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Abstract. In this paper, we investigate the relations between con-
tinuous, open and closed maps in interval valued fuzzy topological spaces
(IVFTSs for short) and those of some induced fuzzy topological spaces
(FTSs for short). Then to provide a categorical framework for interval
valued fuzzy topology, we construct some of its subcategories, define many
functors between those subcategories and investigate some of their proper-
ties. Moreover, the relationship between the category of IVFTSs and some
of its subcategories is studied. We proved that the category of FTSs is a
bireflective full subcategory of that of IVFTSs.
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1. Introduction

Since Zadeh has introduced fuzzy sets[13], many new approaches and theories
treating imprecision and uncertainty have been proposed (e.g.[1], [2], [3],[4]). Some
of these theories are extensions of the fuzzy set theory. It is well-known that a gen-
eralization of a fuzzy set is an interval valued fuzzy set, which is originally proposed
by Zadeh [14], attributed to Gorzalczany [5] and Turksen [12], has been regarded as
an important mathematical tool to deal with vagueness and the relation between ob-
jects in fuzzy information systems. Many topologists have shown interest in several
categories such as Top, Bitop, Unif, Prox[10], etc. The striking similarities among
these categories have led categorical topologists to establish the theory of topolog-
ical categories in fuzzy setting and its generalizations. Lowen [7] proved that the
category of FTSs is topological. Then Mondal, et. al [9] defined the topology of
IVFSs and studied some of its properties, they proved that the category of IVFTSs
with continuous maps is topological. The main aim of this paper is to provide a
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categorical framework for an interval valued fuzzy topology. In section 2, we recall
some preliminary results on IVFSs and IVFTSs which will be used in this paper. In
section 3, we studied the relation between continuity in IVFTSs and that of some
induced FTSs. In the final section, we defined many subcategories of the category
of IVFTSs, some functors on these categories are constructed and investigated some
of their properties. In addition, we examine the relationship between the category
of IVFTSs and some of its subcategories.

2. Preliminaries

In this section, we recall some definitions and results which will be used in this
sequel. For detail we refer to (e.g.[5], [6], [8],[9],[11],[12]). Throughout this paper
let I = [0, 1] be the closed unit interval and let us denote the family of all closed
subintervals of I as [I] , where [I] = {[a, b] : a ≤ b, a, b ∈ I}. For any a ∈ I , we
define a = [a, a], then a ∈ [I].

Definition 2.1. [9] Let X be an ordinary set. Then the mapping A : X → [I] is
called an interval valued fuzzy set(IVFSs, briefly) on X. For any IVFS A denote
A(x) = [A1(x), A2(x)] , where A1(x) ≤ A2(x), x ∈ X. Then the two fuzzy sets
A1 : X → [I], A2 : X → [I] are called the lower fuzzy set and the upper fuzzy set of
A, respectively.

Kandil, et al.[6] reformed the above definition for simplicity as follows:
An interval valued fuzzy set is an ordered pair A = (A1, A2) ∈ IX × IX such that
A1 ⊆ A2 , where IX is the family of all fuzzy sets on X. And so the set of all IVFSs
is denoted by IIX and defined by IIX = {A = (A1, A2) : A1, A2 ∈ IX , A1 ⊆ A2}.
The IVFS X = (X, X) is called the universal-IVFS and the IVFS φ = (φ, φ) is called
the empty-IVFS. Obviously any fuzzy set A on X is an IVFS of the form A = (A,A).

Definition 2.2. [6] Let A = (A1, A2) and B = (B1, B2) are two IVFSs. Then:
1) A = B ⇔ Ai = Bi where, i = 1, 2.
2) A ⊆ B ⇔ Ai = Bi where, i = 1, 2.
3) (A ∪B) = (A1 ∪B1, A2 ∪B2).
4) (A ∩B) = (A1 ∩B1, A2 ∩B2).
5) AC = (1−A2, 1−A1) where, AC is the complement of A.

Definition 2.3. [6] Let X be a nonempty set and x ∈ X be a fixed element. An
interval valued fuzzy point(IVFP, briefly) is an ordered pair (xα, xβ) of two fuzzy
points with (xα ≤ xβ) where, α, β ∈ I , β > 0 and is denoted by x(α,β) = (xα, xβ).
An IVFP x(α,β) ∈ A if and only if (xα ∈ A1 and xβ ∈ A2).

Let X and Y be two nonempty sets and f : X → Y be a map. If A = (A1, A2) is
an IVFS in X, then f(A) is an IVFS in Y defined by f(A) = (f(A1), f(A2)) where,
f(Ai)(y) = supx∈f−1(y)Ai(x) if f−1(y) 6= φ and equal φ otherwise ∀y ∈ Y , i = 1, 2.
And if B = (B1, B2) is an IVFS in Y, then f−1(B) is an IVFS in X defined by
f−1(B) = (f−1(B1), f−1(B2)) where, f−1(Bi)(x) = Bi(f(x)) ∀x ∈ X, i = 1, 2 .
For the basic properties of the image and primage of the map f we refer to [9].
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Definition 2.4. [9] The family η of IVFSs in X is called an interval valued fuzzy
topology on X iff η contains X,φ and it is closed under finite intersection and
arbitrary union. Then the pair (X, τ) is called an interval valued fuzzy topological
space. Every element of η is called an interval valued fuzzy open set (IVFOS for
short) in X. The complement AC of an IVFOS in (X, τ) is called an interval valued
fuzzy closed set (IVFCS, for short) in X and the set of all IVFCSs is denoted by ηC .

Definition 2.5. [6] Let β1, β2 ⊆ IX are two families of fuzzy sets. Then the IVF-
product of β1, β2 is denoted by β1×̂β2 and defined by β1×̂β2 = {(A1, A2) ∈ β1×̂β2 :
A1 ⊆ A2}.
Theorem 2.6. [11] Let (X, η) be an IVFTS on X. Then the following collections
are fuzzy topologies on X induced by η:
i) π1 = {A1 : (A1, A2) ∈ η},
ii) π2 = {A2 : (A1, A2) ∈ η},
iii) π3 = {A1 : (A1, X) ∈ η} ∪ {φ},
iv) π4 = {A2 : (φ,A2) ∈ η} ∪ {X},
v) π∆ = {A : (A,A) ∈ η}. Moreover π3 ⊆ π1, π4 ⊆ π2 and π∆ ⊆ π1 ∩ π2.

Definition 2.7. [6] An interval fuzzy topological space (X, τ) is called a G-IVFTS
iff η = π1×̂π2 which is the greatest IVFT constructed by IVF-product of π1, π2

where, in general η ⊆ π1×̂π2.

Note: It is clear that every a G-IVFT is an IVFT. The Example (2.4.2) in [11]
shows that the converse may not be true in general.

Theorem 2.8. [11] Let (X, τ) be a fuzzy topological space.Then the following families
are G-IVFTSs on X induced by τ :
1) η1 = τ×̂IX = {(A1, A2) : A1 ∈ τ},
2) η2 = IX×̂τ = {(A1, A2) : A2 ∈ τ},
3) η3 = τ×̂i(X) = {(A1, X) : A1 ∈ τ} ∪ {φ}, where i(X) = {X, φ} is the indiscrete
fuzzy topology on X.
4) η4 = i(X)×̂τ = {(φ,A2) : A2 ∈ τ} ∪ {X},
5) η∆ = {(A, A) : A ∈ τ}. Moreover for ηi(i = 1, 2, 3, 4) we have η3 ⊆ η1, η4 ⊆ η1

and η∆ ⊆ η1 ∩ η2.

3. Some relations between IVF-Continuity and F-Continuity

Definition 3.1. [6] Let (X, η), (Y, η∗) be IVFTSs. Then a map f : X → Y is called:
1) IVF-continuous if f−1(B) is IVFOS of X for all IVFOS B of Y , [or equivalently,
f−1(B) is IVFCS of X for each IVFCS B of Y ],
2) IVF-open function if f(A) is IVFOS of Y for each IVFOS A of X,
3) IVF-closed function if f(A) is IVFCS of Y for each IVFCS of X,
4) IVF-homeomorphism if f is bijective and f, f−1 are IVF-continuous.

Theorem 3.2. Let (X, η), (Y, η∗) be any two IVFTSs. If the map f : (X, η) →
(Y, η∗) is IVF-continuous, then the maps f : (X,πi) → (Y, π∗i ), i = 1, 2 are F-
continuous, where (πi, π

∗
i ), i = 1, 2 are defined as in Theorem (2.6).
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Proof. Let f : (X, η) → (Y, η∗) be an IVF-continuous map and B1 ∈ π∗1 . Then
there is B2 ∈ π∗2 . Since B = (B1, B2) ∈ η∗, then f−1(B) = (f−1(B1), f−1(B2)) ∈ η
consequently, f−1(B1) ∈ π1. Thus f : (X, π1) → (Y, π∗1) is F-continuous.
The proof for the case i=2 can be done in a similar way. ¤

Note: The following example shows that the converse of the above theorem may
not be true in general.

Example 3.3. Let (X, τ) be any FTS. Then the map IX : (X, τ) → (X, τ) is F-
continuous. But IX : (X, η∆) → (X, τ×̂τ) is not an IVF-continuous map where,
η∆ = {(A,A) : A ∈ τ}.
Theorem 3.4. Let (X, η) be the G-IVFTS and (Y, η∗) be any IVFTS. Then f :
(X, τ) → (Y, τ∗) is an IVF-continuous map iff the maps f : (X, πi) → (Y, π∗i ), i =
1, 2 are F-continuous.

Proof. ” ⇒ ” follows from Theorem(3.2). Conversely, let the maps f : (X, πi) →
(Y, π∗i ), i = 1, 2 are F-continuous and A = (A1, A2) ∈ η∗. Then A1 ∈ π∗1 , A2 ∈ π∗2
and so f−1(A1) ∈ π1, f

−1(A2) ∈ π2. Since f−1(A) = (f−1(A1), f−1(A2)) ∈ η and
hence f : (X, τ) → (Y, τ∗) is IVF-continuous. ¤

Theorem 3.5. Let (X, η), (Y, η∗) be any two IVFTSs. If the map f : (X, η) →
(Y, η∗) is IVF-continuous, then the maps f : (X,πi) → (Y, π∗i ), i = 3, 4 are F-
continuous, where (π3, π

∗
4), i = 3, 4 are defined as in Theorem (2.6).

Proof. The proof for the case i = 3. Let f : (X, η) → (Y, η∗) be an IVF-continuous
map and B1 ∈ π∗3 , then B = (B1, Y ) ∈ η∗. Since f : (X, η) → (Y, η∗) is IVF-
continuous, then f−1(B) = (f−1(B1), f−1(Y )) = (f−1(B1), X) ∈ η and so, f−1(B1) ∈
π3. Hence f : (X, π3) → (Y, π∗3) is F-continuous. The proof of the case i = 4 can be
done in a similar way. ¤

Note: The Example (3.3) shows that the converse of the above theorem may not
be true in general.

Theorem 3.6. Let (X, η) be the G-IVFTS and (Y, η∗i ), i = 3, 4 are IVFTS defined
in Theorem(2.8). Then the maps f : (X, η) → (Y, η∗i ) are IVF-continuous iff f :
(X, πi) → (Y, π∗i ), i = 3, 4 are F-continuous maps, i = 3, 4.

Proof. The proof of the case i = 3. ” ⇒ ” follows from the above theorem.
Conversely, let the maps f : (X, π3) → (Y, π∗3) is F-continuous and B = (B1, Y ) ∈ η∗3 ,
then B1 ∈ π∗3 . Since f : (X,π3) → (Y, π∗3) is F-continuous, then f−1(B1) ∈ π3 and
so f−1(B) = (f−1(B1), f−1(Y )) = (f−1(B1, X) ∈ η. Hence f : (X, η) → (Y, η∗3) is
IVF-continuous. The proof of the rest case can be done in a similar way. ¤

Theorem 3.7. Let f : (X, η) → (Y, η∗) be an IVF-open(IVF-closed)map. Then
f : (X, πi) → (Y, π∗i ), i = 1, 2 are fuzzy open(closed)maps.

Proof. Let f : (X, η) → (Y, η∗) be an IVF-open map and A1 ∈ π1. Then there is
A2 ∈ π2 such that A = (A1, A2) ∈ η. Since f : (X, η) → (Y, η∗), then f(A) =
(f(A1), f(A2)) ∈ η∗ and so f(A1) ∈ π∗1 , f(A2) ∈ π∗2 . Thus f : (X,π1) → (Y, π∗1) is
a fuzzy open map. The proof of the rest case can be done in analogous way. ¤
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Note: The following example shows that the converse of the above theorem may
not be true in general.

Example 3.8. Let X = {x, y, z}, η = {X,φ, (φ,X), (φ, (x1, y0, z1)), (φ, (x0, y1, z0)),
((x1, y0, z0), (x1, y0, z1)), ((x0, y1, z1), X), ((x1, y0, z0), X)} and Y = {a, b, c},
η∗ = {Y , φ, (φ, Y ), ((a1, b0, c0), Y ), ((a0, b1, c1), Y ), (φ, (a0, b1, c0)), (φ, (a1, b0, c1))}. If
f : X → Y a map given by f((x1, y0, z0)) = (a1, b0, c0), f((x0, y1, z0)) = (a0, b1, c0)
and f((x0, y0, z1)) = (a0, b0, c1), then f : (X, πi) → (Y, π∗i ), i = 1, 2 are fuzzy open
maps. But f : (X, η) → (Y, η∗) is not an IVF-open map. In fact,

f((x1, y0, z0), (x1, y0, z1)) = ((a1, b0, c0), (a1, b0, c1)) /∈ η∗.

Theorem 3.9. Let (Y, η∗) be the G-IVFTS and (X, η) be any IVFTS. Then the map
f : (X, η) → (Y, η∗) is IVF-open(IVF-closed) iff the maps f : (X, πi) → (Y, π∗i ), i =
1, 2 are fuzzy open(closed).

Proof. ” ⇒ ” Follows from Theorem(3.7).
Conversely, let f : (X, πi) → (Y, π∗i ), i = 1, 2 be fuzzy open(closed) maps and A =
(A1, A2) ∈ η. Then A1 ∈ π1, A2 ∈ π2 and so f(A1) ∈ π∗1 , f(A2) ∈ π∗2 . Consequently,
f(A) = (f(A1), f(A2)) ∈ η∗. Hence the result follows. ¤

Theorem 3.10. Let (X, η), (Y, η∗) be any two IVFTSs. If the map f : (X, η) →
(Y, η∗) is an IVF-open(IVF-closed)map then f : (X, πi) → (Y, π∗i ), i = 3, 4 are fuzzy
open(closed)maps, where (πi, π

∗
i , i = 3, 4) are defined as in Theorem(2.6).

Proof. The proof can be done is a similar to that of Theorem(3.7). ¤

Note: The Example(3.8) shows that the converse of the above theorem may not
be true in general.

Theorem 3.11. Let (X, ηi), i = 3, 4 are the IVFTSs defined in Theorem(2.8) and
(Y, η∗) be the G-IVFTS. Then the map f : (X, ηi) → (Y, η∗) is IVF-open(IVF-closed)
iff the maps f : (X,πi) → (Y, π∗i ), i = 3, 4 are fuzzy open(closed).

Proof. The proof of the case i = 3. ”⇒” follows from the above theorem.
Conversely, let the maps f : (X, π3) → (Y, π∗3) are fuzzy open(closed) and A =
(A1, X) ∈ η3, then A1 ∈ π3. Since f : (X, π3) → (Y, π∗3) is a fuzzy open(closed)
map, then f(A1) ∈ π∗3 and so f(A) = (f(A1), f(X)) = (f(A1), Y ) ∈ η∗. Hence the
result obtains. The proof of the case i = 4 can be done in a similar way. ¤

Theorem 3.12. Let (X, η), (Y, η∗) are two G-IVFTSs. Then f : (X, η) → (Y, η∗)
is IVF-homeomorphism iff f : (X, πi) → (Y, π∗i ), i = 1, 2 are F-homeomorphisms.

Proof. The proof follows from Theorem(3.4)and Theorem(3.9). ¤

Theorem 3.13. Let (X, ηi), (Y, η∗i ), i = 3, 4 are G-IVFTSs. Then the maps f :
(X, ηi) → (Y, η∗i ) are IVF-homeomorphisms iff f : (X, πi) → (Y, π∗i ), i = 3, 4 are
F-homeomorphisms.

Proof. The proof follows from Theorem(3.6)and Theorem(3.11). ¤
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4. The category of IVFTSs and its subcategories

In this section, we study the relationship between the category of interval valued
fuzzy topological spaces (IVFTSs, briefly) with some of its subcategories and the
category of fuzzy topological spaces (FTSs, briefly).
Let Ψ be the category of all interval valued fuzzy topological spaces with IVF-
continuous maps and Φ be the category of all fuzzy topological spaces with F-
continuous maps. First, let us define some functors between Ψ and Φ.

Theorem 4.1. For the categories Ψ and Φ. Define:
1) F1 : Ψ → Φ by F1(X, η) = (X, F1(η)) and F1(f) = f where,
F1(η) = {A1 : (A1, A2) ∈ η}.
2) F2 : Ψ → Φ by F2(X, η) = (X, F2(η)) and F2(f) = f where,
F2(η) = {A2 : (A1, A2) ∈ η}.
3) P1 : Φ → Ψ by P1(X, τ) = (X,P1(τ)) and P1(f) = f where,
P1(τ) = {(A1, A2) : A1 ∈ τ, A1 ⊆ A2}.
4) P2 : Φ → Ψ by P2(X, τ) = (X,P2(τ)) and P2(f) = f where,
P2(τ) = {(A1, A2) : A2 ∈ τ, A1 ⊆ A2}. Then F1, F2, P1, P2 are functors.

Proof. The proofs for 1) and 2) follows from Theorem(2.6), Theorem(3.2) and the
proofs for 3) and 4) follows from Theorem(2.8), Theorem(3.4). ¤

Note: F1(η) = π1, F2(η) = π2, P1(τ) = η1 and P2(τ) = η2.

Theorem 4.2. For the categories Ψ and Φ. Define:
i) F3 : Ψ → Φ by F3(X, η) = (X, F3(η)) and F3(f) = f where,
F3(η) = {A1 : (A1, X) ∈ η} ∪ {φ}.
ii) F4 : Ψ → Φ by F4(X, η) = (X,F4(η)) and F4(f) = f where,
F4(η) = {A2 : (φ,A2) ∈ η} ∪ {X}.
iii) P3 : Φ → Ψ by P3(X, τ) = (X, P3(τ)) and P3(f) = f where,
P3(τ) = {(A1, X) : A1 ∈ τ} ∪ {φ}.
iv) P4 : Φ → Ψ by P4(X, τ) = (X, P4(τ)) and P4(f) = f where,
P4(τ) = {(φ,A2) : A2 ∈ τ} ∪ {X}. Then F3, F4, P3, P4 are functors.

Proof. The proofs for i), ii) follow from Theorem(2.6), Theorem(3.5) and the proofs
for iii), iv) follow from Theorem(2.8), Theorem(3.6). ¤

Note: F3(η) = π3, F4(η) = π4, P3(τ) = η3 and P4(τ) = η4.

Theorem 4.3. The functor P1 : Φ → Ψ is a left adjoint of the functor F1 : Ψ → Φ.

Proof. By using the universal property. Let (X, τ) ∈ Φ and the map IX : (X, τ) →
F1(P1(X, τ)) = (X, τ) be F-continuous. We only need to prove that the map IX is
universal. Let (Y, ξ) ∈ Ψ and the map f : (X, τ) → F1(Y, ξ) be F-continuous, then
it is sufficient to prove that the map f∗ : P1(X, τ) = (X, P1(τ)) → F1(Y, ξ) is IVF-
continuous. So let B = (B1, B2) ∈ ξ, then B1 ∈ F1(ξ). Since f : (X, τ) → F1(Y, ξ)
is IVF-continuous, then f−1(B1) ∈ τ and hence f−1(B) = (f−1(B1), f−1(B2)) ∈
P1(τ). Thus f∗ : P1(X, τ) → F1(Y, ξ) is an IVF-continuous map. Therefore IX is an
F1-universal map for (X, τ) in Φ. Hence the result follows. ¤

Theorem 4.4. The functor P2 : Φ → Ψ is a left adjoint of the functor F2 : Ψ → Φ.
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Proof. The proof can be done in a similar way of that of the above theorem. ¤
Definition 4.5. On the category Ψ, we define five subcategories as follows:
1) Ψη3 : The full subcategory of Ψ whose objects are all IVFTSs from the type η3

defined in Theorem(2.8) with an IVF-continuous maps.
2) Ψη4 : The full subcategory of Ψ whose objects are all IVFTSs from the type η4

defined in Theorem(2.8) with an IVF-continuous maps.
3) Ψη1 : The full subcategory of Ψ whose objects are all IVFTSs from the type η1

defined in Theorem(2.8) with an IVF-continuous maps.
4) Ψη2 : The full subcategory of Ψ whose objects are all IVFTSs from the type η2

defined in Theorem(2.8) with an IVF-continuous maps.
5) Ψη∆ : The full subcategory of Ψ whose objects are all IVFTSs from the type η∆

defined in Theorem(2.8) with an IVF-continuous maps.

Note: It is clear that the category Ψη3(Ψη4) is a fully subcategory of the category
Ψη1(Ψη2).

Theorem 4.6. Let F ∗3 : Ψη3 → Φ and F ∗4 : Ψη4 → Φ be the restrictions of the
functors F3, F4 , respectively. Then:
i) The functor P3 : Φ → Ψ is a left adjoint of the functor F3 : Ψ → Φ.
ii) The functor P4 : Φ → Ψ is a left adjoint of the functor F4 : Ψ → Φ.

Proof. The proof for the case (i) follows from fact that, F3 ◦P3 = IΦ and P3 ◦F ∗3 =
IΨη3

, where F ∗3 = F3|IΨη3
is the restriction functor of the functor F3. Indeed,

F3 ◦ P3(X, τ) = (X, τ)∀(X, τ) ∈ Φ and P3 ◦ F ∗3 (X, ξ) = (X, ξ)∀(X, ξ) ∈ Ψη3 .
The proof for the rest case is analogous. ¤
Theorem 4.7. The category Ψη∆ is isomorphic to the category Φ.

Proof. We define the functor P ∗1 : Φ → Ψη∆ by P ∗1 (X, τ) = (X, η∆), P ∗1 (f) = f,
where, η∆ = {(A,A) : A ∈ τ}. Consider the restriction F ∗1 : Ψη∆ → Φ of the
functor F1. Then P ∗1 , F ∗1 are functors. Indeed F ∗1 ◦ P ∗1 (X, τ) = F ∗1 (X,P ∗1 (τ)) =
(X, F ∗1 P ∗1 (τ)) = (X, τ) ∀(X, τ) ∈ Φ. Now we only need to prove that P ∗1 ◦F ∗1 (X, η) =
(X, η) ∀(X, η) ∈ Ψη∆ . So let (X, η) ∈ Ψη∆ , A = (A1, A2) ∈ η, then A1 = A2 ,
A1 ∈ F ∗1 (η) and hence A = (A1, A2) = (A1, A1) ∈ (F ∗1 (η))∆. Thus P ∗1 ◦ F ∗1 (X, η) =
P ∗1 (X, F ∗1 (η)) = (X, (P ∗1 (η))∆) = (X, η). Hence the result follows. ¤
Theorem 4.8. The category Φ is isomorphic to the categories Ψη3 and Ψη4 .

Proof. The proof for the first case, let us define the restriction functor P ∗3 : Φ → Ψη3

for the functor P3 by P ∗3 (X, τ) = (X,P ∗3 (τ)), P ∗3 (f) = f where, P ∗3 (τ) = {(A1, X) :
A1 ∈ τ} ∪ {φ} and consider the restriction F ∗3 : ΦΨη3 → Φ of the functor F3. Then
P ∗3 , F ∗4 are functors. It is clear that F ∗3 ◦P ∗3 (X, τ) = F ∗3 (X, P ∗3 (τ)) = (X, F ∗3 P ∗3 (τ)) =
(X, τ) ∀(X, τ) ∈ Φ. Moreover, P ∗3 ◦F ∗3 (X, η) = (X, η) ∀(X, η) ∈ Ψη3 . Hence the result
follows. The proof for the seconde case can be proved in a similar way. ¤

From the Theorem(4.7)and Theorem(4.8) we obtain the following corollary.

Corollary 4.9. The categories Φ , Ψη3 , Ψη4 and Ψη∆ are isomorphic.

Theorem 4.10. The category Ψη∆ is a bireflective full subcategory of the category
Ψ.
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Proof. It is clear that the category Ψη∆ is a full subcategory of the category Ψ.
Now let (X, η) ∈ Ψ and η∗ = {A ∈ η : A = (A,A)}. Then (X, η∗) ∈ Ψη∆ and
IX : (X, η) → (X, η∗) is IVF-continuous map. Consider the IVFTS (Y, ξ) ∈ Ψη∆

with an IVF-continuous map f : (X, η) → (Y, ξ). We only need to prove that the
map f : (X, η∗) → (Y, ξ) is IVF-continuous. So let B ∈ ξ. Since (Y, ξ) ∈ Ψη∆

and f : (X, η) → (Y, ξ) is IVF-continuous, then B = (B, B) and f−1(B) ∈ η.
But f−1(B) = (f−1(B), f−1(B)) ∈ ξ. Hence the map f : (X, η∗) → (Y, ξ) is IVF-
continuous and so the result holds.

¤
From the above theorem and Corollary(4.9) we obtain the following result.

Corollary 4.11. The categories Φ , Ψη3 and Ψη4 are a bireflective full subcategories
of the category Ψ.
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