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Abstract. In this paper the notion of fuzzy ideals of a Γ-near-ring with
respect to a t-norm is introduced and investigated some related properties.
This concept of T -fuzzy ideals of a Γ-near-ring is a generalization of the
concept of T -fuzzy ideals in near-rings. Also the notions of T -fuzzy ideals
of a Γ-near-ring, quotient Γ-near-ring with respect to a t-norm and the sum
of T -fuzzy ideals of a Γ-near-ring are introduced. Further, it is shown that
an onto homomorphic image of a T -fuzzy ideal with Sup property is a T -
fuzzy ideal and an epimorphic pre-image of a T -fuzzy ideal of a Γ-near-ring
is a T -fuzzy ideal.
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1. Introduction

The notion of a fuzzy set was introduced by L. A. Zadeh [14] in 1965. In 1971,
A. Rosenfeld [9] used the notion of a fuzzy subset of a set to introduce the concept
of a fuzzy subgroup of a group. Rosenfeld’s paper inspired the development of fuzzy
abstract algebra. W. J. Liu [7] studied fuzzy ideals in rings and Bh. Satyanarayana
[10] introduced Γ-near-rings. In [6] W. A. Dudek and Y. B. Jun introduced fuzzy
subgroups over a t-norm. In [12] M. Shabir and M. Hussan characterized the sum
of fuzzy ideals. In [13] Srinivas, Nagaiah and Narasimha Swamy studied anti fuzzy
ideals of Γ-near-rings. P. Deena, G. Mohanraj [5] and M. Akram [1] have studied
several properties of T -fuzzy ideals of rings and T -fuzzy ideals of near-rings. We
extended the results of Akram [1] to Γ-near-rings. For more other study on the
fuzzy theory in Γ-near-rings we refer [3, 8, 12].

In this paper, by using the t-norm T , we define T -fuzzy ideals of a Γ-near-ring
and prove that every fuzzy ideal of a Γ-near-ring is a T -fuzzy ideal. Also we prove
that an onto homomorphic image of a T -fuzzy ideal with Sup property is a T -fuzzy
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ideal and an epimorphic pre-image of a T -fuzzy ideal of a Γ-near-ring is a T -fuzzy
ideal. Further we introduce the notion of direct product of T -fuzzy ideals and prove
that the sum of T -fuzzy left ideals of a Γ-near-ring is a T -fuzzy left ideal. The proofs
are almost similar to that of T -fuzzy ideals in near-rings [1] and fuzzy algebras on
K(G)-algebras [4].

2. Preliminaries

In this section we summarize the preliminary definitions that will be required in
this paper. Most of the contents of this section are contained in [1, 2, 4, 13].

Definition 2.1. A non-empty set N with two binary operations “ + ” ( addition)
and “ · ” (multiplication) is called a near-ring if it satisfies the following axioms:

(i) (N , +) is a group,
(ii) (N , ·) is a semigroup,
(iii) (x + y) · z = x · z + y · z,

for all x, y, z ∈ N.

Precisely speaking it is a right near-ring, because it satisfies the right distributive
law. We will use the word “near-ring” to mean “right near-ring”. We denote xy
instead of x · y. Moreover, a near-ring N is said to be a zero-symmetric if r · 0 = 0
for all r ∈ N , where 0 is the additive identity in N .

Definition 2.2. Let (R, +) be a group and Γ be a non empty set. Then R is said
to be a Γ-near-ring if there exists a mapping R×Γ×R → R ( The image of (x, α, y)
is denoted by xαy) satisfying the following conditions:

(i) (x + y)αz = xαz + yαz,
(ii) (xαy)βz = xα(yβz)

for all x, y, z ∈ R and α, β ∈ Γ.

Definition 2.3. Let R be a Γ-near-ring. A normal subgroup (I, +) of (R, +) is
called

(i) a left ideal if xα(y + i)− xαy ∈ I for all x, y ∈ R,α ∈ Γ, i ∈ I,
(ii) a right ideal if iαx ∈ I for all x ∈ R, α ∈ Γ, i ∈ I,
(iii) an ideal if it is both a left ideal and a right ideal of R.
A Γ-near-ring R is said to be a zero-symmetric if aα0 = 0 for all a ∈ R and α ∈ Γ,

where 0 is the additive identity in R.

Definition 2.4. A sub set M of a Γ-near-ring R is said to a sub Γ-near-ring if there
exists a mapping M × Γ×M → M such that

(i) (M, +) be a subgroup of (R, +),
(ii) (x + y)γz = xγz + yγz for every x, y, z ∈ M and γ ∈ Γ,
(ii) (xγy)ωz = xγ(yωz) for every x, y, z ∈ M and γ, ω ∈ Γ.

Definition 2.5. Let R be a Γ-near-ring. A fuzzy set of R is a function A : R → [0, 1].
Let A be a fuzzy set of R. For α ∈ [0, 1], the set U(A;α) = {x ∈ R : A(x) ≥ α} is
called a level set of A.

Definition 2.6. A fuzzy subset A of a Γ-near-ring R is said to be a fuzzy sub
Γ-near-ring of R if it satisfies the following conditions:

(P1) A(x− y) ≥ min{A(x), A(y)} for all x, y ∈ R,
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(P2) A(xαy) ≥ min{A(x), A(y)} for all x, y ∈ R and α ∈ Γ.

Definition 2.7. A fuzzy sub Γ-near-ring A of R is called a fuzzy ideal if it satisfies
the following conditions:

(P3) A(y + x− y) ≥ A(x) for all x, y, z ∈ R,
(P4) A(xαy) ≥ A(y) for all x, y ∈ R and α ∈ Γ,
(P5) A(xα(z + y)− xαy) ≥ A(z) for all x, y, z ∈ R and α ∈ Γ.

Note that if A is a fuzzy ideal of a Γ-near-ring R then A(0) ≥ A(x) for all x ∈ R.

Definition 2.8 ([1]). A t-norm is a function T : [0, 1]× [0, 1] → [0, 1] that satisfies
the following conditions:

(N1) T (x, 1) = x,
(N2) T (x, y) = T (y, x),
(N3) T (x, T (y, z)) = T (T (x, y), z),
(N4) T (x, y) ≤ T (x, z) whenever y ≤ z,

for all x, y, z ∈ [0, 1].

For a t-norm T , let ∆T denote the set of elements α ∈ [0, 1] such that T (α, α) = α,
that is ∆T = {α ∈ [0, 1] : T (α, α) = α}. Note that every t-norm T has a useful
property T (α, β) ≤ min{α, β} and T (α, 0) = 0 for all α, β ∈ [0, 1].

Definition 2.9. Let A and B be the fuzzy subsets of a non-empty set X. A fuzzy
subset A ∧B is defined by

(A ∧B)(x) = T (A(x), B(x))
for all x ∈ X.

Definition 2.10. Let R1 and R2 be two Γ-near-rings. A mapping f : R1 → R2 is
called a Γ-near-ring homomorphism if f(x+y) = f(x)+f(y) and f(xγy) = f(x)γf(y)
for all x, y ∈ R1 and γ ∈ Γ. If f is one-to-one and onto, we say that f is a Γ-near-ring
isomorphism.

Definition 2.11 ([9]). A fuzzy set µ of a Γ-near-ring R has the Sup property if for
any subset N of R, there exists a0 ∈ N such that

µ(ao) = sup
a∈N

µ(a).

Definition 2.12. Let A and B be two fuzzy ideals of a Γ-near-ring R. Then the
sum A + B is a fuzzy set of R defined by

(A + B)(x) =
{

sup(min(A(y), B(z))) if x = y + z
0 otherwise

for all x, y, z ∈ R.

Definition 2.13. A fuzzy ideal A of a Γ-near-ring R is said to be normal if there
exists an element a ∈ R such that A(a) = 1.

We note that A is normal of a Γ-near-ring R if and only if A(1) = 1.

Definition 2.14. Let M and N be any two sets and let f : M → N be any function.
A fuzzy subset µ of M is called f -invariant if f(x) = f(y) implies µ(x) = µ(y) for
all x, y ∈ M .
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3. T -fuzzy ideals of Γ-near-rings

In this section we introduce the concepts of T -fuzzy sub Γ-near-ring and T -fuzzy
ideal of a Γ-near-ring.

Definition 3.1. A fuzzy set A of a Γ-near-ring R is called a fuzzy sub Γ-near-ring
with respect to a t-norm (shortly, T -fuzzy sub Γ-near-ring) of R if

(NP1) A(x− y) ≥ T (A(x), A(y)) for all x, y ∈ R,
(NP2) A(xαy) ≥ T (A(x), A(y)) for all x, y ∈ R and α ∈ Γ.

Definition 3.2. Let R be a Γ−near-ring. Then T -fuzzy sub Γ-near-ring A of R is
called a T -fuzzy ideal of R if it satisfies the following conditions:

(NP3) A(y + x− y) ≥ A(x) for all x, y ∈ R,
(NP4) A(xαy) ≥ A(y) for all x, y ∈ R and α ∈ Γ,
(NP5) A(xα(z + y)− xαy) ≥ A(z) for all x, y, z ∈ R and α ∈ Γ.

Note that A is a T -fuzzy left ideal of R if it satisfies (NP1), (NP2), (NP3) and
(NP4) and A is a T -fuzzy right ideal of R if it satisfies (NP1), (NP2), (NP3) and
(NP5). A is called a T -fuzzy ideal of R if A is both left and right T -fuzzy ideal of
R.

Example 3.3. Let R = {0, a, b, c} and Γ = {0Γ, 1}. Define a binary operation “+”
on R and a mapping R× Γ×R → R by the following tables:

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

0Γ 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 0
c 0 0 0 0

1 0 a b c
0 0 0 0 0
a 0 a a a
b 0 b b b
c 0 c c c

Clearly, (R, +) is a group and
(i) (x + y)γz = xγz + yγz for every x, y, z ∈ R, γ ∈ Γ,
(ii) (xγy)ωz = xγ(yωz) for every x, y, z ∈ R and γ, ω ∈ Γ.

Thus R is a Γ-near-ring. Let T be a t-norm defined by T (α, β) = max (α +β− 1, 0)
for all α, β ∈ [0, 1]. Define a fuzzy set A : R → [0, 1] by A(0) ≥ A(a) = A(b) = A(c).
Then it can be easily verified that A is a T -fuzzy ideal of R.

Example 3.4. If (G, +) is a non-abelian group and X is a non-empty set then

R = {f | f is a mapping from X to G}
is a non-abelian group under the point wise addition. Let

Γ = {g | g is a mapping from G to X}.
Let f1, f2 ∈ R, g ∈ Γ then f1gf2 ∈ R. Then the map R × Γ × R → R satisfies the
following:

(i) (f1g1f2)f3 = f1g1(f2g2f3) and
(ii) (f1 + f2)g1f3 = f1g1f3 + f2g1f3

for all f1, f2, f3 ∈ R and for all g1, g2 ∈ Γ. Thus R is a Γ-near-ring. Let T be a
t-norm defined by

T (α, β) = max(α + β − 1, 0) for all α, β ∈ [0, 1].
Define a fuzzy set A : R → [0, 1] by
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A(0R) = 0.7 and A(f) = 0.3 where f is any element of R with f 6= 0R.

Then it can be easily verified that A is a T -fuzzy ideal of a Γ-near-ring R.

Example 3.5. Let R = {0, a, b, c} and Γ = {α, β}. Define a binary operation “ + ”
on R and a mapping R× Γ×R → R by the following tables:

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

α 0 a b c
0 0 0 0 0
a 0 a a a
b 0 b b b
c 0 c c c

β 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 0
c 0 0 0 0

Clearly, (R, +) is a group and
(i) (x + y)γz = xγz + yγz for every x, y, z ∈ R, γ ∈ Γ,
(ii)(xγy)ωz = xγ(yωz) for every x, y, z ∈ R and γ, ω ∈ Γ.

Then R is a Γ-near-ring. Let T be a t-norm defined by
T (α, β) = max(α + β − 1, 0) for all α, β ∈ [0, 1].

Define a fuzzy subset A : R → [0, 1] by
A(0) = 0.9 and A(x) = 0.4 for all x 6= 0.

The routine calculation shows that A is a T -fuzzy ideal of a Γ-near-ring R.

Definition 3.6 ([5]). Let A and B be T -fuzzy ideals of a Γ-near-ring R. Then the
direct product of T -fuzzy ideals is defined by (A×B)(x, y) = T (A(x), B(y)) for all
x, y ∈ R.

Definition 3.7 ([2]). Let R be a Γ-near-ring. Let µ be a fuzzy set of a T -fuzzy ideal
of R and f be a function defined on R, then the fuzzy set µf in f(R) is defined by

µf (y) = sup
x∈f−1(y)

µ(x)

for all y ∈ f(R) and is called the image of µ under f . Similarly, if ν is a fuzzy set
in f(R), then µ = ν ◦ f in R is defined as µ(x) = ν(f(x)) for all x ∈ R and is called
the pre-image of ν under f .

4. Main results

The following theorems can be proved similar to that of fuzzy subquasigroups
over a t-norm [6] and in T -fuzzy ideals in rings [5].

Theorem 4.1. Let A be a T -fuzzy ideal of a Γ-near-ring R and α ∈ [0, 1].
(i) If α = 1, then U(A; α) is either empty or an ideal of R.
(ii) If T = min, then U(A;α) is either empty or an ideal of R.
(iii) A(0) ≥ A(x) for all x ∈ R.

Theorem 4.2. Every fuzzy ideal of a Γ-near-ring R is a T -fuzzy ideal of R.

Theorem 4.3. If Ai, i ∈ I, is a T -fuzzy ideal of a Γ-near-ring R then
∧
i∈I

Ai is also

a T -fuzzy ideal of R where
∧
i∈I

Ai is defined by (
∧
i∈I

Ai)(x) = inf{Ai(x) : i ∈ I} for

all x ∈ R.
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For the sake of understanding the above theorem first we prove the following
result and then we give an example.

Theorem 4.4. If A and B are T -fuzzy ideals of a Γ-near-ring R then A ∧ B is a
T -fuzzy ideal of R.

Proof. Let A and B be T -fuzzy ideals of a Γ-near-ring R. Let x, y, z ∈ R and α ∈ Γ.
Then

(A ∧B)(x− y) = T (A(x− y), B(x− y)) ≥ T (T (A(x), A(y)), T (B(x), B(y)))
= T (T (T (A(x), A(y)), B(x)), B(y)) = T (T (T (A(x), B(x)), A(y)), B(y))
= T (T (A(x), B(x)), T (A(y), B(y))) = T ((A ∧B)(x), (A ∧B)(y)).

Since A and B are T -fuzzy ideals of R, we have A(xαy) ≥ T (A(x), A(y)) and
B(xαy) ≥ T (B(x), B(y)). Also we have

(A ∧B)(xαy) = T (A(xαy), B(xαy)) ≥ T (T (A(x), A(y)), T (B(x), B(y)))
= T (T (T (A(x), A(y)), B(x)), B(y)) = T (T (T (A(x), B(x)), A(y)), B(y))
= T (T (A(x), B(x)), T (A(y), B(y))) = T ((A ∧B)(x), (A ∧B)(y)).

Since A(xαy) ≥ A(y) and B(xαy) ≥ B(y), we have

(A ∧B)(xαy) = T (A(xαy), B(xαy))
≥ T (A(y), B(y))
= (A ∧B)(y).

Since A(y + x− y) ≥ A(x) and B(y + x− y) ≥ B(x), we have

(A ∧B)(y + x− y) = T (A(y + x− y), B(y + x− y))
≥ T (A(x), B(x))
= (A ∧B)(x).

Since A(xα(z + y)− xαy) ≥ A(z) and B(xα(z + y)− xαy) ≥ B(z), we have

(A ∧B)(xα(z + y)− xαy) = T (A(xα(z + y)− xαy), B(xα(z + y)− xαy))

≥ T (A(z), B(z)) = (A ∧B)(z).
Hence A ∧B is a T -fuzzy ideal of R. This completes the proof. ¤

Example 4.5. Let R = {0, a, b, c} and Γ = {α, β} be a Γ-near-ring as in example
3.5. We have (A ∧ B)(x) = T (A(x), B(x)) for all x ∈ R (by definition 2.9). Define
a t-norm T by T (p, q) = max(p + q − 1, 0) for all p, q ∈ [0, 1]. Define a fuzzy
subset A : R → [0, 1] by A(0) = 0.9 and A(a) = A(b) = A(c) = 0.4, where
0, a, b, c ∈ R. Then A = {(0, 0.9), (a, 0.4), (b, 0.4), (c, 0.4)}. Again define a fuzzy
subset B : R → [0, 1] by B(0) = 0.7 and B(a) = 0.6, B(b) = 0.5, B(c) = 0.4, where
0, a, b, c ∈ R. Then B = {(0, 0.7), (a, 0.6), (b, 0.5), (c, 0.4)}. Let 0, a, b, c ∈ R. Then

(A ∧B)(0) = T (A(0), B(0)) = T (0.9, 0.7) = max(0.9 + 0.7− 1, 0)
= max(1.6− 1, 0) = max(0.6, 0) = 0.6.

(A ∧B)(a) = T (A(a), B(a)) = T (0.4, 0.6) = max(0.4 + 0.6− 1, 0)=0.
(A ∧B)(b) = T (A(b), B(b)) = T (0.4, 0.5) = max(0.4 + 0.5− 1, 0)

= max(0.9− 1, 0) = max(−0.1, 0) = 0.
(A ∧B)(c) = T (A(c), B(c)) = T (0.4, 0.4) = max(0.4 + 0.4− 1, 0)

= max(−0.2, 0) = 0.
So A∧B = {(0, 0.6), (a, 0), (b, 0), (c, 0)} is a fuzzy subset on R, that is, A∧B : R →
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[0, 1] defined by (A ∧ B)(0R) = 0.6, (A ∩ B)(x) = 0 for all x 6= 0R. Then it can be
easily verified that A ∧B is a T -fuzzy ideal of a Γ-near-ring R.

Now we state the following theorem which can be proved similar to that of T -fuzzy
ideals of near-rings [1].

Theorem 4.6. If Ai, i ∈ I, is a T -fuzzy ideal of a Γ-near-ring R, then
∨
i∈I

Ai is also

a T -fuzzy ideal of R where
∨
i∈I

Ai is defined by (
∨
i∈I

Ai)(x) = sup{Ai(x) : i ∈ I} for

all x ∈ R.

Theorem 4.7. Let A be a T -fuzzy ideal of a Γ-near-ring R and A? be a fuzzy set
in R defined by A?(x) = A(x)

A(1) for all x ∈ R. Then A? is normal T -fuzzy ideal of R

contains A.

Proof. Let A be a T -fuzzy ideal of a Γ-near-ring R. For any x, y, z ∈ R and α ∈ Γ,
we have

A?(x− y) = A(x−y)
A(1) ≥ 1

A(1) (T (A(x), T (A(y)))
= T ( 1

A(1)A(x), 1
A(1)A(y)) = T (A?(x), A?(y)),

and
A?(xαy) = A(xαy)

A(1) ≥ 1
A(1) (T (A(x), T (A(y)))

= T ( 1
A(1)A(x), 1

A(1)A(y)) = T (A?(x), A?(y)).
This shows that A? is a T -fuzzy sub Γ-near-ring of R.

A?(y + x− y) = A(y+x−y)
A(1) ≥ 1

A(1)A(x) = A?(x),

A?(xαy) = A(xαy)
A(1) ≥ 1

A(1)A(y) = A?(y),
and

A?(xα(z + y)− xαy) = A(xα(z+y)−xαy)
A(1) ≥ 1

A(1)A(z) = A?(z).
Hence A? is a T -fuzzy ideal of R. Clearly A?(1) = 1

A(1)A(1) = 1 and A ⊂ A?. This
completes the proof. ¤

Theorem 4.8. Let A be a T -fuzzy ideal of a Γ-near-ring R and let A+ be a fuzzy
set in R defined by A+(x) = A(x) + 1 − A(1) for all x ∈ R. Then A+ is normal
T -fuzzy ideal of R containing A.

Proof. Let A be a T -fuzzy ideal of a Γ-near-ring R. For any x, y, z ∈ R and α ∈ Γ,
we have

A+(x− y) = A(x− y) + 1−A(1) ≥ T (A(x), A(y)) + 1−A(1)
= T (A(x) + 1−A(1), A(y) + 1−A(1)) = T (A+(x), A+(y)),

A+(xαy) = A(xαy) + 1−A(1) ≥ T (A(x), A(y)) + 1−A(1)
= T (A(x) + 1−A(1), A(y) + 1−A(1)) = T (A+(x), A+(y)).

A+(y + x− y) = A(y + x− y) + 1−A(1) ≥ A(x) + 1−A(1) = A+(x),
A+(xαy) = A(xαy) + 1−A(1) ≥ A(y) + 1−A(1) = A+(y),

and
A+(xα(z + y)− xαy) = A(xα(z + y)− xαy) + 1−A(1)

≥ A(z) + 1−A(1) = A+(z).
Hence A+ is a T -fuzzy ideal of a Γ-near-ring R. Clearly A+(1) = 1 and A ⊂ A+.
This completes the proof. ¤
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Theorem 4.9. An onto homomorphic image of a T -fuzzy ideal with Sup property
is a T -fuzzy ideal.

Proof. Let R and S be Γ-near-rings. Let f : R → S be a epimorphism and A be a
T -fuzzy ideal of R with sup property. Let x

′
, y
′ ∈ S , x0 ∈ f−1(x

′
), y0 ∈ f−1(y

′
) and

z0 ∈ f−1(z
′
) be such that A(xo) = sup

n∈f−1(x′ )
A(n), A(yo) = sup

n∈f−1(y′ )
A(n), A(zo) =

sup
n∈f−1(z′ )

A(n) respectively. Then for any α ∈ Γ, we have

Af (x
′ − y

′
) = sup

z∈f−1(x′−y′ )
A(z) ≥ A(x0 − y0) ≥ min(A(x0), A(y0))

≥ T (A(x0), A(y0)) = T ( sup
n∈f−1(x′ )

A(n), sup
n∈f−1(y′ )

A(n))

= T (Af (x
′
), Af (y

′
)),

Af (x
′
αy

′
) = sup

z∈f−1(x′αy′ )
A(z) ≥ A(x0αy0) ≥ min(A(x0), A(y0))

≥ T (A(x0), A(y0)) = T ( sup
n∈f−1(x′ )

A(n), sup
n∈f−1(y′ )

A(n))

= T (Af (x
′
), Af (y

′
)),

Af (y
′
+ x

′ − y
′
) = sup

z∈f−1(y′+x′−y′ )
A(z) ≥ A(y0 + x0 − y0)

≥ A(x0) = sup
n∈f−1(x′ )

A(n) = Af (x
′
),

Af (x
′
αy

′
) = sup

z∈f−1(x′αy′ )
A(z) ≥ A(x0αy0) ≥ A(y0) = sup

n∈f−1(y′ )
A(n) = Af (y

′
),

and
Af (x

′
α(z

′
+ y

′
)− x

′
αy

′
) = sup

z∈f−1(x′α(z′+y′ )−x′αy′ )
A(z)

≥ A(x0α(z0 + y0)− xoαy0)) ≥ A(z0) = sup
n∈f−1(z′ )

A(n) = Af (z
′
).

This completes the proof. ¤

Theorem 4.10. An epimorphic pre-image of a T -fuzzy ideal of a Γ-near-ring is a
T -fuzzy ideal.

Proof. Let R and S be Γ-near-rings. Let f : R → S be an epimorphism. Let ν be
a T -fuzzy ideal of S and µ be the pre-image of ν under f . Then for any x, y, z ∈ R
and α ∈ Γ, we have

µ(x− y) = (ν ◦ f)(x− y) = ν(f(x− y)) = ν(f(x)− f(y))
≥ T (ν(f(x)), ν(f(y))) = T ((ν ◦ f)(x), (ν ◦ f)(y)) = T (µ(x), µ(y)),

µ(xαy) = (ν ◦ f)(xαy) = ν(f(xαy)) = ν(f(x)αf(y))
≥ T (ν(f(x)), ν(f(y))) = T ((ν ◦ f)(x), (ν ◦ f)(y)) = T (µ(x), µ(y)),

µ(y + x− y) = (ν ◦ f)(y + x− y) = ν(f(y + x− y)) = ν(f(y) + f(x)− f(y))
≥ ν(f(x)) = (ν ◦ f)(x) = µ(x),

µ(xαy) = (ν ◦ f)(xαy) = ν(f(xαy)) = ν(f(x)αf(y))
≥ µ(f(y)) = (ν ◦ f)(y) = µ(y),

and
µ(xα(z + y)− xαy) = (ν ◦ f)(xα(z + y)− xαy)

= ν(f(xα(z + y)− xαy)) = ν(f(x)αf(z))
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≥ ν(f(z)) = (ν ◦ f)(z) = µ(z).
Hence µ is a T -fuzzy ideal of a Γ-near-ring R. This completes the proof. ¤
Lemma 4.11 ([13]). . Let R and S be Γ-near-rings and f : R → S be a homomor-
phism. Let A be f -invariant fuzzy ideal of R. If x = f(a), then f(A)(x) = A(a) for
all a ∈ R.

Theorem 4.12. Let f : R → S be an epimorphism of Γ-near-rings R and S. If A
is f -invariant T -fuzzy ideal of R, then f(A) is a T -fuzzy ideal of S.

Proof. Let a, b, c ∈ S and α ∈ Γ. Then there exists x, y, z ∈ R such that f(x) =
a, f(y) = b and f(z) = c. Suppose A is f -invariant T -fuzzy ideal of R, then by
Lemma 4.11

f(A)(a− b) = f(A)(f(x)− f(y)) = f(A)(f(x− y)) = A(x− y)
≥ T (A(x), A(y)) = T (f(A)(a), f(A)(b)),

f(A)(aαb) = f(A)(f(x)αf(y)) = f(A)(f(xαy)) = A(xαy)
≥ T (A(x), A(y)) = T (f(A)(a), f(A)(b)),

f(A)(b + a− b) = f(A)(f(y) + f(x)− f(y)) = f(A)(f(y + x− y))
= A(y + x− y) ≥ A(x) = f(A)(a),

f(A)(aαb) = f(A)(f(x)αf(y)) = f(A)(f(xαy)) = A(xαy) ≥ A(x) = f(A)(b),
and

f(A)[aα(c + b)− aαb] = f(A)[f(x)α(f(z) + f(y))− f(x)αf(y)]
= f(A)[f(xα(z + y)− xαy)] = A[xα(z + y)− xαy]
≥ A(z) = f(A)(c).

Hence f(A) is a T -fuzzy ideal of S. This completes the proof. ¤
Theorem 4.13. Let R1 and R2 be Γ-near-rings. If A1 and A2 are T -fuzzy ideals
of R1 and R2 respectively, then A = A1 ×A2 is a T -fuzzy ideal of the direct product
R1 ×R2.

Proof. Let A1 and A2 be T -fuzzy ideals of a Γ-near-rings R1 and R2 respectively.
Let (x1, x2), (y1, y2), (z1, z2) ∈ R1 ×R2 and α ∈ Γ. Then

A((x1, x2)− (y1, y2)) = A(x1 − y1, x2 − y2) = (A1 ×A2)(x1 − y1, x2 − y2)
= T (A1(x1− y1), A2(x2− y2)) ≥ T (T (A1(x1), A1(y1)), T (A2(x2), A2(y2)))
= T (T (A1(x1), A2(x2)), T (A1(y1), A2(y2)))
= T ((A1 ×A2)(x1, x2), (A1 ×A2)(y1, y2))
= T (A(x1, x2), A(y1, y2)),

A((x1, x2)α(y1, y2)) = A(x1αy1, x2αy2) = (A1 ×A2)(x1αy1, x2αy2)
= T (A1(x1αy1), A2(x2αy2)) ≥ T (T (A1(x1), A1(y1)), T (A2(x2), A2(y2)))
= T (T (A1(x1), A2(x2)), T (A1(y1), A2(y2)))
= T ((A1 ×A2)(x1, x2), (A1 ×A2)(y1, y2)) = T (A(x1, x2), A(y1, y2)),

A((y1, y2) + (x1, x2)− (y1, y2)) = A(y1 + x1 − y1, y2 + x2 − y2)
= (A1×A2)(y1+x1−y1, y2+x2−y2) = T (A1(y1+x1−y1), A2(y2+x2−y2))
≥ T (A1(x1), A2(x2)) = (A1 ×A2)(x1, x2),

A((x1, x2)α(y1, y2)) = A(x1αy1, x2αy2) = (A1 ×A2)(x1αy1, x2αy2)
= T (A1(x1αy1), A2(x2αy2)) ≥ T ((A1(y1), A2(y2)) = (A1 ×A2)(y1, y2),

and
A((x1, x2)α((z1, z2) + (y1, y2))− (x1, x2)α(y1, y2))

= A((x1, x2)α(z1, z2) + (x1, x2)α(y1, y2)− (x1, x2)α(y1, y2))
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= A((x1, x2)α(z1, z2)) = A(x1αz1, x2αz2)
= (A1 ×A2)(x1αz1, x2αz2) = T (A1(x1αz1), A2(x2αz2))
≥ T ((A1(z1), A2(z2)) = (A1 ×A2)(z1, z2).

Hence A = A1 ×A2 is a T -fuzzy ideal of R1 ×R2. This completes the proof. ¤

Theorem 4.14. Let f : R1 → R2 be an onto homomorphism of a Γ-near-rings. If
A is a T -fuzzy ideal of R1, then f(A) is a T -fuzzy ideal of R2.

Proof. Let A be a T -fuzzy ideal of a Γ-near-ring R1. Let A1 = f−1(y1) and A2 =
f−1(y2), where y1, y2 ∈ R2 are non-empty subsets of R2. Similarly, A3 = f−1(y1 −
y2). Consider the set A1 − A2 = {a1 − a2 : a1 ∈ A1, a2 ∈ A2}. If x ∈ A1 − A2,
then x = x1 − x2 for some x1 ∈ A1 and x2 ∈ A2 and so f(x) = f(x1 − x2) =
f(x1)− f(x2) = y1− y2, which implies x ∈ f−1(y1− y2) = A3. Thus A1−A2 ⊆ A3.
That is {x : x ∈ f−1(y1 − y2)} ⊇ {x1 − x2 : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}. Let α ∈ Γ
and y3 ∈ R2. Then

f(A)(y1 − y2) = sup{A(x) : x ∈ f−1(y1 − y2)}
≥ sup{A(x1 − x2) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}
≥ sup{min(A(x1), A(x2)) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}
≥ sup{T (A(x1), A(x2)) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}
= T (sup{A(x1) : x1 ∈ f−1(y1)}, sup{A(x2) : x2 ∈ f−1(y2)})
= T (f(A)(y1), f(A)(y2)),

and since {x : x ∈ f−1(y1αy2)} ⊇ {x1αx2 : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}.
f(A)(y1αy2) = sup{A(x) : f−1(y1αy2)}

≥ sup{A(x1αx2) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}
≥ sup{min(A(x1), A(x2)) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}
≥ sup{T (A(x1), A(x2)) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}
= T (sup{A(x1) : x1 ∈ f−1(y1)}, sup{A(x2) : x2 ∈ f−1(y2)})
= T (f(A)(y1), f(A)(y2)).

This shows that f(A) is a T -fuzzy sub Γ-near-ring of R2.
f(A)(y2 + y1 − y2) = sup{A(x) : x ∈ f−1(y1 + y2 − y1)}

≥ sup{A(x2 + x1 − x2) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}
≥ sup{A(x1) : x1 ∈ f−1(y1)}
= f(A)(y1),

f(A)(y1αy2) = sup{A(x) : x ∈ f−1(y1αy2)}
≥ sup{A(x1αx2) : x1 ∈ f−1(y1), x2 ∈ f−1(y2), α ∈ Γ}
≥ sup{A(x2) : x2 ∈ f−1(y2)}
= f(A)(y2),

f(A)(y1α(y3 + y2)− y1αy2) = sup{A(x) : x ∈ f−1(y1α(y3 + y2)− y1αy2)}
= sup{A(x1α(x3 + x2)− x1αx2) : x1 ∈ f−1(y1), x2 ∈ f−1(y2), x3 ∈ f−1(y3)}
≥ sup{A(x3) : x3 ∈ f−1(y3)}
= f(A)(y3).
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Hence f(A) is a T -fuzzy ideal of R2. This completes the proof. ¤
Theorem 4.15. Let A and B be T -fuzzy left ideals of a Γ-near-ring R. Then A+B
is the smallest T -fuzzy left ideal of R containing both A and B.

Proof. Let A and B be T -fuzzy ideals of a Γ-near-ring R. Let x, y, z ∈ R and α ∈ Γ.
Let x = a + b, y = c + d : a, b, c, d ∈ R. Then we have

x− y = (a + b)− (c + d) = a + b− c− d
= (b + a− b)− c + (c + b− c)− d = e + f,

(A + B)(x− y) =
∨

x−y=e+f

[A(e) ∧B(f)]

=
∨

x=a+b,y=c+d

[A((b + a− b)− c) ∧B((c + b− c)− d)]

≥ ∨
x=a+b,y=c+d

[T (A(b + a− b), A(c)) ∧ T (B(c + b− c), B(d))]

≥ ∨
x=a+b,y=c+d

[T (A(a), A(c)) ∧ T (B(b), B(d))]

≥ ∨
x=a+b,y=c+d

[T (A(a), B(b)) ∧ T (A(c), B(d))]

= T [
∨

x=a+b

(A(a) ∧B(b)) ∧ ∨
y=c+d

(A(c) ∧B(d))]

= T [(A + B)(x), (A + B)(y)].
Put y = y1 + y2; y1, y2 ∈ R. Then

(A + B)(xαy) = (A + B)(xα(y1 + y2))
= (A + B)(xαy1 + xαy2)
=

∨
[A(xαy1) ∧B(xαy2)]

≥ ∨
[T (A(x), A(y1)) ∧ T (B(x), B(y2))]

≥ ∨
[T (A(x), B(x)) ∧ T (A(y1), B(y2))]

≥ T [
∨

(A(x), B(x)) ∧∨
(A(y1), B(y2))]

≥ T [
∨

(A(x) ∧B(x)) ∧∨
(A(y1) ∧B(y2))]

= T [(A + B)(x), (A + B)(y)],
(A + B)(xαy) = (A + B)(xαy1 + xαy2) =

∨
[A(xαy1) ∧B(xαy2)]

≥ ∨
[A(y1) ∧B(y2)] ≥

∨
y=y1+y2

[A(y1) ∧B(y2)] = (A + B)(y),

and for any x = a + b, we have
y + x− y = y + a + b− y = (y + a− y) + (y + b− y);

and for each y + x− y = c + d, we have
x = −y + c + d + y = (−y + c + y) + (−y + d + y),
(A + B)(y + x− y) =

∨
y+x−y=c+d

[A(c), B(d)]

=
∨

x=a+b

[A(y + a− y), B(y + b− y)]

≥ ∨
x=a+b

[A(a) ∧B(b)] = (A + B)(x).

Hence A+B is a T -fuzzy left ideal of R. As x = x+0 and x = 0+x, so (A+B) ≥ A(x)
and (A + B)(x) ≥ B(x). If C is a fuzzy ideal of R such that C(x) ≥ A(x) and
C(x) ≥ B(x) for all x ∈ R, then

(A + B)(x) =
∨

x=a+b

[A(a) ∧B(b)] ≤ ∨
x=a+b

[C(a) ∧ C(b)]

=
∨

x=a+b

[C(a) ∧ C(−b)] ≤ ∨
x=a+b

C(a + b) = C(x).

Thus A + B ≤ C. This completes the proof. ¤
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5. T -fuzzy ideals of quotient Γ-near-rings

Example 5.1. Let R = {0, a, b, c} and Γ = {α, β}. Then R is a Γ-near-ring as in
Example 3.5. Clearly I = {0, b} is an ideal of R. Now R/I = {x + I | x ∈ R} =
{0 + I, a + I, b + I, c + I}.
We define

(a + I) + (b + I) = (a + b) + I,
(a + I) · (b + I) = ab + I, and
(a + I)α(b + I) = aαb + I

for all (a + I), (b + I) ∈ R/I and α ∈ Γ. Define a binary operation “ + ” on R/I by
the following table:

+ 0 + I a + I b + I c + I
0 + I 0 + I a + I b + I c + I
a + I a + I 0 + I c + I b + I
b + I b + I c + I 0 + I a + I
c + I c + I b + I a + I 0 + I

Clearly, (R/I, +) is a group. Let X,Y ∈ R/I and α ∈ Γ then XαY ∈ R/I. Then
the map R× Γ×R → R satisfies the following:

(i) (X + Y )αZ = XαZ + Y αZ for every X, Y, Z ∈ R/I, α ∈ Γ,
(ii) (XαY )βZ = Xα(Y βZ) for every X,Y, Z ∈ R/I and α, β ∈ Γ.

Thus R/I is a Γ-near-ring. Let T be a t-norm defined by
T (p, q) = max(p + q − 1, 0) for all p, q ∈ [0, 1].

Define a fuzzy subset A : R/I → [0, 1] by
A(0 + I) = 0.9 and A(a + I) = A(b + I) = A(c + I) = 0.4

for all 0, a, b, c ∈ R. The routine calculation shows that A is a T -fuzzy ideal of the
quotient Γ-near-ring R/I.

The following results were obtained by Bh. Satyanarayana and Kuncham Syam
prasad.

Theorem 5.2 ([11]). Let I be a fuzzy ideal of a Γ-near-ring R. Then the set R/I
of all fuzzy co-sets of I is a Γ-near-ring with respect to the operations defined by
(x + I) + (y + I) = (x + y) + I and (x + y)α(y + I) = (xαy) + I for all x, y ∈ R and
α ∈ Γ.

Notation ([11]). Let µ be a fuzzy ideal of a Γ-near-ring R. We define
θµ : R/µ → [0, 1] by θµ(x + µ) = µ(x)

for all x ∈ R. Using these we prove the following results.

Theorem 5.3. If µ is a T -fuzzy ideal of a Γ-near-ring R, then θµ is a T -fuzzy ideal
of R/µ.

Proof. Let µ be a T -fuzzy ideal of a Γ-near-ring R and x, y ∈ R. Suppose that
x+µ = y+µ. Then µ(x−y) = µ(0). This implies µ(x) = µ(y). That is, θµ(x+µ) =
θµ(y + µ). Hence θµ is well defined. Let x + µ, y + µ, z + µ ∈ R/µ and α ∈ Γ. Then

θµ{(x + µ)− (y + µ)} = θµ{(x− y) + µ} = µ(x− y) ≥ T (µ(x), µ(y))
= T (θµ(x + µ), θµ(y + µ)),

and
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θµ{(x + µ)α(y + µ)} = θµ{(xαy) + µ} = µ(xαy) ≥ T (µ(x), µ(y))
= T (θµ(x + µ), θµ(y + µ)).

This shows that θµ is a T -fuzzy sub Γ-near-ring of R/µ.
θµ{(y + µ) + (x + µ)− (y + µ)} = θµ{(y + x− y) + µ} = µ(y + x− y)

≥ µ(x) = θµ(x + µ),
θµ{(x + µ)α(y + µ)} = θµ{(xαy) + µ} = µ(xαy)

≥ µ(y) = θµ(y + µ)
and

θµ{(x + µ)α((z + µ) + (y + µ))− (x + µ)α(y + µ)}
= θµ{(x + µ)α((z + y) + µ))− (xαy + µ)}
= θµ{(xα(z + y) + µ)− (xαy + µ)}
= θµ{xα(z + y)− (xαy) + µ}
= µ{xα(z + y)− (xαy)} ≥ µ(z) = θµ(z + µ).

Hence θµ is a T -fuzzy ideal of R/µ. This completes the proof. ¤
Theorem 5.4. Let I be an ideal of a Γ-near-ring R. If A is a T -fuzzy ideal of R,
then the fuzzy set Ā of R/I defined by Ā(a + I) = sup

x∈I
A(a + x) is a T -fuzzy ideal of

the quotient Γ-near-ring R/I of R with respect to I.

Proof. Let R be a Γ-near-ring and A be a T -fuzzy ideal of R. Let a, b ∈ R such that
a + I = b + I. Then b = a + y for some y ∈ I. Thus

Ā(b + I) = sup
x∈I

A(b + x) = sup
x∈I

A(a + y + x) = sup
x+y=z∈I

A(a + z) = Ā(a + I).

This shows that Ā is well defined. Let x + I, y + I ∈ R/I. Then we have
Ā((x + I)− (y + I)) = Ā((x− y) + I) = sup

z∈I
A((x− y) + z)

= sup
z=u−v∈I

A((x− y) + (u− v)) = sup
u,v∈I

A((x + u)− (y + v))

≥ sup
u,v∈I

T (A(x + u), A(y + v)) = T (sup
u∈I

A(x + u), sup
v∈I

A(y + v))

= T (Ā(x + I), Ā(y + I))
and

Ā((x + I)α(y + I)) = Ā(xαy + I) = sup
t∈I

A(xαy + t) = sup
t∈I

A[(x + t)α(y + t)]

≥ sup
t∈I

[min((x + t)α(y + t))] ≥ sup
t∈I

T (A(x + t), A(y + t))

= T (sup
t∈I

A(x + t), sup
t∈I

A(y + t)) = T (Ā(x + I), Ā(y + I)).

For any x, y, z ∈ R and α ∈ Γ, we get
Ā[(y + I) + (x + I)− (y + I)] = Ā[(y + x− y) + I] = Ā[((y + x)− y) + I]

= sup
z∈I

A[((y + x)− y) + z] = sup
z=u+v−w∈I

A[((y + x)− y) + u + v − w]

= sup
u,v,w∈I

A[(y + u) + (x + v)− (y + w)] ≥ sup
v∈I

A[x + v] = Ā(x + I),

Ā((x + I)α(y + I)) = Ā(xαy + I) = sup
t∈I

A(xαy + t) = sup
t=xαz∈I

A(xαy + xαz)

= sup
x,z∈I

A(xα(y + z)) ≥ sup
z∈I

A(y + z) = Ā(y + I),

and
Ā{(x + I)α((z + I) + (y + I))− (x + I)α(y + I)} = Ā(xα(z + y) + I − (xαy + I))

= Ā((xα(z + y)− xαy) + I) = sup
t∈I

A((xα(z + y)− xαy) + t)
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≥ sup
t∈I

A(z + t) = Ā(z + I).

Hence Ā is a T -fuzzy ideal of R/I. This completes the proof. ¤

Theorem 5.5. Let I be an ideal of a Γ-near-ring R. If Ā with Ā(a + I) = A(a)
where a ∈ R, is a T -fuzzy ideal of R/I, then the fuzzy set A is a T -fuzzy ideal of R.

Proof. Let I be an ideal of a Γ-near-ring R and Ā be a T -fuzzy ideal of R/I. Let
x, y, z ∈ R and α ∈ Γ. Then

A(x− y) = Ā[(x− y) + I] = Ā[(x + I)− (y + I)]
≥ T (Ā(x + I), Ā(y + I)) = T (A(x), A(y)),

A(xαy) = Ā[xαy+I] = Ā((x+I)α(y+I)) ≥ T (Ā(x+I), Ā(y+I)) = T (A(x), A(y)),
A(y+x−y) = Ā[(y+x−y)+I] = Ā[(y+I)+(x+I)−(y+I)] ≥ Ā(x+I) = A(x),
A(xαy) = Ā[xαy + I] = Ā[(x + I)α(y + I)] ≥ Ā(y + I) = A(y),

and
A[xα(z + y)− xαy] = Ā[xα(z + y)− xαy + I]

= Ā([xα(z + y) + I − (xαy + I)])
= Ā[(x + I)α((z + y) + I)− (x + I)α(y + I)]
= Ā[(x + I)α[(z + I) + (y + I)]− (x + I)α(y + I)]
≥ Ā(z + I) = A(z).

Hence A is a T -fuzzy ideal of R. This completes the proof. ¤
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