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Abstract. We study the lattice structure of the set WP (X) of all
weakly induced principal L-topologies on a given set X. It is proved that
this lattice is complete, not atomic, not complemented and not dually
atomic. Some other properties of the lattice WPτ , the set of all weakly
induced principal L-topologies defined by families of (completely) scott
continuous functions on X are also discussed.
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1. Introduction

The concept of induced fuzzy topological space was introduced by Weiss [14].
Lowen called these spaces a topologically generated spaces. Martin [10] introduced
a generalized concept, weakly induced spaces, which was called semi induced space
by Mashhour et al. [11]. The notion of lower semi continuous functions plays an
important tool in defining the above concepts. In [1, 2], Aygun et al. introduced a
new class of functions from a topological space (X, τ) to a fuzzy lattice L with its
scott topology called (completely) scott continuous functions, as a generalization of
(completely) lower semi continuous functions from (X, τ) to [0, 1].

It is known that [6] lattice of L-topologies is complete, atomic and not comple-
mented. In [7], Jose and Johnson generalised weakly induced spaces introduced by
Martin [10] using the tool (completely) scott continuous functions and studied the
lattice structure of the set W (X) of all weakly induced L-topologies on a given set
X. A related problem is to find subfamilies in W (X) having certain properties. The
collection of all weakly induced principal L topologies WP (X) form a lattice with
the natural order of set inclusion. The concept of principal topologies in the crisp
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case is studied by Steiner [12]. The lattice of principal topologies is both atomic and
dually atomic. Analogously we study the lattice structure of the set of all weakly
induced principal L-topologies on a given set X. Here we study properties of the
lattice WPτ of weakly induced principal L topologies defined by families of (com-
pleted) scott continuous functions with reference to τ on X. From the lattice WPτ

we deduce that lattice WP (X) of weakly induced principal L-topologies on X. It is
not complemented but join complemented.

2. Preliminaries

Let X be a nonempty ordinary set and L = (≤,∨,∧,′ ) be a complete completely
distributive lattice with smallest element 0 and largest element 1, 0 6= 1, and with
an order reversing involution a → a′ (a ∈ L). We identify the constant function
from X to L with value α by α. The fundamental definition of L-fuzzy set theory
and L-topology are assumed to be familiar to the reader in the sense of Chang [3].

A topological space is called principal if it is discrete or if it can be written as
the meet of principal ultra topologies. Steiner [12] proved that this is equivalent to
requiring that the arbitrary intersection of open sets is open. Analogously we define
principal L-topology as

Definition 2.1. An L-topology is called principal L-topology if arbitrary intersec-
tion of open L subsets is an open L subset.

Definition 2.2 ([8]). An element of a lattice L is called an atom if it is the minimal
element of L\{0}.
Definition 2.3 ([8]). An element of a lattice L is called a dual atom if it is the
maximal element of L\{1}.
Definition 2.4 ([4]). A lattice is said to be bounded if it possess smallest element
0 and largest element 1.

Definition 2.5 ([8]). A bounded lattice L is said to be join complemented if for all
x in L, there exists y in L such that x ∨ y = 1.

Definition 2.6 ([8]). A bounded lattice L is said to be meet complemented if for
all x in L, there exist y in L such that x ∧ y = 0.

Definition 2.7 ([8]). A bounded lattice is said to be complemented if it is both join
complemented and meet complemented.

Definition 2.8 ([8]). A bounded lattice L is said to be semi-complemented if it is
either join complemented or meet complemented.

Definition 2.9 ([5]). An element p of L is called prime if p 6= 1 and whenever
a, b ∈ L with a ∧ b ≤ p, then a ≤ p or b ≤ p. The set of all prime elements of L will
be denoted by Pr (L).

Definition 2.10 ([13]). The scott topology on L is the topology S, generated by
the sets of the form {t ∈ L : t 6≤ p} where p ∈ Pr (L). Let (X, τ) be a topological
space and f : (X, τ) → L be a function, where L has its scott topology. We say that
f is scott continuous if for every p ∈ Pr (L), f−1({t ∈ L : t 6≤ p}) ∈ τ .
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Remark 2.11. When L = [0, 1], the scott topology coincides with the topology of
topologically generated spaces of Lowen [9]. The set

ωL(τ) = {f ∈ LX ; f : (X, τ) → L is scott continuous }
is an L-topology. It is the largest element in Wτ . If τ is a principal topology ωL(τ)
is a principal L-topology, we can denote it by ωPL(τ). An L-topology F on X is
called an induced principal L-topology if there exist a principal topology τ on X
such that F = ωPL(τ).

Definition 2.12 ([2, 1]). Let (X, τ) be a topological space and a ∈ X. A function
f : (X, τ) → L, where L has its scott topology, is said to be completely scott
continuous at a ∈ X if for every p ∈ Pr (L) with f(a) 6≤ p, there is a regular
open neighbourhood U of a in (X, τ) such that f(x) 6≤ p for every x ∈ U . That is
U ⊂ f−1({t ∈ L : t 6≤ p}) and f is called completely scott continuous on X, if f is
completely scott continuous at every point of X.

Note. Let F be a principal L-topology on the set X, let Fc denote the 0–1 valued
members of F , that is, Fc is the set of all characteristic mappings in F . Then Fc

is a principal L-topology on X. Define F ∗c = {A ⊂ X : µA ∈ Fc where µA is the
characteristic function of A}. The principal L-topological space (X, Fc) is same as
the principal topological space (X, F ∗c ).

Definition 2.13. A principal L-topological space (X,F ) is said to be a weakly
induced principal L topological space, if for each f ∈ F , f is a scott continuous
function from (X, F ∗c ) to L.

Definition 2.14. If F is the collection of all scott continuous functions from (X, F ∗c )
to L, then F is an induced space and F = ωPL(F ∗c ).

3. Lattice of weakly induced principal L-topologies

For a given principal topology τ on X, the family WPτ of all weakly induced
principal L-topologies defined by families of scott continuous functions from (X, τ)
to L forms a lattice under the natural order of set inclusion. The least upper bound
of a collection of weakly induced principal L-topologies belonging to WPτ is the
weakly induced principal L-topology which is generated by their union and the
greatest lower bound is their intersection. The smallest element is the indiscrete
L-topology, and denoted by 0 and the largest element is denoted by 1 = ωPL(τ).

Also for a principal topology τ on X, the family CWPτ of all weakly induced
principal L topologies defined by families of completely scott continuous function
from (X, τ) to L forms a lattice under the natural order of set inclusion. Since every
completely scott continuous function is scott continuous, it follows that CWPτ is a
sublattice if WPτ . We note that WPτ and CWPτ coincide when each openset in τ
is regular open.

When τ = D, the discrete topology on X, these lattices coincide with lattice of
weakly induced principal L-topologies on X.

Theorem 3.1. The lattice WPτ is complete.
345
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Proof. Let S be a subset of WPτ and let G =
⋂

F∈S

F . Clearly G is a principal L-

topology. Let g ∈ G. Since each F ∈ S is a weakly induced principal L topology,
g is a scott continuous mapping from (X, F ∗C) to L, that is g−1{t ∈ L : t 6≤ p
where p ∈ Pr L} ∈ F ∗c for each F ∈ S. Therefore g−1{t ∈ L : t 6≤ p where
p ∈ Pr L} ∈ ⋂

F∈S

F ∗C . Hence g is a scott continuous function from (X, G∗c) to

L, where (X, G∗c) = (X,
⋂

F∈S

F ∗c ). That is G ∈ WPτ and G is the greatest lower

bound of S. Let K be the set of upper bounds of S. Then K is non empty, since
1 = ωPL(τ) ∈ K.

Using the above argument K has a greatest lower bound, say H, then this H is a
least upper bound of S. Thus every subset S of WPτ has greatest lower bound and
least upper bound. Hence WPτ is complete. ¤

Theorem 3.2. WPτ is not atomic.

Proof. Atoms in WPτ are either of the form {0, 1, α} or {0, 1, µA}, where µA is the
characteristic function of open subsets A of (X, τ) and α ∈ (0, 1). Let X = {a, b, c},
τ = {φ,X, {a}, {a, b}} and

F = {0, 1, µ{a}, µ{a,b}, f, g, h, i, j, k},
where f(a) = 0.6, f(b) = 0.5, f(c) = 0.4, g(a) = 1, g(b) = 1, g(c) = 0.4, h(a) = 1,
h(b) = 0.5, h(c) = 0.4, i(a) = 1, i(b) = 0.5, i(c) = 0, j(a) = 0.6, j(b) = 0.5,
j(c) = 0, k(a) = 0.6, k(b) = 0, and k(c) = 0. Fc = {0, 1, µ{a}, µ{a,b}}. F ∗c =
{φ,X, {a}, {a, b}} = τ and F ∈ WPτ . But this F cannot be expressed as join of
atoms. Hence Wpτ is not atomic. ¤

Note. A lattice L is modular if and only if it has no sublattice isomorphic to N5,
where N5 is a standard non modular lattice.

Theorem 3.3. WPτ is not distributive.

Proof. Since every distributive lattice is necessarily modular, we prove that WPτ is
not modular. This can be illustrated with an example. Let X = {a, b, c} and τ =
{φ,X, {a}, {b}, {a, b}}. Suppose F1 = {0, 1}, F2 = {0, 1, µ{a}}, F3 = {0, 1, µ{b}},
F4 = {0, 1, µ{a}, µ{a,b}}, F5 = {0, 1, µ{a}, µ{b}, µ{a,b}}. Then each element in the
collection S = {F1, F2, F3, F4, F5} belongs to WPτ and S is a sublattice of WPτ

isomorphic to N5. Therefore WPτ is not modular and hence not distributive. ¤

Proposition 3.4. If L has no dual atom, then atoms in WPτ of the form {0, 1, α}
have no complements in WPτ .

Proof. Let F = {0, 1, α} be atom in WPτ . We claim that F has no complement.
1 is not a complement of F since 1 ∧ F 6= 0. Let P be a weakly induced principal
L-topology in WPτ other than 1 = ωPL(τ). If F ⊂ P , then P cannot be the
complement of F , since F ∧P 6= 0. If F 6⊆ P , let F ∨P = G and G has the subbasis
{f ∧ p|f ∈ F, p ∈ P} . Then G cannot be equal to ωPL(τ) = 1. Hence P is not a
complement of F . ¤
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Remark 3.5. The above proposition is not true for an arbitrary lattice L. For
example, take L = {0, α, 1} ordered by 0 < α < 1. If (X, τ) is a principal L
topological space and K = {0, 1, α}, then clearly K is an atom in WPτ , when α is
not a characteristic function. Let H = {0, 1} ∪ {µA : A ∈ τ}. Then H is an element
of WPτ and K ∧H = 0 and K ∨H = ωPL(τ) = 1. Hence H is a complement of K.

Theorem 3.6. WPτ is not complemented.

Proof. This follows from the Proposition 3.4. ¤
Remark 3.7. When τ = D, the discrete topology on X then WPD = WP (X),
the collection of all weakly induced principal L-topologies on X. Let ∆ denote
the family of all weakly induced principal L-topologies defined by scott continuous
functions where each scott continuous function is a characteristic function. Then ∆
is a sublattice of WP (X) and is a lattice isomorphic to the lattice of all principal
topologies on X. The elements of ∆ are called crisp principal topologies.

Theorem 3.8. The lattice of weakly induced principal L-topologies WP (X) is not
complemented.

Proof. This follows from Theorem 3.6. ¤
Theorem 3.9. Every atom in WP (X) of the form {0, 1, µA} has complement.

Proof. Let F = {0, 1, µA}. Then F is an element of Π, lattice of principal topologies
on X. Since Π is complemented there exists τ in Π such that τ ∨ F equal to the
discrete principal topology and τ ∧ F equal to the indiscrete principal topology on
X. Then F ∨ ωPL(τ) = 1 = ωPL(D) and F ∧ ωPL(τ) = 0. ¤
Theorem 3.10. The lattice WP (X) of all weakly induced principal L-topologies on
any set X is semi complemented.

Proof. Let F ∈ WP (X). Since F is weakly induced there is a topology F ∗c on X such
that each element f ∈ F is a scott continuous function from (X, F ∗c ) to L. Since
the lattice of principal topologies is complemented, we can find a principal topology
τ ′ such that F ∨ ωPL(τ ′) = 1 = ωPL(D) where (X, D) is a principal topological
space and F ∧ ωPL(τ ′) need not be equal to 0, the indiscrete principal L-topology
on X. Thus every F in WP (X) has a join complement. Hence WP (X) is semi
complemented. ¤
Remark 3.11. Dual atoms in WP (X) are of the form ωPL(τ) where τ is a dual
atom in the lattice of principal topologies. Each induced principal L-topology other
than the discrete principal L-topology can be expressed as meet of dual atoms. But
an arbitrary weakly induced principal L-topology, for example the weakly induced
L-topology F = {0, 1, α} cannot be expressed as a meet of dual atoms. Thus we
have

Theorem 3.12. The lattice WP (X) of all weakly induced principal L-topologies on
any set X is not dually atomic.

Acknowledgements. The first author wishes to thank the University Grant
Commission, India for giving financial support.

347



Raji George et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 2, 343–348

References

[1] Halis Aygun, M. W. Warner and S. R. T. Kudri, Completely induced L-fuzzy topological
space, Fuzzy sets and Systems 103 (1999) 513–523.

[2] R. N. Bhaumik and A. Mukharjee, Completely induced fuzzy topological spaces, Fuzzy Sets
and Systems 47 (1992) 387–390.

[3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 191–201.
[4] D. A. Davey and H. A. Priestley, Introduction to lattice and order, Second edition, Cambridge

University Press, New York, 2002.
[5] G. Gierz, A compendium of continuous lattices, Springer, Berlin (Dec. 9, 1980)
[6] T. P. Johnson, On Lattice of L-topologies, Indian Journal of Mathematics 46(1) (2004) 21–26.
[7] V. K. Jose and T. P. Johnson, Lattice of weakly induced L-topologies, J. Fuzzy Math. 16(2)

(2008) 327–333.
[8] Ying-Ming Liu and Mao-Kang Luo, Fuzzy topology, World Scientific publishing company,

River Edge, New Jersey, 1997.
[9] R. Lowen, Fuzzy topological space and fuzzy compactness, J. Math. Anal. Appl. 56 (1976)

621–633.
[10] H. W. Martin, On weakly induced fuzzy topological spaces, J. Math. Anal. Appl., 78 (1980)

634–637.
[11] A. S. Mashhour, M. H. Ghanim, A. El Wakril and N. M. Moris, Semi induced fuzzy topologies,

Fuzzy Sets and Systems 31 (1989) 1–18.
[12] A. K. Steiner, The lattice of topologies, structure and complementation, Trans. Amer. Math.

Soc. 122 (1966) 379–397.
[13] M. Warner and R. G. McLean, On compact Hausdorff L-fuzzy spaces, Fuzzy sets and Systems

56 (1993) 103–110.
[14] M. D. Weiss, Fixed points, separation and induced topologies for fuzzy sets, J. Math. Anal.

Appl. 50 (1975) 142–150.

Raji George (bobyraji@gmail.com)
Department of Mathematics, St. Peter’s College, Kolenchery - 682 311 Ernakulam
Dt. Kerala state, India

T. P. Johnson (tpjohnson@cusat.ac.in)
Applied Sciences and Humanities Division, School of Engineering, Cochin University
of Science and Technology, Cochin-22, Kerala state, India.

348


