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1. Introduction

There are many problems in economy, engineering, environmental and social
sciences that may not be successfully modeled by the classical mathematics because
of various types of uncertainties. Zadeh [24] introduced the notion of a fuzzy set in
1965 to deal with such kinds of problems.

In 1971, Azriel Rosenfeld [22] defined the fuzzy subgroup of a group. Rosenfeld’s
paper made important contributions to the development of fuzzy abstract algebra.
Since then, various researchers have studied on fuzzy group theory analogues of
results derived from classical group theory. These include [1, 3, 6, 7, 8, 11, 12, 17, 21].
Mordeson et al. [20] combined all the above papers and many others in their book
titled Fuzzy Group Theory.

There is another theory, called soft sets, defined by Molodtsov [19] in 1999 in
order to deal with uncertainties. Since then Maji et al.[18] studied the operations of
soft sets, Çağman and Enginoğlu [10] modified definition and operations of soft sets
and Ali et al. [5] presented some new algebraic operations for soft sets. Sezgin and
Atagün [23] analyzed operations of soft sets. Using these definitions, researches have
been very active on the soft sets and many important results have been achieved in
theoretical and practical aspects.

An algebraic structure of soft sets was first studied by Aktaş and Çağman [4].
They introduced the notion of the soft group and derived some basic properties.
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Since then, many papers have been prepared on soft algebraic structures, such as
[2, 13, 14, 15, 16].

Çağman et al. [9] studied on soft int-groups, which are different from the definition
of soft groups in [4]. This new approach is based on the inclusion relation and
intersection of sets. It brings the soft set theory, set theory and the group theory
together. In this paper, we give some supplementary properties of soft sets and soft
int-groups, analogues to classical group theory and fuzzy group theory. We, finally,
present some important relations on α-inclusion, soft product and soft int-groups,
to construct notions of soft group theory.

2. Preliminaries

2.1. Soft sets. In this section, we present basic definitions of soft set theory accord-
ing to [10]. For more detailed explanations, we refer to the earlier studies [18, 19].

Throughout this paper, U refers to an initial universe, E is a set of parameters
and P (U) is the power set of U . ⊂ and ⊃ stands for proper subset and superset,
respectively.

Definition 2.1 ([19]). For any subset A of E, a soft set fA over U is a set defined
by a function fA representing a mapping

fA : E −→ P (U) such that fA(x) = ∅ if x /∈ A.

A soft set over U can be represented by the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P (U)} .

Note that the set of all soft sets over U will be denoted by S(U). From here on
“soft set” will be used without over U .

Definition 2.2 ([10]). Let fA be a soft set. If fA(x) = ∅ for all x ∈ E, then fA is
called an empty soft set and denoted by ΦA.

If fA(x) = U for all x ∈ A, then fA is called A-universal soft set and denoted by
fÃ.

If fA(x) = U , for all x ∈ E, then fA is called a universal soft set and denoted by
fẼ .

If fA ∈ S(U), then the image(value class) of fA is defined by

Im (fA) = {fA(x) : x ∈ A}
and if A = E, then Im(fE) is called image of E under fA.

Definition 2.3. Let fA be a soft set and A ⊆ E. Then, the set f∗A defined by
f∗A = {x ∈ A : fA (x) 6= ∅} is called the support of fA.

Definition 2.4. Let fA : E −→ P (U) be a soft set and K ⊆ E. Then, the image of
a set K under fA is defined by

fA(K) = ∪{fA(xi) : xi ∈ K} .

Definition 2.5 ([10]). Let fA, fB be two soft sets. Then, fA is a soft subset of fB ,
denoted by fA⊆̃fB , if fA(x) ⊆ fB(x) for all x ∈ E.

fA is called a soft proper subset of fB , denoted by fA ⊂̃fB , if fA(x) ⊆ fB(x) for
all x ∈ E and fA(x) 6= fB(x) for at least one x ∈ E.
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fA and fB are called soft equal, denoted by fA = fB , if and only if fA(x) = fB(x)
for all x ∈ E.

Definition 2.6 ([10]). Let fA, fB be two soft sets. Then, union fA∪̃fB and inter-
section fA∩̃fB of fA and fB are defined by

fA∪̃B(x) = fA(x) ∪ fB(x), fA∩̃B(x) = fA(x) ∩ fB(x),

respectively.

2.2. Definitions and basic properties of soft int-groups. In this section, we
review soft int-groups and their basic properties according to paper by Çağman et
al. [9].

Definition 2.7 ([9]). Let G be a group and fG be a soft set. Then, fG is called a
soft intersection groupoid over U if fG(xy) ⊇ fG(x) ∩ fG(y) for all x, y ∈ G and is
called a soft intersection group over U if it satisfies fG(x−1) = fG(x) for all x ∈ G
as well.

Throughout this paper, G denotes an arbitrary group with identity element e
and the set of all soft int-groups with parameter set G over U will be denoted by
SG(U), unless otherwise stated. For short, instead of “fG is a soft int-group with
the parameter set G over U” we say “fG is a soft int-group”.

Theorem 2.8 ([9]). Let fG be a soft int-group. Then
(1) fG(e) ⊇ fG(x) for all x ∈ G,
(2) fG(xy) ⊇ fG(y) for all y ∈ G if and only if fG(x) = fG(e).

Theorem 2.9 ([9]). A soft set fG is a soft int-group if and only if fG(xy−1) ⊇
fG(x) ∩ fG(y) for all x, y ∈ G.

Definition 2.10 ([9]). Let fG be a soft set. Then, e-set of fG, denoted by efG
, is

defined as
efG

= {x ∈ G : fG(x) = fG(e)} .

If fG is a soft int-group, then the largest set in Im(fG) is called the tip of fG,
which is equal to fG(e).

Theorem 2.11 ([9]). If fG is a soft int-group, then efG is a subgroup of G.

3. Some new results on soft sets and soft int-groups

In this section, we first give some new results on soft sets and soft int-groups.
Then, we define soft singleton and soft product, and give some additional properties
of soft int-groups.

Theorem 3.1. If fG is a soft int-group, then fG (xn) ⊇ fG (x) for all x ∈ G where
n ∈ N.

Proof. Proof is direct from definition of soft int-group by induction. ¤

Theorem 3.2. Let fG be a soft int-group and x, y ∈ G. If fG

(
xy−1

)
= fG(e), then

fG (x) = fG (y).
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Proof. For any x, y ∈ G,

fG (x) = fG

((
xy−1

)
y
) ⊇ fG

(
xy−1

) ∩ fG (y) = fG(e) ∩ fG (y) = fG (y)

and

fG (y) = fG

(
y−1

)

= fG

(
x−1

(
xy−1

))

⊇ fG

(
x−1

) ∩ fG

(
xy−1

)

= fG

(
x−1

) ∩ fG(e)
= fG (x) .

Hence fG (x) = fG (y). ¤
Theorem 3.3. If fG is a soft int-group and H ≤ G, then the restriction fG|H is a
soft int-group with the parameter set H.

Proof. Since H ≤ G, fG(xy−1) ⊇ fG(x) ∩ fG(y) for all x, y ∈ H. Let’s define
fH(x) = fG(x) for all x ∈ H. Since H is a group, xy−1 ∈ H for all x, y ∈ H. Then
for all x, y ∈ H

fH(xy−1) = fG(xy−1) ⊇ fG(x) ∩ fG(y) = fH(x) ∩ fH(y),

so fH is a soft int-group with the parameter set H. ¤
Theorem 3.4. Let Ai ≤ G for all i ∈ I and {fAi : i ∈ I} be a family of soft
int-groups. Then,

⋂̃
i∈I

fAi is a soft int-group.

Proof. By Çağman et al. ([9, Theorem 7]), we have the proof for two soft int-groups.
To prove the general form, let x, y ∈ G, then⋂

i∈I

fAi

(
xy−1

)
=

⋂ {
fAi

(
xy−1

)
: i ∈ I

}

⊇
⋂
{fAi (x) ∩ fAi (y) : i ∈ I}

=
(⋂

{fAi (x) : i ∈ I}
)
∩

(⋂
{fAi (y) : i ∈ I}

)

=

(⋂

i∈I

fAi (x)

)
∩

(⋂

i∈I

fAi (y)

)
.

So the proof is complete by Theorem 2.9. ¤
Lemma 3.5. Let fG be a soft int-group such that either fG(x) ⊆ fG(y) or fG(x) ⊇
fG(y) for any x, y ∈ G. If fG(x) 6= fG(y), then fG(xy) = fG(x) ∩ fG(y) for any
x, y ∈ G.

Proof. If fG(x) 6= fG(y), then either fG(x) ⊃ fG(y) or fG(x) ⊂ fG(y). Suppose

(3.1) fG(x) ⊂ fG(y)

then

(3.2) fG(x) = fG(xyy−1) ⊇ fG(xy) ∩ fG(y−1) = fG(xy) ∩ fG(y)
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Thus, from (3.1) and (3.2) we have

(3.3) fG(x) ⊇ fG(xy) ∩ fG(y) ⊇ fG(xy) ⊇ fG(x) ∩ fG(y) = fG(x).

So, all expressions are equal in (3.3). Hence, fG(xy) = fG(x) ∩ fG(y).
For the other case, proof is similar. ¤

Corollary 3.6. Let fG be a soft int-group as in Lemma 3.5. If fG (x) ⊂ fG (y) then
fG (x) = fG (xy) = fG (yx) for all x, y ∈ G.

Proof. Obvious from the Lemma 3.5 and (3.3). ¤
Remark 3.7. Corollary 3.6 is not true if we replace, in the hypothesis, the strict
inclusion fA (x) ⊂ fA (y) with the inclusion fA (x) ⊆ fA (y).

We show this fact by the following example.

Example 3.8. Let G be the Dihedral group D3, where D3 = {e, u, u2, v, vu, vu2},
and u3 = v2 = e, uv = vu2. Define a mapping fG : G −→ P (U) such that

fG(x) =





U for x = e
α for x = v
β otherwise

where φ ⊂ β ⊂ α ⊂ U. It is easy to verify that fG is a soft group. In the notation
of Corollary 3.6, let x = u and y = vu, then although β = fG(u) ⊆ fG(vu) = β,
fG ((u)(vu)) = fG(v) = α 6= β = fG(u). So fG (x) = fG (xy) is not true.

Remark 3.9. The converse of Corollary 3.6 is not true. Let us show it by a counter
example, using the Dihedral group given in Example 3.8. Let x = u2 and y = vu2.
Although fG (x) = fG(u2) = β and fG (yx) = fG

(
(vu2)(u2)

)
= fG (vu) = β, the

inclusion β = fG(u2) = fG (x) ⊂ fG (y) = fG(vu2) = β is not true.

Theorem 3.10. Let G be a cyclic group of prime order and A ⊆ G. Then, the soft
set fA, defined by

fA(x) =
{

α for x = e
β otherwise

where α ⊃ β and α, β ∈ P (U), is a soft int-group.

Proof. For any x, y ∈ G, there are four conditions;
(1) xy 6= e and neither x nor y equals to e. Then,

fA(xy) = β ⊇ β ∩ β = fA(x) ∩ fA(y)

and since x 6= e, then x−1 6= e, so fA(x) = fA(x−1) = β.
(2) xy 6= e and only one of x or y equals to e. Firstly, let x = e. Then,

fA(xy) = fA(ey) = β ⊇ α ∩ β = fA(x) ∩ fA(y).

For the second condition of soft int-group, if x = e, then

fA(x) = fA(e) = α = fA(e−1) = fA(x−1),

and since y 6= e, then y−1 6= e so, fA(y) = β = fA(y−1).
(3) xy = e and neither x nor y equals to e. Then,

fA(xy) = α ⊇ β ∩ β = fA(x) ∩ fA(y)
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and fA(x) = fA(x−1) = β, since x 6= e implies x−1 6= e.
(4) The last condition is x = y = e, which satisfies all conditions as well. ¤

Definition 3.11 ([9]). Let fA be a soft set and α ∈ P (U). Then, α-inclusion of the
soft set fA, denoted by fα

A, is defined as

fα
A = {x ∈ A : fA(x) ⊇ α} .

We define the set fα′
A = {x ∈ A : fA(x) ⊃ α}, which is called strong α-inclusion.

Corollary 3.12. For any soft sets fA and fB ,

(1) fA⊆̃ fB , α ∈ P (U) ⇒ fα
A ⊆ fα

B ,

(2) α ⊆ β, α, β ∈ P (U) ⇒ fβ
A ⊆ fα

A,
(3) fA = fB ⇔ fα

A = fα
B , for all α ∈ P (U).

Theorem 3.13 ([9]). Let I be an index set and {fAi : i ∈ I} be a family of soft sets.
Then, for any α ∈ P (U),

(1)
⋃

i∈I

(
fα

Ai

) ⊆
(⋃̃

i∈IfAi

)α

,

(2)
⋂
i∈I

(
fα

Ai

)
=

(⋂̃
i∈IfAi

)α

.

Theorem 3.14. Let fA be a soft set and {αi : i ∈ I} be a non-empty subset of P (U)
for each i ∈ I. Let β =

⋂
i∈I

αi and γ =
⋃

i∈I αi. Then, the following assertions hold:

(1)
⋃

i∈I fαi

A ⊆ fβ
A,

(2)
⋂
i∈I

fαi

A = fγ
A.

Proof. Let x ∈ A. Then,

x ∈
⋃

i∈I

fαi

A ⇒ ∃i ∈ I such that x ∈ fαi

A

⇒ ∃i ∈ I such that fA(x) ⊇ αi

⇒ ∃i ∈ I such that fA(x) ⊇ αi ⊇
⋂

i∈I

αi = β

⇒ x ∈ fβ
A.

So, the result follows. Second part is similar. ¤

Definition 3.15. Let fA be a soft set and α ∈ P (U). Then, the soft set fAα,
defined by, fAα(x) = α, for all x ∈ A, is called A − α soft set. If A is a singleton,
say {w}, then fwα is called a soft singleton (or soft point). If α = U , then fÃ is the
characteristic function of A.

Proposition 3.16. Let fAα be an A− α soft set. Then,

(1) fAα∩̃fBα = f(A∩B)α and fAα∪̃fBα = f(A∪B)α,

(2) fAα∩̃fÃ = fAα and fAα∪̃fÃ = fÃ.
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Lemma 3.17. Let fA be a soft set and f(fα
A)α be an (fα

A)− α soft set. Then,

fA =
⋃̃

α∈P (U)

f(fα
A)α =

⋃̃

α∈Im(fA)

f(fα
A)α.

It is clear that, instead of A − α soft set of all α subset of U , it is enough to
consider A− α soft set taken α from Im(fA) .

Proof. For any x ∈ A,
⋃̃

α∈P (U)

f(fα
A)α (x) =

⋃
{α ∈ P (U) : α ⊆ fA(x)} = fA (x) .

So, fA =
⋃̃

α∈P (U)f(fα
A)α.

Similarly,
⋃̃

α∈Im(fA)

f(fα
A)α (x) =

⋃
{α ∈ Im(fA) : α ⊆ fA(x)} = fA (x)

and thus fA =
⋃̃

α∈Im(fA)f(fα
A)α. ¤

Theorem 3.18. Let G be a group and α ∈ P (U). Then, fG is a soft int-group if
and only if fα

G is a subgroup of G, whenever it is nonempty.

Proof. The necessary condition is proven in ([9, Theorem 11]). To prove sufficient
condition, suppose fα

G ≤ G for any nonempty fα
G.

Let x, y ∈ G, fG(x) = β and fG(y) = δ, and let γ = β ∩ δ. Then, x, y ∈ fγ
G and

fγ
G is a subgroup of G by hypothesis. So xy−1 ∈ fγ

G. Hence,

fG(xy−1) ⊇ γ = β ∩ δ = fG(x) ∩ fG(y).

Thus, fG is a soft int-group. ¤
Definition 3.19. Let fG be a soft int-group. Then, the subgroups fα

G are called
level subgroups of G for any α ∈ P (U).

Definition 3.20. Let G be a group and A,B ⊆ G. Then, soft product of soft sets
fA and fB is defined as

(fA ∗ fB)(x) =
⋃
{fA(u) ∩ fB(v) : uv = x, u, v ∈ G}

Inverse of fA is defined as
f−1

A (x) = fA(x−1)
for all x ∈ G.

The following theorem reduces the soft product to the product of singletons.

Theorem 3.21. Let G be a group and fA, fB , fxα, fyβ be soft sets with the param-
eter set G. Then, for any x, y ∈ G and φ ⊂ α, β ⊆ U,

(1) fxα ∗ fyβ = f(xy)(α∩β),

(2) fA ∗ fB =
⋃̃

fxα∈fA

fyβ∈fB

(fxα ∗ fyβ) =
⋃̃ {fxα ∗ fyβ : fxα ∈ fA, fyβ ∈ fB} .
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Proof. Let fxα, fyβ , fA, fB ∈ S(U).
(1) From the Definition 3.20, we have for any w ∈ G

(fxα ∗ fyβ) (w) =
⋃
{fxα(u) ∩ fyβ(v) : uv = w, u, v ∈ G}.

If u = x and v = y, then fxα(u)∩ fyβ(v) 6= φ, otherwise fxα(u)∩ fyβ(v) = φ. Hence,

(fxα ∗ fyβ) (w) =
⋃
{φ, fxα(x) ∩ fyβ(y)} =

⋃
{φ, α ∩ β} = α ∩ β

for w = xy.
(2) For any point w ∈ G, we may assume that, there exists u, v ∈ G such that

uv = w and fA(u) 6= φ, fB(v) 6= φ without loss of generality. Then,

(fA ∗ fB) (w) =
⋃{fA(u) ∩ fB(v) : uv = w and u, v ∈ G}

=
⋃ {fxα(x) ∩ fyβ(y) : xy = w, fxα ∈ fA, fyβ ∈ fB}

=
⋃̃

fxα∈fA

fyβ∈fB

(fxα ∗ fyβ) (w) . ¤

Corollary 3.22. Let A ⊆ G, fA ∈ S(U) and fxα, fyβ , fzγ be singletons in fA.
Then,

(1) (fxα ∗ fyβ) ∗ fzγ = fxα ∗ (fyβ ∗ fzγ) ,
(2) fxα ∗ fyβ = fyβ ∗ fxα, if G is commutative,
(3) fxα ∗ fe(fA(e)) = fe(fA(e)) ∗ fxα = fxα, if fA ∈ SG(U).

Proof. Let fA ∈ S(U).
(1) For any fxα, fyβ , fzγ ∈ fA,

(fxα ∗ fyβ) ∗ fzγ = f(xy)(α∩β) ∗ fzγ

= f((xy)z)((α∩β)∩γ)

= f(x(yz))(α∩(β∩γ))

= fxα ∗ f(yz)(β∩γ)

= fxα ∗ (fyβ ∗ fzγ) .

(2) Clear from Theorem 3.21.
(3) For any fxα ∈ fA,

fxα ∗ fe(fA(e)) = f(xe)(α∩(fA(e))) = fxα = f(ex)((fA(e))∩α) = fe(fA(e)) ∗ fxα. ¤
Theorem 3.23. Let A,B, C ⊆ G and fA, fB , fC be soft sets. Then,

(1) (fA ∗ fB) ∗ fC = fA ∗ (fB ∗ fC) ,
(2) fA ∗ fB = fB ∗ fA, if G is commutative,
(3) If fA ∈ SG(U), then the identity element of operation “∗” is fe(fA(e)).

Proof. Proofs are direct from definition of soft product, Theorem 3.21 and Conclu-
sion 3.22. ¤
Theorem 3.24. Let A,B ⊆ G and fA, fB be soft sets. Then,

(fA ∗ fB)(x) =
⋃

v∈G

(fA(v) ∩ fB(v−1x)) =
⋃

v∈G

(fA(xv−1) ∩ fB(v))

for any x ∈ G.
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Proof. For all v ∈ G, v(v−1x) = x or (xv−1)v = x includes all compositions of x in
the definition of soft product, so equality holds. ¤
Corollary 3.25. Let A ⊆ G and fA, fuα be soft sets where α = fA(A). Then, for
any x, u ∈ G,

(fuα ∗ fA)(x) = fA(u−1x) and (fA ∗ fuα)(x) = fA(xu−1).

Proof. For any x, u ∈ G, we have

(fuα ∗ fA)(x) =
⋃

v∈G

(fuα(v) ∩ fA(v−1x))

= α ∩ fA(u−1x)
= fA(u−1x)

by Theorem 3.24. Second part is similar. ¤
Theorem 3.26. Let Ai ⊆ G and fAi (i ∈ I) be soft int-groups. Then,

(⋂̃

i∈I

fAi

)−1

=
⋂̃

i∈I

(fAi)
−1

.

Proof. For all x ∈ G,
(⋂̃

i∈I

fAi

)−1

(x) =

(⋂̃

i∈I

fAi

)
(
x−1

)
=

⋂

i∈I

fAi

(
x−1

)
=

⋂

i∈I

f−1
Ai

(x)

so, equality holds. ¤
Theorem 3.27. Let A,B ⊆ G and fA, fB be soft int-groups. Then,

(fA ∗ fB)−1 = f−1
B ∗ f−1

A .

Proof. For all x ∈ G,
(fA ∗ fB)−1 (x) = (fA ∗ fB)

(
x−1

)

=
⋃{fA(u) ∩ fB(v) : uv = x−1, u, v ∈ G}

=
⋃{fB

(
v−1

)−1 ∩ fA

(
u−1

)−1 : v−1u−1 = x, u−1, v−1 ∈ G}
=

⋃{f−1
B

(
v−1

) ∩ f−1
A

(
u−1

)
: v−1u−1 = x, u−1, v−1 ∈ G}

=
(
f−1

B ∗ f−1
A

)
(x) . ¤

Theorem 3.28. Let fG be a soft set. Then, fG is a soft int-group if and only if fG

satisfies the following conditions:
(1) (fG ∗ fG) ⊆̃fG,
(2) f−1

G = fG (or fG⊆̃f−1
G or f−1

G ⊆̃fG).

Proof. Assume that fG ∈ SG(U). Firstly, for all x ∈ G,

(fG ∗ fG) (x) =
⋃
{fG(u) ∩ fG(v) : uv = x, u, v ∈ G}

⊆
⋃
{fG(uv) : uv = x, u, v ∈ G}

= fG(x)
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since fG ∈ SG(U). So (fG ∗ fG) ⊆̃fG.
Second part is obvious by the definition of soft int-group since

f−1
G (x) = fG

(
x−1

)
= fG (x)

for all x ∈ G.
Conversely; suppose (fG ∗ fG) ⊆̃fG, then for all x ∈ G, (fG ∗ fG) (x) ⊆ fG (x) .

So, for all x ∈ G

fG (x) ⊇ (fG ∗ fG) (x)

=
⋃
{fG(u) ∩ fG(v) : u, v ∈ G, uv = x} .

Hence, for any u, v ∈ G such that uv = x, we have fG (uv) ⊇ fG(u) ∩ fG(v) and by
the second part of assumption, fG ∈ SG(U). ¤

Theorem 3.29. Let A,B ⊆ G and fA, fB be soft int-groups. Then, fA ∗ fB is a
soft int-group if and only if fA ∗ fB = fB ∗ fA.

Proof. Assume that fA ∗ fB ∈ SG(U). Then,

fA ∗ fB = f−1
A ∗ f−1

B = (fB ∗ fA)−1 = fB ∗ fA.

Conversely, suppose fA ∗ fB = fB ∗ fA. Then,

(fA ∗ fB) ∗ (fA ∗ fB) = fA ∗ (fB ∗ fA) ∗ fB

= fA ∗ (fA ∗ fB) ∗ fB

= (fA ∗ fA) ∗ (fB ∗ fB)
⊆ fA ∗ fB

and
(fA ∗ fB)−1 = (fB ∗ fA)−1 = f−1

A ∗ f−1
B = fA ∗ fB .

Consequently, by Theorem 3.28, fA ∗ fB is a soft int-group. ¤

4. Conclusions

In this paper, we present soft int-groups on a soft set and give some of their
supplementary properties. In addition, we give relations between α-inclusion, soft
product and soft int-groups. This study affords us an opportunity to go further
on soft group theory, that is, soft normal int-group, quotient group, isomorphism
theorems etc.
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