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Abstract. In this paper, we introduce some new classes of sequences
of fuzzy numbers using Orlicz function. We also examine some properties
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1. Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by
Zadeh [7] and subsequently several authors have discussed various aspects of the
theory and applications of fuzzy sets such as fuzzy topological spaces, similarity
relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. Matloka [4] introduced bounded and convergent sequences of fuzzy
numbers and studied their some properties. Later on sequences of fuzzy numbers
have been discussed by Diamond and Kloeden [1], Nanda [6], Esi [2] and many
others.

Let C(Rn) = {A ⊂ Rn : A is compact and convex set}. The space C(Rn) has
a linear structure induced by the operations A + B = {a + b : a ∈ A, b ∈ B} and
γA = {γa : a ∈ A} for A,B ∈ C(Rn) and γ ∈ R.

The Hausdorff distance between A and B in C(Rn) is defined by

δ∞(A, B) = max
{

sup
a∈A

inf
b∈B

||a− b||, sup
b∈B

inf
a∈A

||a− b||
}

.

It is well-known that (C(Rn), δ∞) is a complete metric space.
A fuzzy number is a function X from Rn to [0, 1] which is normal, fuzzy convex,

upper semicontinuous and the closure of {X ∈ Rn : X(x) > 0} is compact. These
properties imply that for each 0 < α ≤ 1, the α-level set

Xα = {X ∈ Rn : X(x) > α}
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is a non-empty compact, convex subset of Rn with support X0.
If Rn is replaced by R , then obviously the set C(Rn) is reduced to the set of all

closed bounded intervals A = [A,A] on R, and also

δ∞(A,B) = max(|A−B|, |A−B|).
Let L(R) denote the set of all fuzzy numbers. The linear structure of L(R) induces
the addition X + Y and the scalar multiplication λX in terms of α-level sets, by
[X + Y ]α = [X]α + [Y ]α and [λX]α = λ[X]α for each 0 ≤ α ≤ 1.

The set R of real numbers can be embedded in L(R) if we define r ∈ L(R) by

r(t) =
{

1, if t = r;
0, if t 6= r

The additive identity and multiplicative identity of L(R) are denoted by 0 and 1,
respectively.

For r in R and X in L(R), the product rX is defined as follows:

rX(t) =
{

X(r−1t), if r 6= 0;
0, if r = 0

Define a map d : L(R)× L(R) → R by

d(X, Y ) = sup
0≤α≤1

δ∞(Xα, Y α).

For X,Y ∈ L(R) define X ≤ Y if and only if Xα ≤ Y α for any α ∈ [0, 1]. It is known
that (L(R), d) is complete metric space [4].

A sequence X = (Xk) of fuzzy numbers is a function X from the set N of natural
numbers into L(R). The fuzzy number Xk denotes the value of the function at k ∈ N
[4].

We denote by w(F ) the set of all sequences X = (Xk) of fuzzy numbers.
A sequence X = (Xk) of fuzzy numbers is said to be bounded if the set {Xk : k ∈

N} of fuzzy numbers is bounded [4].
We denote by `∞(F ) the set of all bounded sequences X = (Xk) of fuzzy numbers.
A sequence X = (Xk) of fuzzy numbers is said to be convergent to a fuzzy number

X0 if for every ε > 0 there is a positive integer k0 such that d(Xk, X0) < ε for k > k0

[4].
We denote by c(F ) the set of all convergent sequences X = (Xk) of fuzzy numbers.
It is straightforward to see that c(F ) ⊂ `∞ ⊂ w(F ).
Nanda [6] studied the classes of bounded and convergent sequences of fuzzy num-

bers and showed that these are complete metric spaces.
A K-space of sequences for which the coordinate linear functionals are continuous.
An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-

decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞ as
x →∞.

An Orlicz function M is said to satisfy the ∆2 − condition for all values of u, if
there exists a constant K > 0, such that M(2u) ≤ KM(u), u ≥ 0. Note that, if
0 < λ < 1, then M (λx) ≤ λM (x) , for all x ≥ 0.

Remark 1.1. An Orlicz function satisfies the inequality M(λx) ≤ λM(x) for all λ
with 0 < λ ≤ 1.
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Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to construct the
sequence space

`M =

{
x = (xk) :

∑

k

M

( |xk|
ρ

)
< ∞, for some ρ > 0

}
.

The space `M with the norm

||x|| = inf

{
ρ > 0 :

∑

k

M

( |xk|
ρ

)
≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. The space `M is
closely related to the space `p which is an Orlicz sequence space with M(x) = xp

for 1 ≤ p < ∞.
Let p = (pk) ∈ `∞ , then the following well-known inequality will be used in the

paper: For sequences (ak) and (bk) of complex numbers we have

(1.1) |ak + bk|pk ≤ C(|ak|pk + |bk|pk)

where C = max(1, 2H−1),H = supk pk.
Let σ be a one-to-one mapping of the set of positive integers into itself such that

σk (n) = σ
(
σk−1 (n)

)
, k = 1, 2, 3, ..., and let p = (pk) be a sequence of real numbers

such that pk > 0 for all k and supk pk = H < ∞. We define the following classes of
sequences of fuzzy numbers:

cF
0 (M,p, σ, s) =

{
X = (Xk) ∈ wF : lim

k
k−s

[
M

(
d(Xσk(n), 0)

ρ

)]pk

= 0,

uniformly in n for some ρ > 0, s ≥ 0
}

,

cF (M,p, σ, s) =
{

X = (Xk) ∈ wF : lim
k

k−s

[
M

(
d(Xσk(n), X0)

ρ

)]pk

= 0,

uniformly in n for some ρ > 0, s ≥ 0
}

,

`F
∞(M, p, σ, s) =

{
X = (Xk) ∈ wF : sup

n,k
k−s

[
M

(
d(Xσk(n), 0)

ρ

)]pk

< ∞,

for some ρ > 0, s ≥ 0
}

.

If we take s = 0, σ(n) = n+1 and M(x) = x then we obtain the classes cF
0 , cF and `F

∞
of ordinary null, convergent and bounded sequences of fuzzy numbers, respectively
which were defined and studied by Matloka [4].

A metric d on L(R) is said to be translation invariant if d(X+Z, Y +Z) = d(X, Y )
for X,Y, Z ∈ L(R).

Lemma 1.2. [5] If d is a translation invariant metric on L(R) then
(i) d(X + Y, 0) ≤ d(X, 0) + d(Y, 0);
(ii) d(λX, 0) ≤ |λ|d(X, 0), |λ| > 1.
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2. Main Results

In this section we investigate linear topological structures of the spaces cF
0 (M,p, σ, s),

cF (M, p, σ, s) and `F
∞(M, p, σ, s) and find out some relations related to the these

spaces.

Theorem 2.1. (a) cF
0 (M, p, σ, s), cF (M,p, σ, s) and `F

∞(M, p, σ, s) are closed under
the operations of addition and scalar multiplication if d is a translation invariant
metric.

(b) cF
0 (M, p, σ, s) ⊂ cF (M, p, σ, s) ⊂ `F

∞(M,p, σ, s).

Proof. (a) If d is translation metric, then

(2.1) d(Xσk(n) + Yσk(n), X0 + Y0) ≤ d(Xσk(n), X0) + d(Yσk(n), Y0)

and

(2.2) d(λXσk(n), λX0) ≤ |λ|d(Xσk(n), X0)

where λ is a scalar with 0 < λ ≤ 1. It is easy to see that the classes of cF
0 (M, p, σ, s),

cF (M, p, σ, s) and `F
∞(M, p, σ, s) are closed under the operations of addition and

scalar multiplication.
(b) The first inclusion in clear. For the second, using by the triangle inequality

k−s

[
M

(
d(Xσk(n), 0)

ρ

)]pk

≤ k−s

[
M

(
d(Xσk(n), X0)

ρ

)]pk

+k−s

[
M

(
d(X0, 0)

ρ

)]pk

≤ k−s

[
M

(
d(Xσk(n), X0)

ρ

)]pk

+ max
(

1, k−s

[
M

( |X0|
ρ

)]pk
)

.

So, X = (Xk) ∈ cF (M,p, σ, s) implies that X = (Xk) ∈ `F
∞(M, p, σ, s). This com-

pletes the proof. ¤

Theorem 2.2. cF (M,p, σ, s) is a complete metric space with the metric

δ(X, Y ) = inf

{
ρ > 0 : sup

n,k
k−s

[
M

(
d(Xσk(n), Yσk(n))

ρ

)]pk

≤ 1

}
.

The proof of the Theorem 2.2 is straightforward. So we omit it.

Theorem 2.3. The spaces cF (M, p, σ, s) and cF
0 (M, p, σ, s) are nowhere dense sub-

sets of `F
∞(M,p, σ, s).

Proof. It is obvious in view of Theorem 2.1 and Theorem 2.2. ¤

The proof of the following result is a routine work in view of the techniques used
for establishing the above result.

Theorem 2.4. The spaces cF (M, p, σ, s) and cF
0 (M,p, σ, s) and `F

∞(M, p, σ, s) are
K-spaces.

Theorem 2.5. (a) cF (M, q, σ, s) ⊂ cF (M, p, σ, s) if lim inf(pkq−1
k ) > 0.

(b) `F
∞(M, q, σ, s) is closed subset of `F

∞(M, p, σ, s) if 0 < pk ≤ qk ≤ 1.
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Proof. (a) Suppose that lim inf(pkq−1
k ) > 0 holds and X = (Xk) ∈ cF (M, q, σ, s).

Then there is a β > 0 such that pk > βqk for large k ∈ N. Hence for large k

k−s

[
M

(
d(Xσk(n), X0)

ρ

)]pk

≤ k−s

([
M

(
d(Xσk(n), X0)

ρ

)]qk)β

.

Since

k−s

[
M

(
d(Xσk(n), X0)

ρ

)]qk

< 1

for each k, n and for some ρ > 0. Hence X = (Xk) ∈ cF (M,p, σ, s).
(b) Suppose that 0 < pk ≤ qk ≤ 1 holds and X = (Xk) ∈ `F

∞(M, q, σ, s). Then
there is a constant T > 1 such that

k−s

[
M

(
d(Xσk(n), 0)

ρ

)]qk

≤ T

for each k, n and for some ρ > 0. This implies that

k−s

[
M

(
d(Xσk(n), 0)

ρ

)]pk

≤ T

for each k and n. Hence X = (Xk) ∈ `F
∞(M,p, σ, s). To show that `F

∞(M, q, σ, s) is
closed, suppose that Xi = (Xi

k) ∈ `F
∞(M, q, σ, s), Xi → X0 and X0 ∈ `F

∞(M, p, σ, s).
Then for every ε, 0 < ε < 1 there is i0 ∈ N such that for all k, n and for some ρ > 0

k−s

[
M

(
d(Xi

σk(n) −X0, 0)

ρ

)]pk

< ε for i > i0.

Now

k−s

[
M

(
d(Xi

σk(n) −X0, 0)

ρ

)]qk

< k−s

[
M

(
d(Xi

σk(n) −X0, 0)

ρ

)]pk

< ε for i > i0.

Therefore X = (Xk) ∈ `F
∞(M, q, σ, s) i.e. `F

∞(M, q, σ, s) is closed subset of `F
∞(M, p, σ, s).

¤

Theorem 2.6. Let 0 < h = inf pk ≤ supk = H < ∞. For any Orlicz function M
which satisfies ∆2-condition, then cF (p, σ, s) ⊂ cF (M,p, σ, s), where

cF (p, σ, s) =
{
X = (Xk)∈wF : lim

k
k−s

[
d(Xσk(n), X0)

]pk = 0, uniformly in n , s≥0
}

.

Proof. Let X = (Xk) ∈ cF (p, σ, s), so that limk k−s
[
d(Xσk(n), X0)

]pk = 0, uniformly
in n. Let ε > 0 and choose δ with 0 < δ < 1 such that M(t) < ε for 0 ≤ t ≤ δ. We

can write yk =
d(X

σk(n),X0)

ρ and we consider

k−s[M(yk)]pk = k−s[M(yk)]pk |yk≤δ,k∈N +k−s[M(yk)]pk |yk>δ,k∈N .

For yk ≤ δ, we have
k−s[M(yk)]pk < k−s max(ε, εh)

by using the continuity of M.
405
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For yk > δ, we have
yk <

yk

δ
< 1 +

yk

δ
.

Since M is non-decreasing and convex, it follows that

M (yk) < M
(
1 +

yk

δ

)
≤ 1

2
M(2) +

1
2
M

(
2yk

δ

)
.

Since M satisfies the ∆2-condition, we can write

M (yk) ≤ K

2
yk

δ
M(2) +

K

2
yk

δ
M(2) = K

yk

δ
M(2).

We get the following estimates

k−s[M(yk)]pk ≤ k−s max
(
1, [KM(2)δ−1]H [yk]pk

)

k−s[M(yk)]pk ≤ k−s max(ε, εh) + k−s max
(
1, [KM(2)δ−1]H [yk]pk

)
.

Taking ε → 0 and k →∞, it follows that X = (Xk) ∈ cF (M, p, σ, s). ¤
The proofs of the following results are a routine work in view of the techniques

used for establishing the above result.

Theorem 2.7. Let M, M1 and M2 be Orlicz functions. Then
(a) Z(M1, p, σ, s) ⊂ Z(M.M1, p, σ, s).
(b) Z(M1, p, σ, s) ∩ Z(M2, p, σ, s) ⊂ Z(M1 + M2, p, σ, s), where Z = cF

0 , cF , `F
∞.

Theorem 2.8. Let M1 and M2 be two Orlicz functions such that M1
∼= M2. Then

Z(M1, p, σ, s) = Z(M2, p, σ, s), where Z = cF
0 , cF , `F

∞.
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