

(a) limn→∞BAxn = Az if Ais continuous at z.
(b) ABz = BAzandAz = Bz if A and B are continuous at z.

Proof. (a) Since A is continuous at z and limn→∞Axn = z, limn→∞AAxn = Az.
SinceA and B is compatible of type (∗), for all t > 0, we have

lim
n→∞

M(BAxn, AAxn, AAxn, t) = 1

and thus from (FM-4) we get
limn→∞M(BAxn, Az,Az, t)
≥ limn→∞M(BAxn, AAxn, AAx(n, )t/2) ∗ limn→∞M(AAxn, Az, Az, t/2)
≥ 1,

i.e., limn→∞M(BAxn, Az,Az, t) = 1. Hence we havelimn→∞BAxn = Az.
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(b) limn→∞Axn = limn→∞Bxn = z and A and B are continuous at z, by (a),
we have

lim
n→∞

ABxn = Azand lim
n→∞

BAxn = Bz.

Thus we obtain Az = Bz by the uniqueness of the limit and so by Proposition 2.2,
we have BAz = ABz. ¤

4. Common fixed point theorems via rational terms

In this section, we prove some common fixed point theorems for mappings satis-
fying some rational conditions, leading to a path to obtain rational versions of fixed
point theorems in M-fuzzy metric spaces.

Theorem 4.1. Let (X, M, ∗) be a complete M-fuzzy metric space with t ∗ t ≥ t for
all t ∈ [0, 1] and the condition (FM-6). Let A, B, S, T and P be mappings from X
into itself such that
(i) P (X) ⊂ AB(X) and P (X) ⊂ ST (X),
(ii) there exists a number k ∈ (0, 1) such that

M(Px, Py, Py, kt) ≥
M(ABx,Px, Px, t) ∗M(Px, STy, STy, t) ∗M(ABx, STy, STy, t)∗

M(Px,ABx,,ABx,t)∗M(Px,STy,STy,t)
M(STy,ABx,ABx,t) ∗M(ABx, Py, Py, (3− α)t)

for all x, y ∈ X,α ∈ (0, 3) and t > 0,
(iii) PB = BP , PT = TP , AB = BA and ST = TS,
(iv) A and B are continuous,
(v) the pair P, AB are compatible of type (∗),
(vi) M(x, STx, STx, t) ≥ M(x,ABxABx, t) for all x ∈ X and t > 0.
Then A,B,S,T and P have a common fixed point in X.

Proof. Since P (X) ⊂ AB(X), for ant x0 ∈ X, we can choose a point x0 ∈ X such
that Px0 = ABx1. Since P (X) ⊂ ST (X), for this point x1, we can choose a point
x2 ∈ X such that Px1 = STx2. Thus by induction, we can define a sequence yn ∈ X
as follows: y2n = Px2n = ABx2n+1 and y2n+1 = Px2n+1 = STx2n+1 for n = 1, 2, ....
By (ii), for all t > 0 and α = 2− q with q ∈ (0, 2), we have

M(y2n+1, y2n+2, y2n+2, kt) = M(Px2n+1, Px2n+2, Px2n+2, kt)
≥ M(y2n+1, y2n+1, y2n+1, t) ∗M(y2n, y2n+1, y2n+1, t) ∗M(y2n, y2n+1, y2n+1, t)∗

M(y2n+1),y2n,y2n,t)∗M(y2n+1,y2n+1,y2n+1,t)
M(y2n+1,y2n,y2n,t) ∗M(y2n, y2n+2, y2n+2, (1 + q)t),

M(y2n+1, y2n+2, y2n+2, kt) ≥ M(y2n, y2n+1, y2n+1, t) ∗M(y2n, y2n+2, y2n+2, (1 + q)t)
≥ M(y2n, y2n+1, y2n+1, t) ∗M(y2n, y2n+1, y2n+1, t) ∗M(y2n+1, y2n+2, y2n+2, qt)
≥ M(y2n, y2n+1, y2n+1, t) ∗M(y2n+1, y2n+2, y2n+2, t)

as q → 1. Since ∗ is continuous and M(x, y, z, ∗) is continuous, letting q → 1 in
above equation,we get

M(y2n+1, y2n+2, y2n+2, kt)
≥ M(y2n, y2n+1, y2n+1, t) ∗M(y2n+1, y2n+2, y2n+2, t)...... (1)

Similarly, we have
M(y2n+2, y2n+3, y2n+3, kt)

≥ M(y2n+1, y2n+2, y2n+2, t) ∗M(y2n+2, y2n+2, y2n+2, t) ...... (2)
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Thus from (1) and (2), it follows that

M(yn+1, yn+2, yn+2, kt) ≥ M(yn, yn+1, yn+1, t) ∗M(yn+1, yn+2, yn+2, t)

for n = 1, 2, ... and then for positive integers n and p,

M(yn+1, yn+2, yn+2, kt) ≥ M(yn, yn+1, yn+1, t) ∗M(yn+1, yn+2, yn+2, t/kp).

Thus, since M(yn+1, yn+1, yn+1, t/kp) → 1 as p →∞ we have

M(yn+1, yn+2, yn+2, kt) ≥ M(yn, yn+1, yn+1, t).

By Lemma 2.9, yn is a Cauchy sequence in X and since X is complete, yn converges
to a point z ∈ X. Since Pxn, ABx2n+1 and STx2n+2 are subsequences of yn,
they also converge to the pointz. Since A, B are continuous and the pair P, AB is
compatible of type (∗), by Proposition 3.5 (a), we have

lim
n→∞

PABx2n+1 = ABz and lim
n→∞

(AB)2x2n+1 = ABz.

By (ii) with α = 2, we get

M(PABx2n+1, Px2n+2, Px2n+2, kt) ≥ M((AB)2x2n+1, PABx2n+1, PABx2n+1, t)∗
M(PABx2n+1, STx2n+2, STx2n+2, t) ∗M((AB)2x2n+1, STx2n+2, STx2n+2, t)∗
M(PABx2n+1,(AB)2x2n+1,(AB)2x2n+1,t)∗M(PABx(2n+1),STx2n+2,STx2n+2,t)

M(STx(2n+2,(AB)2x(2n+1,(AB)2x2n+1,t) ∗
M((AB)2x2n+1, Px2n+2, Px2n+2, t)

which implies that
M(ABz, z, z, kt) = limn→∞M(PABx2n+2, Px2n+2, Px2n+2, kt)
≥ 1 ∗M(ABz, z, z, t) ∗M(ABz, z, z, t) ∗ ( 1∗M(ABz,z,z,t)

M(z,ABz,ABz,t) ) ∗M(ABz, z, z, t).
By Lemma 2.10, we have ABz = z By (vi), since M(z, z, STz, t) ≥ M(z, z, ABz, t) =
1 for all t > 0, we get STz = z. Again, by (ii) with α = 2, we have

M(PABx2n+1, P z, Pz, kt) ≥ M((AB)2x2n+1, PABx2n+1, PABx2n+1, t)∗
M(PABx2n+1, STz, STz, t) ∗M((AB)2x2n+1, STz, STz, t)∗
M(PABx2n+1,(AB)2x2n+1,(AB)2x2n+1,t)∗M(PABx(2n+1),STz,STz,t)

M(STz,(AB)2x2n+1,(AB)2x2n+1,t) ∗
M((AB)2x2n+1, P z, Pz, t)

which implies that
M(ABz, Pz, Pz, kt) = limn→∞M(PABx2n+1, P z, Pz, kt)
≥ 1 ∗ 1 ∗ 1 ∗ 1 ∗M(ABz, Pz, Pz, t) ≥ M(ABz, Pz, Pz, t).

By Lemma 2.10, we have ABz = Pz. Now, we show that Bz = z. In fact, by (ii)
with α = 2 and (iii), we get

M(Bz, z, z, kt) = M(BPz, Pz, Pz, kt) = M(PBz, Pz, Pz, kt)
M(PBz, Pz, Pz, kt) ≥ M(PBz, STz, STz, t) ∗M(ABBz, STz, STz, t)∗
M(PBz,ABBz,,ABBz,t)∗M(PBz,z,z,t)

M(z,PBz,PBz,t) ∗M(PBz, z, z, t)
= 1 ∗M(Bz, z, z, t) ∗M(Bz, z, z, t) ∗ 1 ∗M(Bz, z, z, t)
= M(Bz, z, z, t)

152



Deepak Singh et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 1, 147–155

which implies that Bz = z. Since ABz = z, we have Az = z. Next, we show that
Tz = z. Indeed, by (ii) with α = 2 and (iii), we get

M(Tz, z, z, kt) = M(TPz, Pz, Pz, kt) = M(Pz, Pz, TPz, kt)
≥ 1 ∗M(z, Tz, Tz, t) ∗M(z, Tz, Tz, t) ∗ 1 ∗M(z, Tz, Tz, t)
≥ M(Tz, z, z, t)

which implies that Tz = z. Since STz = z, we have Sz = STz = z. Therefore, by
combining the above results, we obtain Az = Bz = Sz = Tz = Pz = z, that is, z
is the common fixed point of A,B, S, T and P. Finally, the uniqueness of the fixed
point of A,B, S, T and P follows easily from (ii). ¤

From Theorem 4.1 with B = T = IX (the identity mapping on X), we have the
following.

Corollary 4.2. Let (X,M, ∗) be a complete M-fuzzy metric space with t ∗ t ≥ t for
all t ∈ [0, 1] and the condition (FM-6). Let A, S, and P be mappings from X into
itself such that
(i) P (X) ⊂ A(X) and P (X) ⊂ S(X),
(ii) there exists a number k ∈ (0, 1) such that

M(Px, Py, Py, kt) ≥
M(Ax,Px, Px, t) ∗M(Px, Sy, Sy, t) ∗M(Ax, Sy, Sy, t)∗
M(Px,Ax,,Ax,t)∗M(Px,Sy,STy,t)

M(Sy,Ax,Ax,t) ∗M(Ax,Py, Py, (3− α)t)

for all x, y ∈ X, α ∈ (0, 3) and t > 0,
(iii) A is continuous,
(iv) the pair P,A are compatible of type (∗),
(v) M(x, Sx, Sx, t) ≥ M(x,AxAx, t) for all x ∈ X and t > 0.
Then A,S,and P have a common fixed point in X.

From Theorem 4.1 with A = B = S = T = IX (the identity mapping on X), we
have the following.

Corollary 4.3. Let (X,M, ∗) be a complete M-fuzzy metric space with t ∗ t ≥ t for
all t ∈ [0, 1] and the condition (FM −6). Let P be mappings from X into itself such
that

M(Px, Py, Py, kt) ≥
M(x, Px, Px, t) ∗M(Px, y, y, t) ∗M(x, Sy, Sy, t)∗

M(Px,x,,x,t)∗M(Px,y,y,t)
M(y,x,x,t) ∗M(x, Py, Py, (3− α)t)

for all x, y ∈ X, α ∈ (0, 3) and t > 0, Then P have a common fixed point in X.

Corollary 4.4. Let (X,M, ∗) be a complete M-fuzzy metric space with t ∗ t ≥ t for
all t ∈ [0, 1] and the condition (FM −6). Let P be mappings from X into itself such
that there exists a number k ∈ (0, 1) such that M(Px, Py, Py, kt) ≥ M(x, y, y, t)
for all x, y ∈ X,α ∈ (0, 3) and t > 0, Then P has a common fixed point in X

Remark 4.5. Corollary 4.4 is an extension of Banach contraction theorem (Grabiec
[5]) in fuzzy metric spaces to a contractive mapping on complete M-fuzzy metric
spaces.

By using Theorem 4.1, we have the following:
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Theorem 4.6. Let (X, M, ∗) be a complete M-fuzzy metric space with t ∗ t ≥ t for
all t ∈ [0, 1] and the condition (FM-6). Let A, B, S, T and (Pi)i∈∧ be mappings
from X into itself such that the conditions (iv) and (vi) of Theorem 3.1 holds and
(i) ∪i∈∧(Pi)i∈∧ ⊂ AB(X) and ∪i∈∧(Pi)i∈∧ ⊂ ST (X),
(ii) there exists a number k ∈ (0, 1) such that

M(Pix, Piy, Piy, kt) ≥
M(ABx,Pix, Pix, t) ∗M(Pix, STy, STy, t) ∗M(ABx, STy, STy, t)∗

M(Pix,ABx,,ABx,t)∗M(Pix,STy,STy,t)
M(STy,ABx,ABx,t) ∗M(ABx, Piy, Piy, (3− α)t)

for all x, y ∈ X,α ∈ (0, 3) and t > 0,
(iii) PiB = BPi, PiT = TPi, AB = BA and ST = TS,for all i
(iv) A and B are continuous,
(v) the pair P, AB are compatible of type (∗),
(vi) M(x, STx, STx, t) ≥ M(x,ABxABx, t) for all x ∈ X and t > 0.
Then A,B,S,T and (Pi)i∈∧ have a common fixed point in X.

Acknowledgements. We are thankful to the Prof. Young Bae Jun and the
reviewers for their valuable suggestions to improve the presentation of paper.
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