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1. Introduction

Zadeh [30] introduction of the notion of fuzzy sets laid down the foundation of
fuzzy mathematics. In the last two decades many fixed point theorems for contrac-
tions in fuzzy metric spaces and quasi fuzzy metric spaces appeared (see [3], [7], [8],
[10], [12], [17], [18], [21], [24], [25], [27], [28], [29]). The role of topology in logic
programming has come to be recognized in recent years. In particular topological
methods are employed in order to obtain fixed point semantics for logic programs.
In classical approach to logic programming semantics in which positive or definite
positive programs are considered (those in which negation does not occur) Knaster -
Tarski fixed point theorem can be applied to obtain a least fixed point of an operator
called the single step or immediate consequence operator. However when the syn-
tax is enhanced in the sense that negation is allowed, the approach using Knaster
- Tarski theorem does not work. In such cases the Banach contraction mapping
theorem for complete metric spaces is an alternative to Knaster - Tarski fixed point
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theorem. However topological spaces which arise in the area of denotational seman-
tics are often not Hausdorff and so spaces which are weaker than metric spaces in a
topological sense had to be cosidered. Motivated by this fact Hitzler and Seda [13]
introduced the concept of dislocated metric space and studied the dislocated topolo-
gies which is a generalisation of the conventinal topologies and can be thought of as
underlying the notion of dislocated metrics. They also proved a generalized version
of Banach contraction mapping theorem which was applied to obtain fixed point
semantics for logic programs. Later George and Khan [22] introduced the concept
of dislocated fuzzy metric spaces and studied the associated topologies. In [1] Alaca
introduced the concept of Dislocated Fuzzy Quasi Metric Space (DFqM −Space)in
the sense of Kramosil and Michalek as well as George and Veeramani and discussed
the topologies associated with it which is conventional in nature. In this paper we
have discussed the dislocated fuzzy topologies associated with a DFqM−Space and
also proved a common fixed point theorem of Presic type which extends and gener-
alises the well known Banach contraction principle and also fuzzyfies other known
results.

2. Preliminaries

Let (X, d) be a metric space and T : X → X and f : X → X be mappings.
Let C(T, f) denote the set of all coincident points of the mappings f and T , that is
C(T, f) = {u : fu = Tu}.
Definition 2.1 ([14]). The mappings f and T are said to be weakly compatible if
and only if they commute at their coincidence points.

Remark 2.2. Clearly if C(T, f) = φ then f and T are weakly compatible.

Definition 2.3 ([2]). The mappings f and T are said to be occasionally weakly
compatible (owc) if and only if they commute at some coincidence point of f and
T , i.e. fTu = Tfu for some u ∈ C(T, f).

Remark 2.4. Occasionally weakly compatible pairs of mappings requires the set of
coincident points of the mappings under consideration to be non empty. In other
words if C(T, f) = φ then f and T cease to be owc and so owc pair of mappings
cannot be seen as a generalisation of weakly compatible pair. Hence we modify the
definition of owc pair of mappings as follows:

Definition 2.5. The mappings f and T are said to be occasionally weakly compat-
ible (owc) if and only if fTu = Tfu for some u ∈ C(T, f) whenever C(T, f) 6= φ.

In [6] Doric et al has shown that if the point of coincidence is unique then occa-
sionally weakly compatible mappings are weakly compatible.

Lemma 2.6 ([6]). Let f and T be occasionally weakly compatible mappings of X.
If f and T have a unique point of coincidence then f and T are weakly compatible.

Proof. Let v be the unique point of coincidence of f and T . Since f and T be
occasionally weakly compatible mappings there exists u ∈ X such that v = fu = Tu
and fTu = Tfu, i.e fv = Tv. Let u∗ ∈ C(f, T ). Then fu∗ = Tu∗ = v and
fTu∗ = fv = Tv = Tfu∗. Thus f and T are weakly compatible. ¤
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Thus if mappings f and T have a unique point of coincidence then the pair (f, T )
are weakly compatible iff they are occasionally weakly compatible.

The following lemma appears in Jungc and Rhoades [15].

Lemma 2.7. If a weakly compatible pair (f, T ) of self maps has a unique point of
coincidence, then the point of coincidence is a unique common fixed point of f and
T .

The next example shows that if the point of coincidence is not unique then oc-
casionally weakly compatible mappings are more general than weakly compatible
mappings.

Example 2.8. Take X = [0, 1], fx = x2, Tx = x
2 . It is obvious that C(f, T ) =

{0, 1
2}, fT0 = Tf0 but fT 1

2 6= Tf 1
2 and so f and T are occasionally weakly com-

patible but not weakly compatible. Note that 0 and 1
4 are two point of coincidence

and 0 is the unique common fixed point.

Definition 2.9. f is said to be coincidentally idempotent with respect to T if and
only if f is idempotent at the coincidence points of f and T .

Definition 2.10. The mapping f is said to be occasionally coincidentally idempo-
tent (oci)with respect to T , if and only if ffu = fu for some u ∈ C(T, f) whenever
C(T, f) 6= φ.

Clearly if f and T are coincidentally idempotent then they are oci. However
Example above shows that the converse is not necessarily true.

3. Dislocated Fuzzy Quasi Metric Space

In this section we will define Dislocated Fuzzy Quasi Metric Space and discuss
the topologies associated with it.

Definition 3.1 ([26]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if ([0, 1], ∗) is an abelian monoid with unit one such that, for all a,b,c,d in
[0,1], a ∗ b ≥ c ∗ d whenever a ≥ c and b ≥ d.

Definition 3.2. Let X be any non empty set, * be a continuous t-norm and M :
X2× [0,∞) → [0, 1] be a fuzzy set. For all x, y, z ∈ X and t, s ∈ [0,∞), consider the
following conditions:

FM1 M(x, y, 0) = 0
FM2 M(x, x, t) = 1
FM3 M(x, y, t) = 1 and M(y, x, t) = 1 ⇒ x = y
FM4 M(x, y, t) = M(y, x, t)
FM5 M(x, y, t + s) ≥ M(x, z, t) + M(z, y, s)
FM6 M(x, y, .) : [0,∞) → [0, 1] is left continuous
FM7 M(x, y, .) : (0,∞) → [0, 1] is continuous

If M satisfies conditions FM1 to FM6 then (X,M, ∗) is called a Fuzzy Metric
Space [16]. If M satisfies conditions FM1 and FM3 to FM6 then we say that
(X, M, ∗) is a Dislocated Fuzzy Metric Space in the sense of Kramosil and Michalek
(in short DKMFM-Space) [22]. If M : X2 × (0,∞) → [0, 1] satisfies conditions
FM1 and FM3 to FM5 and FM7 then we say that (X,M, ∗) is a Dislocated Fuzzy
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Metric Space in the sense of George and Veeramani (in short DGV FM-Space) [22].
If M satisfies conditions FM1, FM3, FM5 and FM6 then we say that (X, M, ∗) is a
Dislocated Fuzzy Quasi Metric Space in the sense of Kramosil and Michalek (in short
DKMFqM-Space) [1]. If M : X2 × (0,∞) → [0, 1] satisfies conditions FM3, FM5
and FM7 then we say that (X,M, ∗) is a Dislocated Fuzzy Quasi Metric Space in
the sense of George and Veeramani (in short DGV FqM-Space) [1].

Example 3.3. Let X = R; Define a ∗ b = ab, M(x,y,t) =
[
exp

|x−y|+2|x|+|y|
t

]−1

for
all (x, y) ∈ X ×X, t ∈ (0,∞). Then (X,M, ∗) is a DGV FqM − Space.

For all (x, y) ∈ X × X, t ∈ (0,∞) let M‡(x, y, t) = min{M(x, y, t),M(y, x, t)}.
Clearly if (X,M, ∗) is a DGV FqM-Space (or DKMFqM-Space) then (X,M ‡, ∗) is
a DGV FM-Space (or DKMFM-Space). Obviously each DGV FqM-Space can be
cosidered as a DKMFqM-Space by defining M(x, y, 0) = 0 for all x, y ∈ X (see
[11]). Hereafter by a Dislocated Fuzzy Quasi Metric Space (DFqM − Space) we
mean a DGV FqM-Space or a DKMFqM-Space.

Definition 3.4. Let (X,M, ∗) be a DFqM − Space). We define a left open ball
(L-open ball) with centre x and radius r (0 < r < 1) in X as BL(x, r, t) = {y ∈ X :
M(x, y, t) > 1− r}, for all t ∈ (0,∞). We define a right open ball(R-open ball) with
centre x and radius r (0 < r < 1) in X as BR(x, r, t) = {y ∈ X : M(y, x, t) > 1− r},
for all t ∈ (0,∞). We define an open ball with centre x and radius r (0 < r < 1) in
X as B(x, r, t) = {y ∈ X : M‡(x, y, t) > 1− r}, for all t ∈ (0,∞).

Obviously B(x, r, t) = BL(x, r, t)
⋂

BR(x, r, t) and its not necessary that x ∈
B(x, r, t) for all x ∈ X.

For more details on topologies associated with DFqM − Space refer to [23].

Definition 3.5. A sequence xn in a DFqM − Space (X, M, ∗) is said to be bi-
convergent to a point x ∈ X if and only if Limn→∞M‡(xn, x, t) = 1 for all t > 0.
In this case we say that limit of the sequence xn is x.

Definition 3.6. A sequence xn in a DFqM − Space (X, M, ∗) is said to be Left
(Right) Cauchy sequence if and only if

Limn→∞M(xn, xn+p, t) = 1 (Limn→∞M(xn+p, xn, t) = 1)

for all t > 0, p > 0.

Definition 3.7. A sequence xn in a DFqM−Space (X,M, ∗) is said to be bi-Cauchy
if and only if Limn→∞M‡(xn, xn+p, t) = 1 for all t > 0, p > 0.

Definition 3.8. A DFqM − Space is said to be Left (or Right) complete if and
only if every Left (or Right)Cauchy sequence in it is bi-convergent.

Definition 3.9. A DFqM − Space is said to be bi-complete if and only if every
bi-Cauchy sequence in it is bi-convergent.

Remark 3.10. Clearly a sequence xn in a DFqM − Space (X,M, ∗) is bi- Cauchy
sequence if and only if sequence xn is a Cauchy sequence in the DFM − Space
(X, M ‡, ∗). A DFqM − Space (X, M, ∗) is bi-Complete if and only if the DFM −
Space (X, M‡, ∗) is complete.
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Proposition 3.11. Limit of a sequence in a DFqM − Space (X, M, ∗) is unique.

Proof. Let xn be a sequence in X and suppose u and v are two limits of xn. Then
we have M‡(u, v, t) ≥ M‡(u, xn, t/2) ∗M‡(xn, v, t/2). Taking the limit as n → ∞
we have M‡(u, v, t) ≥ 1 ∗ 1 = 1. Hence u = v. ¤
Proposition 3.12. Let (X, M, ∗) be a DFqM − Space( or DFM − Space) and
xn be a sequence in X. If sequence xn bi-converges ( or converges) to x ∈ X then
M(x, x, t) = 1 for all t > 0.

Proof. We have M(x, x, t) ≥ M(x, xn, t/2)∗M(xn, x, t/2) for all n. Taking the limit
as n →∞ we have M(x, x, t) ≥ 1 ∗ 1 = 1. ¤
Proposition 3.13. Let (X,M, ∗) be a DFqM − Space (or DFM − Space), f, g :
X → X be mappings. If fz = gz and M‡(fgz, gfz, t) = 1 (or M(fgz, gfz, t) = 1)
for some z ∈ X and t ∈ [0,∞), then M(ffz, ffz, t) = 1 for all t ∈ [0,∞).

Proof. Since M‡(fgz, gfz, t) = 1 we have fgz = gfz. Therefore M(ffz, ffz, t) =
M(fgz, fgz, t) = M(fgz, gfz, t) = 1. ¤

4. Major Section

Let (X, M, ∗) be a DFqM − Space(or DFM − Space), T : X2 → X and f :
X → X be mappings. A point z ∈ X is said to be a coincidence point of f and
T if T (z, z) = fz. z is said to be a common fixed point of f and T if T (z, z) =
fz = z. Let C(T, f) denote the set of all coincidence points of the mappings f
and T . Clearly if z is a coincidence point of f and T , then M‡(fz, fz, t) = 1 and
M‡(T (z, z), T (z, z), t) = 1

Definition 4.1. The mappings f and T in a DFqM − Space (or DFM − Space)
are said to be weakly compatible if and only if M‡(T (fz, fz), f(T (z, z), t) = 1 (or
M(T (fz), f(T (z, z), t) = 1) for all z ∈ C(T, f) and t ∈ [0,∞) .

Definition 4.2. The mappings f and T in a DFqM − Space (or DFM − Space)
are said to be occasinally weakly compatible (owc) if and only if

M‡(T (fz, fz), f(T (z, z), t) = 1 (or M(T (fz, fz), f(T (z, z), t) = 1)

for some z ∈ C(T, f) and t ∈ [0,∞), whenever C(T, f) 6= φ.

Consider a function φ : [0, 1]2 → [0,1] such that
(a) φ is an increasing function, i.e x1 ≤ y1, x2 ≤ y2 implies φ(x1, x2) ≤ φ(y1, y2).
(b) φ(t, t) ≥ t, for all t ∈ [0, 1]
(c) φ is continuous in both variables.

Now we present our main results as follows:

Theorem 4.3. Let (X, M, ∗) be a DFM − Space, f : X −→ X and T : X2 −→ X
be mappings, such that

(4.1) T (X2) ⊆ f(X)

(4.2) M(T (x1, x2), T (x2, x3), qt) ≥ φ{M(fx1, fx2, t),M(fx2, fx3, t))},
5
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where x1, x2, x3 are arbitrary elemants in X, 0 < q < 1
2 and t ∈ [0,∞)

(4.3) f(X) is complete.

Then the sequence < yn > defined by

(4.4) yn+2 = f(xn+2) = T (xn, xn+1)

for arbitrary elements x1, x2 in X and n = 1, 2, ..., converges to a point of coincidence
of f and T .

Proof. Let αn = M(yn, yn+1, qt). By the method of mathematical induction we will
prove that

(4.5) αn ≥
(

K − θn

K + θn

)2

where θ = 1
q , K = Min{ θ(1+

√
α1)

(1−√α1)
,

θ2(1+
√

α2)

(1−√α2)
}. Clearly from the definition of K, we

see that (4.5) is true for n = 1, 2. Let the 2 inequalities

αn ≥
(

K − θn

K + θn

)2

, αn+1 ≥
(

K − θn+1

K + θn+1

)2

be the induction hypothesis. Then we have

αn+2 = M(yn+2, yn+3, qt)

= M(T (xn, xn+1), T (xn+1, xn+2), qt)

≥ φ{M(fxn, fxn+1, t),M(fxn+1, fxn+2, t)}

= φ{αn, αn+1}

≥ φ{
(

K−θn

K+θn

)2

,

(
K−θn+1

K+θn+1

)2

}

≥ φ{
(

K−θn+1

K+θn+1

)2

,

(
K−θn+1

K+θn+1

)2

}

≥
(

K−θn+1

K+θn+1

)2

≥
(

K−θn+2

K+θn+2

)2

.

Thus inductive proof of (4.5) is complete. Now for p ∈ N and t ∈ [0,∞), we have

M(yn, yn+p, t) ≥ M(yn, yn+1,
t
2 ) ? M(yn, yn+1,

t
22 ) ? ... ? M(yn+p−1, yn+p,

t
2p )

≥
(

K−2n

K+2n

)2

?

(
K−22n

K+22n

)2

? ... ?

(
K−2np

K+2np

)2

→ 1 ? 1 ? ... ? 1 = 1, as n →∞.

Hence < yn > is a Cauchy sequence in f(X) and since f(X) is complete, there will
exist v in f(X) such that limn→∞yn = v. Let v = f(u) for some u ∈ X. Then we

6
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have

M(T (u, u), fu, t) = limn→∞M(T (u, u), yn+2, t)

= limn→∞M(T (u, u), T (xn, xn+1), t)

≥ limn→∞M(T (u, u), T (u, xn), t
2 ) ? M(T (u, xn), T (xn, xn+1), t

2 )

≥ limn→∞φ{M(fu, fu, t),M(fu, fxn, t)} ? φ{(M(fu, fxn, t),M(fxn, fxn+1, t))

= 1, i.e.

M(T (u, u), fu, t) = 1 and so C(f, t) 6= ∅ and v is a point of coincidence of f and
T . ¤

Theorem 4.4. Let (X, M, ∗) be a DFM − Space, f : X −→ X and T : X2 −→ X
be weakly compatible mappings satisfying (4.1),(4.2), (4.3) and

(4.6) limt→∞M(x, y, t) = 1.

Then the sequence < yn > defined by (4.4) converges to a unique common fixed point
of f and T .

Proof. Proceeding on the same lines as in the proof of Theorem (4.3), we see that
sequence < yn > converges to v which is a point of coincidence of f and T . Then
we have

M(fu, fu, qt) = M(T (u, u), T (u, u), qt)

≥ φ{M(fu, fu, t),M(fu, fu, t)}

≥ M(fu, fu, t) = M(Tu, u), T (u, u), t)

≥ φ{M(fu, fu, t
q ),M(fu, fu, t

q )}

≥ M(fu, fu, t
q ) ≥ ...... ≥ M(fu, fu, t

qn−1 ).

As n →∞ we get M(fu, fu, qt) = 1. Suppose there exists v∗ ∈ X such that f(u∗)
= T (u∗, u∗) = v∗ for some u∗ in C(f, T ). Then

M(v, v∗, q t
2 ) = M(T (u, u), T (u∗, u∗), q t

2 )

≥ M(T (u, u), T (u, u∗), qt
4 ) ? M(T (u, u∗), T (u∗, u∗), qt

4 )

≥ φ{M(fu, fu, t
4 ),M(fu, fu∗, t

4 )} ?φ{M(fu, fu∗, t
4 ),M(fu∗, fu∗, t

4 )}

≥ φ{M(fu, fu∗, t
4 ), M(fu, fu∗, t

4 )} ? φ{M(fu, fu∗, t
4 ),M(fu, fu∗, t

4 )}

≥ M(fu, fu∗, t
4 ) ? M(fu, fu∗, t

4 ).
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= M(T (u, u), T (u∗, u∗), t
4 ) ? M(T (u, u), T (u∗, u∗), t

4 )

≥ M(T (u, u), T (u, u∗), t
23 ) ? M(T (u, u∗), T (u∗, u∗), t

23 ) ? M(T (u, u), T (u, u∗), t
23 )

?M(T (u, u∗), T (u∗, u∗), t
23 )

≥ φ{M(fu, fu, t
23q ),M(fu, fu∗, t

23q )} ? φ{M(fu, fu, t
23q ),M(fu, fu∗, t

23q )}

≥ φ{M(fu, fu∗, t
23q ),M(fu, fu∗, t

23q )} ? φ{M(fu, fu∗, t
23q ),M(fu, fu∗, t

23q )}

≥ M(fu, fu∗, t
23q ) ? M(fu, fu∗, t

23q ).

Repeating the above process n times we get

M(v, v∗, qt) ≥ M(fu, fu∗, t
2n+1qn−1 ) ? M(fu, fu∗, t

2n+1qn−1 ).

Taking the limit as n →∞ we get M(v, v∗, qt) ≥ 1 and so v = v∗, i.e. v is the unique
point of coincidence of f and T . Hence by lemma (4.3) v is a unique common fixed
point of f and T . ¤

Note that the condition limt→∞M(x, y, t) = 1 ensures the uniqueness of the
point of coincidence. However in the next result we will remove the condition
limt→∞M(x, y, t) = 1 and also increase the range of q.

Theorem 4.5. Let (X, M, ∗) be a DFM − Space, f : X −→ X and T : X2 −→ X
be mappings satisfying (4.1), (4.2) (with 0 < q < 1) and (4.3). Then f and T has a
common fixed point if one of the following two conditions are satisfied :

(i) f is oci with respect to T and the pair (f, T ) is weakly compatible,
(ii) f is coincidentally idempotent with respect to T and the pair (f, T ) is owc.

Proof. Proceeding as in the proof of Theorem 4.4, we can show that C(T, f) 6= φ.
Now suppose f is oci with respect to T and the pair (f, T ) is weakly compati-
ble. Then there will exist z ∈ C(f, T ) such that ffz = fz and also f(T (z, z)) =
T (fz, fz). Thus we have fz = ffz = f(T (z, z)) = T (fz, fz), i.e. fz is a common
fixed point of f and T . The proof follows on the same lines in the other case also. ¤

Theorem 4.6. Let (X, M, ∗) be a DFqM −Space, f : X −→ X and T : X2 −→ X
be weakly compatible mappings satisfying (4.1), (4.6) and the following:

(4.7) M(T (x1, x2), T (x3, x1), qt) ≥ φ{M(fx1, fx3, t),M(fx2, fx1, t)}
where x1, x2, x3 are arbitrary elemants in X, 0 < q < 1

2 and t ∈ [0,∞)

(4.8) f(X) is R-complete.

Then the sequence < yn > defined by (4.4) converges to a unique common fixed point
of f and T .

Proof. Let αn = M(yn+1, yn, qt). By the method of mathematical induction we will
prove that

(4.9) αn ≥
(

K − θn

K + θn

)2

.

8
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where θ = 1
q , K = Min{ θ(1+

√
α1)

(1−√α1)
,

θ2(1+
√

α2)

(1−√α2)
}. Clearly from the definition of K, we

see that (4.9) is true for n = 1, 2. Let the 2 inequalities

αn ≥
(

K − θn

K + θn

)2

, αn+1 ≥
(

K − θn+1

K + θn+1

)2

be the induction hypothesis. Then we have

αn+2 = M(yn+3, yn+2, qt)

= M(T (xn+1, xn+2), T (xn, xn+1), qt)

≥ φ{M(fxn+1, fxn, t),M(fxn+2, fxn+1, t)}

≥ φ{αn, αn+1}

≥ φ{
(

K−θn

K+θn

)2

,

(
K−θn+1

K+θn+1

)2

}

=
(

K−θn+1

K+θn+1

)2

≥
(

K−θn+2

K+θn+2

)2

.

Thus inductive proof of (4.9) is complete. Now for p ∈ N and t ∈ [0,∞), we have

M(yn+p, yn, t) ≥ M(yn+p, yn+p−1,
t
2 )?M(yn+p−1, yn+p−2,

t
22 )?...?M(yn+1, yn, t

2p )

≥
(

K−2n+p−1

K+2n+p−1

)2

?

(
K−22n+p−2

K+22n+p−2

)2

? ... ?

(
K−2np

K+2np

)2

→ 1 ? 1 ? ... ? 1 = 1, as n →∞.

Hence < yn > is a R-Cauchy sequence in f(X) and since f(X) is R-complete, there
will exist z in f(X) such that limn→∞yn = z. Let z = f(u) for some u ∈ X. Then
we have

M(T (u, u), fu, t) = limn→∞M(T (u, u), yn+2, t)

= limn→∞M(T (u, u), T (xn, xn+1), t)

≥ limn→∞M(T (u, u), T (xn+1, u), t
2 ) ? M(T (xn+1, u), T (xn, xn+1), t

2 )

≥ limn→∞{φ{M(fu, fxn+1, t), M(fu, fu, t)}?
φ{M(fxn+1, fxn, t), (M(fu, fxn+1, t))}

= 1.
9
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Similarly it can be shown thatM(fu, T (u, u), t) = 1, and so C(f, t) 6= ∅ and v is a
point of coincidence of f and T . Suppose there exists v∗ ∈ X such that f(u∗) =
T (u∗, u∗, u∗) = v∗ for some u∗ in C(f, T ). Then

M(v, v∗, qt) = M(T (u, u), T (u∗, u∗), qt)

≥ M(T (u, u), T (u∗, u), qt
2 ) ? M(T (u∗, u), T (u∗, u∗), qt

2 )

≥ φ{M(fu, fu∗, t
2 ), M(fu, fu, t

2 ))} ? φ{M(fu∗, fu∗, t
2 ),M(fu, fu∗, t

2 )}

≥ φ{M(fu, fu∗, t
2 ), M(fu, fu∗, t

2 )} ? φ{M(fu, fu∗, t
2 ),M(fu, fu∗, t

2 )}

≥ M(fu, fu∗, t
2 ) ? M(fu, fu∗, t

2 )

= M(T (u, u), T (u∗, u∗), t
2 ) ? M(T (u, u), T (u∗, u∗), t

2 )

≥ M(T (u, u), T (u∗, u), t
22 ) ? M(T (u∗, u), T (u∗, u∗), t

22 )

≥ φ{M(fu, fu∗, t
22q ),M(fu, fu, t

22q )} ? φ{M(fu∗, fu∗, t
22q ),M(fu, fu∗, t

22q )}.

≥ φ{M(fu, fu∗, t
22q ),M(fu, fu∗, t

22q )} ? φ{M(fu, fu∗, t
22q ),M(fu, fu∗, t

22q )}.

≥ M(fu, fu∗, t
2q ) ? M(fu, fu∗, t

2q )

Repeating as above n times we get

M(v, v∗, qt) ≥ M(fu, fu∗, t
2nqn−1 ) ? M(fu, fu∗, t

2nqn−1 ) → 1 as n →∞.

Similarly it can be shown that M(v∗, v, qt) → 1 and so v = v∗, i.e. v is the unique
point of coincidence of f and T . Hence by lemma (4.3) v is a unique common fixed
point of f and T . ¤

Proof of the following theorems follows on the same lines as that of the previous
theorems:

Theorem 4.7. Let (X, M, ∗) be a DFqM −Space, f : X −→ X and T : X2 −→ X
be mappings satisfying (4.1), (4.7) and (4.8). Then f and T has a common fixed
point if one of the following two conditions are satisfied:

(i) f is oci with respect to T and the pair (f, T ) is weakly compatible,
(ii) f is coincidentally idempotent with respect to T and the pair (f, T ) is owc.

Theorem 4.8. Let (X, M, ∗) be a DFqM −Space, f : X −→ X and T : X2 −→ X
be weakly compatible mappings satisfying (4.1), (4.2), (4.6) and the following :

(4.10) f(X) is L-complete

Then the sequence < yn > defined by (4.4) converges to a unique common fixed point
of f and T .

10
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Theorem 4.9. Let (X, M, ∗) be a DFqM −Space, f : X −→ X and T : X2 −→ X
be mappings satisfying (4.1),(4.2) (with 0 < q < 1) and (4.10). Then f and T has
a common fixed point if one of the following two conditions are satisfied:

(i) f is oci with respect to T and the pair (f, T ) is weakly compatible,
(ii) f is coincidentally idempotent with respect to T and the pair (f, T ) is owc.

Taking X2 = X in the Theorems 4.6 and 4.8, we get the following.

Corollary 4.10. Let (X, M, ∗) be a DFqM−Space, f : X −→ X and T : X −→ X
be mappings, such that

(4.11) T (X) ⊆ f(X)

(4.12) M(Tx, Ty, qt) ≥ φ{M(fx, fy, t)},
for all x, y ∈ X, 0 < q < 1

2 and t ∈ [0,∞)

(4.13) f(X) is L-complete or R-complete

(4.14) limt→∞M(x, y, t) = 1.

Then f and T has a coincidence point, i.e. C(f, T ) 6= φ. Further f and T has a
common fixed point provided the pair (f, T ) is weakly compatible .

Taking X2 = X in the Theorems 4.7 and 4.9, we get the following.

Corollary 4.11. Let (X, M, ∗) be a DFqM−Space, f : X −→ X and T : X −→ X
be mappings, such that

(4.15) T (X) ⊆ f(X)

(4.16) M(Tx, Ty, qt) ≥ φ{M(fx, fy, t)},
where x, y ∈ X , 0 < q < 1 and t ∈ [0,∞)

(4.17) f(X) is L-complete or R-complete

Then f and T has a coincidence point, i.e. C(f, T ) 6= φ. Further f and T has a
common fixed point if one of the following two conditions are satisfied:

(i) f is oci with respect to T and the pair (f, T ) is weakly compatible,
(ii) f is coincidentally idempotent with respect to T and the pair (f, T ) is owc.

If we take f to be the identity mapping in the above corollaries, we get the
following

Corollary 4.12. Let (X, M, ∗) be a L-complete or R-complete DFqM − Space,
T : X −→ X be mappings, such that

(4.18) M(Tx, Ty, qt) ≥ M(x, y, t),

where x, y ∈ X , 0 < q < 1 and t ∈ [0,∞). Then T has a fixed point.
11
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Example 4.13. Let X = [0, 2] and a∗b = ab for all a, b ∈ [0,∞). Let d : X×X → X
be given by

d(x, y) =| x− y | + | x | + | y | .
Then d is a dislocated metric on X and (X,M, ∗) is a dislocated fuzzy metric
space where M is the dislocated fuzzy metric induced by d. Let T : X2 → X

and f : X → Xbe defined by T (x, y)= (x2+y2)
16 and f(x) = x2

2 . Then we have

M((T (x, y), T (y, z), qt))= qt
qt+d(T (x,y),T (y,z))

= qt

qt+| x2−z2
16 |+| x2+y2

16 |+| y2+z2
16 |

≥ qt

qt+| x2−y2
16 |+| x2

16 |+| y2
16 |+| y2−z2

16 |+| y2
16 |+| z2

16 |

≥ t

t+| x2−y2
4 |+| x2

4 |+| y2
4 |+| y2−z2

4 |+| y2
4 |+| z2

4 |
(Taking q = 1

4 )

≥ Min{ t

t+| x2−y2
2 |+| x2

2 |+| y2
2 |

, t

t+| y2−z2
2 |+| y2

2 |+| z2
2 |
}

= Min{M(fx, fy, t), M(fy, fz, t)}.
Thus f and T satisfy condition (4.2) with φ(t1, t2) = Min{t1, t2} and q = 1

4 . We see
that C(f, T ) = {0}, f and T commute at 0. Finally 0 is the unique common fixed
point of f and T .

Remark 4.14. Corollary 4.12 is generalised fuzzy version of Banach Contraction
Principle proved in [9]. Corollary 4.10 and 4.11 are generalised and extended version
of the result proved in [22]. Theorems 4.3,4.4,4.5,4.6, 4.7,4.8 and 4.9 are generalised
and extended fuzzy version of the results proved in [4], [5], [19] and [20] for k = 2.
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