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1. Introduction

Uniform spaces play a very important role as a bridge between metric spaces
and general topological spaces. Many generalizations of uniform spaces, viz. quasi-
uniform spaces [5], semi-uniform spaces, semi-quasi-uniform spaces, locally uniform
spaces [22] and locally quasi-uniform spaces [9, 15] have been developed in general
topology. Semi-quasi-uniform spaces were introduced and a necessary and sufficient
condition under which semi-quasi-uniform spaces are topological was obtained in
[20]. The problem of completeness for a closure space in terms of semi-quasi-uniform
space was considered in [20]. Closure spaces in relation to semi-uniform spaces have
been studied and various results on semi-uniformly continuous and semi-pseudo-
metrization have been obtained in [3]. Different types of completeness on t-semi-
uniformity were considered in [2].

Uniform spaces and quasi-uniform spaces in the fuzzy setting have been studied
by several authors [10, 11, 13, 14, 17, 18]. Garcia et. al. [21] introduced uniform
spaces in a unifying framework of GL-monoid to include both the categories of Lowen
Uniformity and Hutton type uniformities. In their recent work, Hazarika and Mitra
[6, 19] developed L-local uniformity and L-local quasi-uniformity as generalizations
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of Hutton’s uniformity and quasi-uniformity respectively in the category L-TOP.
Further, in their subsequent work [7, 8], the same authors developed L-semi-quasi-
uniformity and L-semi-uniformity in the same category as generalizations of L-local
quasi-uniformity and L-local uniformity respectively. A sufficient condition for an L-
semi-quasi-uniformity for generating an L-topological space was obtained. Various
results on L-semi-uniformly continuous functions were obtained. The notion of L-
semi-pseudo-metric as a generalization of Hutton’s metric was introduced and it was
established that every L-semi-uniform space with countable base is L-semi-pseudo-
metrizable.

In this paper we take up the problem of completeness for the L-semi-uniformity U
on LX which satisfies the condition xα ∈ U(xα), instead of our earlier assumption
that xα ⊆ U(xα), ∀ U ∈ U , xα ∈ Pt(LX). In the process we have obtained a
subclass of the class of the L-semi-uniformities developed in the earlier papers. This
change has been necessitated in order to accommodate the system of Q-nbd at an
L-fuzzy point xα. The Q-nbd system, as may be noted, plays an important role in
the theory of convergence. We shall continue to call this subclass of L-semi-uniform
spaces as L-semi-uniform spaces for sake of convenience.

Throughout the paper (L, ≤,
∧

,
∨

, ′) is a completely distributive lattice with
order reversing involution ′; 0L and 1L are respectively inf and sup in L. X is
an arbitrary set and LX will denote the collection of all mappings A : X → L.
Any member of LX is an L-fuzzy set. The L-fuzzy sets xα : X → L defined by
xα(y) = 0L if x 6= y and xα(y) = α if x = y are the L-fuzzy points. The set
of all L-fuzzy points on X is denoted by Pt(LX). The mappings A : X → L
and B : X → L defined by A(x) = 1L, ∀x ∈ X and B(x) = 0L, ∀x ∈ X are
denoted by 1 and 0 respectively. For any A, B ∈ LX , the union and intersection
of A and B are defined as A

⋃
B = A(x)

∨
x∈X B(x) and A

⋂
B = A(x)

∧
x∈X B(x)

respectively; we say A ⊆ B iff A(x) ≤ B(x) and xα ∈ A iff α < A(x), where xα

is an L-fuzzy point; complement of A is defined as A′(x) = A(x)′ An L-topology F
on LX is a subset of LX closed under finite intersection and arbitrary union. The
elements of F are called open sets and their complements are the closed sets. For
basic fuzzy topological definitions we refer to [4]. We consider Hutton’s uniformity
and quasi-uniformity [11]. Our definition of totally boundedness generalizes the
notion of totally boundedness of G. Artico and R. Moresco [1]. We adopt Hutton’s
compactness in an interior space.

2. Preliminaries

Definition 2.1 ([16]). For any xα, A, B ∈ LX , xα is said to be quasi-coincident
with A, denoted as xα ¿ A if xα * A′ i.e., α � A′(x).

A is called quasi-coincident with B at y if A(y) � B′(y). A is called quasi-
coincident with B, denoted as Aq̂B, if A quasi-coincides with B at some y ∈ X.

Definition 2.2 ([16]). For any ordinary mapping f : X → Y , the induced L-
fuzzy mapping f→ : LX → LY and its L-fuzzy reverse mapping f← : LY → LX

respectively are defined as:
f→(A)(y) =

∨{A(x) | x ∈ X, f(x) = y}, ∀A ∈ LX , ∀ y ∈ Y.
f←(B)(x) = B(f(x)), ∀B ∈ LY , ∀x ∈ X.
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Definition 2.3 ([16]). Let LX and LY be L-fuzzy spaces, f : X → Y an ordinary
mapping. Then

(i) f→ : LX → LY is said to be injective, if for any A, B ∈ LX , f→(A) = f→(B)
implies A = B.

(ii) f→ : LX → LY is said to be surjective, if for any B ∈ LY there exists A ∈ LX

such that f→(A) = B.
(iii) f→ : LX → LY is said to be bijective, if it is both injective and surjective.

Theorem 2.4 ([16]). Let LX and LY be L-fuzzy spaces, f : X → Y an ordinary
mapping. Then

(i) f→ is injective if and only if f is injective.
(ii) f→ is surjective if and only if f is surjective.
(iii) f→ is bijective if and only if f is bijective.

We shall now adopt all the necessary definitions and results of L-semi-uniform
spaces in this setting.

Definition 2.5. Let i : LX → LX be a mapping on LX . Then i is called an interior
operator on LX if it fulfills the following conditions:

(IO1) i(1
¯
) = 1

¯
.

(IO2) i(A) ⊆ A, ∀A ∈ LX .
(IO3) i(A

⋂
B) = i(A)

⋂
i(B), ∀A,B ∈ LX .

LX together with an interior operator ‘i’ shall be called an interior space. For
any A ∈ LX , we shall call (i(A′))′ is the closure of A with respect to the interior
operator ‘i’ [denoted by cl(A) ] and A is called closed or open with respect to that
interior operator according as A = cl(A) or A = i(A) respectively.

Obviously, for any interior operator ‘i’ and A ∈ LX , we have A is open with
respect to ‘i’ iff A′ is closed with respect to that interior operator.

An interior operator ‘i’ is said to be an L-topological interior operator if in addition
it satisfies the following:

(IO4) i(i(A)) = i(A), ∀A ∈ LX .
We shall call a closure operator an L-topological closure operator iff the relative

interior operator is L-topological.

Definition 2.6 ([11]). Let U ∗ be the collection of all maps U : LX → LX which
satisfy:

(s1) ∆ ( U .
(s2) U(

⋃
λ Vλ) =

⋃
λ U(Vλ), Vλ ∈ LX .

Here ∆ : LX → LX such that ∆(A) = A, A ∈ LX . For any U, V ∈ U ∗, U ◦V is the
composition of functions. Obviously, ∆ ◦ U = U = U ◦∆, ∆ ◦ U and U ◦∆ are the
composition of functions.

Definition 2.7 ([11]). For any U ∈ U ∗, Ur(xα) =
⋂{yβ | U(y′β) ⊆ x′α}. Then

Ur ∈ U ∗ and (Ur)r = U , by proposition 10.2 in [11]. If U = Ur, then U is said to
be symmetric.

Definition 2.8 ([7, 8]). An L-semi-quasi-uniformity U on LX is a non empty
subfamily of U ∗ satisfying the following:

(SQ1) U
⋂

V ∈ U , ∀ U, V ∈ U .
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(SQ2) If V ∈ U ∗ such that U ⊆ V , for some U ∈ U , then V ∈ U .

The pair (LX , U ) is called an L-semi-quasi-uniform space.

Definition 2.9 ([7, 8]). A non empty subfamily B of U ∗ is called a base for some
L-semi-quasi-uniformity U if for any U ∈ U , there is B ∈ B such that B ⊆ U .

A non empty subfamily B of U ∗ is a base for some L-semi-quasi-uniformity U
if it satisfies the following:

(SQ1′) For any U, V ∈ U , there is W ∈ B such that W ⊆ U
⋂

V .

Definition 2.10 ([7, 8]). An L-semi-quasi-uniformity U on LX is said to be an
L-semi-uniformity if U has a base B such that:

(SQ3) For any B ∈ B implies Br ∈ B.
The pair (LX , U ) is then called an L-semi-uniform space.

Also, the collection of symmetric members of U is a base for U .

Theorem 2.11 ([7]). Let (LX , U ) be an L-semi-quasi-uniform space and B be any
base of U . Then the mapping int : LX → LX defined by, int(A) =

⋃{xα | ∃ V ∈
B s.t. V (xα) ⊆ A}, is an interior operator on LX .

Every fuzzy semi-quasi-uniformity therefore generates an interior space. Further,
for any L-semi-uniform space (LX ,U ), since the interior space is generated by ‘int’,
so, in particular, for any xα ∈ Pt(LX), the collection Nxα = {U(xα) | U ∈ U }
is the neighborhood system at xα in the generated interior space. If the family
{Nxα | xα ∈ Pt(LX)} is a neighborhood system for some L-topology F, we say that
F is the L-topology generated by U .

Theorem 2.12 ([7]). Every L-semi-quasi-uniformity generates an L-topological
space under the following condition:

For any U ∈ U and xα ∈ Pt(LX), there exists V ∈ U such that to each yβ ∈
V (xα) there corresponds W ∈ U with W (yβ) ⊆ U(xα).

Definition 2.13 ([8]). Let (LX , U ) and (LY ,V ) be L-semi-uniform spaces. A
function f→ : (LX , U ) → (LY ,V ) is called L-semi-uniformly continuous iff for
every V ∈ V , there exists U ∈ U such that f̂→(U) ⊆ V , where f̂→(xα, yβ) =
(f→(xα), f→(yβ)). The function f→ is said to be an L-semi-uniformly isomorphism
iff f→ is bijective and both f→ and f← are L-semi-uniformly continuous.

Now since f̂→(U) ⊆ V implies f̂→(U)(f→(xα)) ⊆ V (f→(xα)), ∀xα ∈ Pt(LX),
therefore we have the following:

Theorem 2.14 ([8]). L-semi-uniformly continuous functions on L-semi-uniform
spaces are continuous with respect to the relative interior spaces.

Proof. Let (LX , U ) and (LY , V ) be L-semi-uniform spaces. Let f→ : (LX , U ) →
(LY , V ) be L-semi-uniformly continuous, intU and intV respectively be the interior
operators generated by U and V . For xα ∈ Pt(LX) and for each neighborhood N of
f→(xα) in the interior space generated by V , we may choose V ∈ V and U ∈ U so
that V (f→(xα)) ⊆ N and f̂→(U) ⊆ V . Therefore, f→(U(xα)) = f̂→(U)(f→(xα)) ⊆
V (f→(xα)) ⊆ N . ¤
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Corollary 2.15 ([8]). Every L-semi-uniformly isomorphism is an L-semi- homeo-
morphism.

3. Completeness and Compactness

In this section by characterizing completeness and compactness in terms of Cauchy
ultrafilter and ultrafilter respectively, we show that in a totally bounded L-semi-
uniform space, the notions of completeness and compactness are equivalent.

Definition 3.1. Let ‘i’ be an interior operator on LX . Then for any xα ∈ Pt(LX),
we shall call an L-fuzzy set N to be a neighborhood (nbd) at xα with respect to ‘i’,
if there is G ∈ LX such that i(G) * xα and i(G) ⊆ N . The family of all nbds at
xα in the interior space is denoted by, Ni(xα). We shall call an L-fuzzy set F to
be a quasi-coincident neighborhood (Q-nbd) at xα with respect to ‘i’, if there is an
L-fuzzy set B such that xα ¿ i(B) and B ⊆ F . The family of all Q-nbd at xα in
the interior space is denoted by, Qi(xα).

Definition 3.2. Let ‘i’ be an interior operator on LX . Then a subfamily A of LX

is said to be a
(i) nbd base if A ⊆ Ni(xα) and for every N ∈ Ni(xα), ∃ A ∈ A such that A ⊆ N .
(ii) Q-nbd base if A ⊆ Qi(xα) and for every F ∈ Qi(xα), ∃ B ∈ A such that

B ⊆ F .

Lemma 3.3. Let (LX , U ) be an L-semi-uniform space. Then for any A ∈ LX ,

cl(A) =
⋂
{V (A) | V ∈ U }.

Proof. Let B be a base for U consisting of symmetric members of U . Now,
int(A′) =

⋃{xα | ∃U ∈ B s.t. U(xα) ⊆ A′}
=

⋃{⋃{xα | U(xα) ⊆ A′}, U ∈ B}.
=

⋃{[Ur(A)]′ | U ∈ B}
=

⋃{[U(A)]′ | U ∈ B}, since U ∈ B ⇒ Ur = U .
=

⋃{[V (A)]′ | V ∈ U }, since B is a base for U .
= [

⋂{V (A) | V ∈ B}]′.
Hence, cl(A) = (int(A′))′ =

⋂{V (A) | V ∈ U }. ¤

Theorem 3.4. Let (LX , U ) be an L-semi-uniform space. Then for any A ∈ LX ,
cl(A) satisfies the following:

(CO1) cl(0) = 0.
(CO2) A ⊆ cl(A).
(CO3) cl(A

⋃
B) = cl(A)

⋃
cl(B), ∀B ∈ LX .

Proof. Since, by Lemma 3.3, cl(A) = (int(A′))′, ∀ A ∈ LX , therefore,
(CO1) cl(0) = (int(0′))′ = (int(1))′. Then by (IO1) cl(0) = (1)′ = 0.
(CO2) (int(A′))′ = cl(A) ⇒ ((A′))′ ⊆ cl(A), by (IO2). Therefore, A ⊆ cl(A).
(CO3) cl(A

⋃
B) = (int(A

⋃
B)′)′ = (int(A′

⋂
B′))′. Then, by (IO3), cl(A

⋃
B) =

(int(A′)
⋂

int(B′))′. Then, cl(A
⋃

B) = (int(A′))′
⋃

(int(B′))′ = cl(A)
⋃

cl(B). ¤

Remark 3.5. Obviously, ‘cl’ on LX is an L-topological operator iff it satisfies the
following axiom: (CO4) cl(cl(A)) = cl(A), ∀A ∈ LX .
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Definition 3.6. For any xα ∈ Pt(LX) we define its dual point as an L-fuzzy point
x∗α such that

x∗α(y) =
{

α′ if y = x,
0L if y 6= x.

In view of Theorem 2.3.24 in [16], we have the following:

Theorem 3.7. Let ‘i’ be an interior operator on LX and A ∈ LX . Then xα ∈
(i(A′))′ iff each neighborhood of its dual point x∗α is quasi-coincident with A.

The following definitions are from [16] which are adapted to an interior space:

Definition 3.8. A non empty sub collection F of LX is said to be a filter in an
interior space, if:

(F1) 0 6∈ F .
(F2) U, V ∈ F ⇒ U

⋂
V ∈ F .

(F3) U ∈ F and G ∈ LX such that U ⊆ G then G ∈ F .

Let A ∈ LX such that for any F ⊆ A, F 6∈ F . Then F is said to be a filter
relative to A.

Definition 3.9. A subfamily B of LX is called a filter base in an interior space if
(B1) 0 6∈ B
(B2) for any U, V ∈ B, there exists W ∈ B such that W ⊆ U

⋂
V .

Definition 3.10. A filter F is said to be closed with respect to some interior
operator ‘i’ if for any F ∈ F implies F = c(F ).

Definition 3.11. Let xα ∈ Pt(LX) and F be a filter. Then F is said to be
convergent to xα with respect to some interior operator ‘i’, denoted by F → xα, if
for any U ∈ Qi(xα) there exists F ∈ F such that F ⊆ U , that is, Qi(xα) ⊆ F .

Definition 3.12. Cluster set of F with respect to some interior operator ‘i’, is
given by

⋂{cl(F ) | F ∈ F}.
For any xα ∈ Pt(LX), if xα is in the cluster set of F , then we denote it by

F Ã xα.

Remark 3.13. Cluster set of a filter with respect to an L-topological space was
defined by Hutton in an analogous way.

Remark 3.14. If xα is in the cluster set of F with respect to some interior operator
‘i’, then for any F ∈ F , xα ⊆ (i(F ′))′. But xα ⊆ (i(F ′))′ ⇒ α ≤ (i(F ′))′(x) ⇒
(i(F ′))′(x) ≮ α ⇒ α′ ≮ i(F ′)(x). Now α′ ≮ i(F ′)(x) ⇒ x∗α 6∈ i(F ′) ⇒ G *
F ′, ∀ G ∈ Ni(x∗α). This implies that Gq̂F, ∀ G ∈ Ni(x∗α). But for any A, B ∈ LX ,
Aq̂B implies A

⋂
B 6= 0. For if Aq̂B, then there exists x ∈ X such that A(x) � B′(x).

So, 0L < A(x) and B′(x) < 1L. Hence, 0L < A(x) and 0L < B(x). We then have,
A(x)

∧
B(x) 6= 0L. So, A

⋂
B 6= 0. Hence, G

⋂
F 6= 0, ∀G ∈ Ni(x∗α). Again since

G is a nbd at x∗α iff G is a Q-nbd at xα. Therefore, F Ã xα implies that xα is a
cluster point of F in the sense of [16].

Definition 3.15. Let ‘i’ be an interior operator on LX . A subset F of LX is said
to satisfy the F. I. P. relative to an open set G with respect to the interior operator
‘i’ if F1, ..., Fn ∈ F ⇒ ⋂n

i=1 Fi * G.
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Obviously, every subset F of LX which satisfies the F. I. P. relative to G is
contained in a filter relative to G.

Definition 3.16. Let LX and LY be interior spaces with respect to the interior
operators iX and iY respectively. Then a function f→ : LX → LY is said to be
open with respect to the interior operators, if for any G ∈ LX such that iX(G) = G
implies iY (f→(G)) = f→(G).

Definition 3.17. Let LX and LY be interior spaces with respect to the interior
operators iX and iY respectively. Then a function f→ : LX → LY is said to be
continuous with respect to the interior operators iff for each xα ∈ Pt(LX) and
each neighborhood V of f→(xα) with respect to the interior operator iY , there is a
neighborhood U of xα with respect to the interior operator iX such that f→(U) ⊆ V .

The following result follows from Theorem 5.2.27 in [16].

Theorem 3.18. Let iX and iY be two interior operators on LX and LY respectively.
Then a function f→ : LX → LY is continuous with respect to the interior operators
if and only if for any filter F converging on LX with respect to the interior operator
iX implies that f→(F ) = {f→(F ) | F ∈ F} converges on LY with respect to the
interior operator iY .

In view of Theorem 5.2.9 in [16], we obtain the following:

Theorem 3.19. Let ‘ i ’ be an interior operator on LX and A ∈ LX . Then xα ∈
(i(A′))′ iff there is a filter F relative to A′ such that F → xα, with respect to that
interior operator ‘i’.

Definition 3.20. Let A ∈ LX . We shall call the maximal filter (with respect to
partial ordering by set inclusion) F/ relative to A as an ultrafilter relative to A. If
A = 0, then we simply call F/ to be an ultrafilter.

Theorem 3.21. Let ‘i’ be an interior operator and F be a filter on LX . Let
xα ∈ Pt(LX) such that F → xα with respect to ‘i’. Then F Ã xα.

Proof. Let F be any member of F . Now we consider the following two cases:
Case I. Let F ′ 6∈ F . Then, F is a filter relative to F ′ and F → xα. So, by

Theorem 3.19, xα ∈ (i(F ′))′.
Case II. Let F ′ ∈ F and N be any Q-nbd at xα. Then N ∈ F and hence

F ′
⋂

N 6= 0. Then, there exists yβ ∈ F such that y∗β ∈ N . This implies that
N(y) � (F (y))′ and hence Nq̂F . Therefore, by Theorem 3.7, xα ∈ (i(F ′))′. Thus,
in either case xα ∈ (i(F ′))′, ∀ F ∈ F . Hence, F Ã xα. ¤

The following result can be obtained from Theorem 5.2.16 in [16] and Theorem
3.21.

Theorem 3.22. Let ‘i’ be an interior operator and F/ be an ultrafilter on LX .
Then F/ Ã xα iff F/ → xα.

In view of Lemma 11 in [12], we have the following:

Lemma 3.23. For any ultrafilter F/ and A, B ∈ LX such that A
⋃

B ∈ F/, either
A ∈ F/ or B ∈ F/.

299



D. Hazarika et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 2, 293–303

Definition 3.24. Let ‘i’ be an interior operator on LX , an open cover C of an
L-fuzzy set A is a collection of open sets with respect to the interior operator ‘i’
such that A ⊆ ⋃

G∈C G.

In view of Definition 5 in [12], we adopt the following definition for an interior
space.

Definition 3.25. An interior space is said to be compact if it satisfies any of the
following equivalent conditions:

(1) Every open cover C of a closed set has a finite subcover.
(2) Every collection of closed sets F satisfying the F. I. P. relative to an open set

G has
⋂

F∈F F * G.

We now state the following lemma:

Lemma 3.26. For any U ∈ U ∗ and xα, yβ ∈ Pt(LX) we get

yβ ⊆ U(xα) iff xα ⊆ Ur(yβ).

Proof. Since, (Ur)r = U . So, we need to prove only one way implication. Here,
Ur(yβ) =

⋂{zγ | U(z′γ) ⊆ y′β}. Let yβ ⊆ U(xα). Then [U(xα)]′ ⊆ y′β . Let
A : X → L be a mapping defined by

∀ z ∈ X, A(z) =
{

γ if U(z′γ) ⊆ y′β ,

0L if U(z′γ) * y′β .

Then Ur(yβ) =
⋂

A. Let B : X → L be a mapping defined by

∀w ∈ X, B(w) =
{

η if U(wη) ⊆ [U(xα)]′,
0L if U(wη) * [U(xα)]′.

Let w be any element of X. Then B′(w) = η ⇒ B(w) = η′ ⇒ U(w′η) ⊆ [U(xα)]′ ⇒
U(w′η) ⊆ y′β ⇒ A(w) = η. Therefore B′ ⊆ A and hence

⋃
A′ ⊆ ⋃

B. Again
bµ ⊆ B ⇒ U(bµ) ⊆ [U(xα)]′ ⇒ U(bµ) ⊆ x′α ⇒ bµ ⊆ x′α. It follows that

⋃
B ⊆ x′α ⇒⋃

A′ ⊆ x′α ⇒ xα ⊆
⋂

A. Hence, xα ⊆ Ur(yβ). ¤

Theorem 3.27. Let (LX , U ) be an L-semi-uniform space and ‘int’ be the induced
interior operator on LX . Then the respective interior space is compact iff every
ultrafilter relative to an open set with respect to ‘int’ is convergent.

Proof. Let the space be compact and F/ be an ultrafilter relative to an open set G
on the space. Then by Theorem 3.4, F = {cl(F ) | F ∈ F/} is a collection of closed
sets satisfying F. I. P. relative to the open set G. Consequently, by compactness,⋂

F∈F/ cl(F ) * G. This implies that there is some xα ∈ Pt(LX) such that xα ⊆⋂
F∈F/ cl(F ). Thus by Theorem 3.22, we have F/ → xα.
Conversely, let F be a collection of closed sets satisfying F. I. P. relative to an

open set G. Let F ∗ be a filter relative to the open set G and containing F . Then⋂
F∗∈F∗ F ∗ ⊆ ⋂

F∈F F . Let F/ be an ultrafilter relative to the open set G. We
then have,

(3.1)
⋂

F/∈F/

F/ ⊆
⋂

F∗∈F∗
F ∗ ⊆

⋂

F∈F

F.
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Let F/ → xα. Then Q(xα) = {U(x∗α) | U ∈ U } ⊆ F/. Now let U be any symmetric
member of U . Let F/ be any member of F/. Then U(x∗α) ∈ F/ implies that
F/

⋂
U(x∗α) 6= 0. Hence there exists yβ ⊆ F/ such that yβ ⊆ U(x∗α). This further

implies x∗α ⊆ Ur(yβ) = U(yβ), by Lemma 3.26. But yβ ⊆ F/ implies U(yβ) ⊆ U(F/).
Hence, for any symmetric member U of U , we get x∗α ⊆ U(F/). Again since the
collection of symmetric members of U is a base for U , therefore by Lemma 3.3,
x∗α ⊆ cl(F/) = F/, ∀ F/ ∈ F/. Hence,

(3.2) x∗α ⊆
⋂

F/∈F/

F/.

Now, if x∗α ⊆ G, then there is U ∈ U such that U(x∗α) ⊆ G, as G is open. But
then G ∈ F/ and this contradicts the fact that F/ is an ultrafilter relative to
G. So x∗α * G. This implies

⋂
F/∈F/ F/ * G, by (3.2). Thus by (3.1), we have⋂

F∈F F * G. Hence, the space is compact. ¤

Definition 3.28. A filter F in an L-semi-uniform space (LX ,U ) is said to be
Cauchy if for each U ∈ U , ∃xα ∈ Pt(LX) and F ∈ F such that F ⊆ U(xα).

Definition 3.29. An L-semi-uniform space (LX ,U ) is said to be complete if and
only if for every Cauchy filter F relative to an open set with respect to the interior
operator generated by U ,

⋂
F∈F cl(F ) 6= 0.

The following result follows from Theorem 3.22.

Theorem 3.30. An L-semi-uniform space (LX , U ) is complete iff every Cauchy
ultrafilter relative to an open set with respect to the interior operator generated by
U is convergent.

Theorem 3.31. Let (LX , U ) and (LY , V ) be L-semi-uniform spaces and let f→ :
LX → LY be L-semi-uniformly continuous. If F is a Cauchy filter in (LX , U ),
then f→(F ) is a Cauchy filter in (LY ,V ).

Proof. Let F be a Cauchy filter on LX . Let V ∈ V . Since f→ : LX → LY is
L-semi-uniformly continuous, therefore there exists U ∈ U such that f̂→(U) ⊆ V .
Now, F is a Cauchy filter on LX . Hence, there exists F ∈ F and xα ∈ Pt(LX) such
that F ⊆ U(xα). Then f→(F ) ⊆ V (f→(xα)). Hence, f→(F ) is a Cauchy filter on
(LY , V ). ¤
Theorem 3.32. Let (LX ,U ) and (LY , V ) be two L-semi-uniform spaces and let
f→ : LX → LY be an L-semi-uniformly isomorphism. Then (LX ,U ) is complete iff
(LY , V ) is complete.

Proof. Let (LY , V ) be complete and F be a Cauchy filter on LX relative to an
open set G. Let V ∈ V . Then by Theorem 3.31, f(F ) is a Cauchy filter on
(LY , V ). Again, since f← is L-semi-uniformly continuous, therefore by Theorem
2.14, f← is continuous and so f→ is open. Hence, f→(G) is open in LY . Also, as
G ⊆ f←(f→(G)) and G 6∈ F , therefore f→(F ) is a Cauchy filter relative to the
open set f→(G). Thus, f→(F ) is convergent in (LY ,V ), it being complete. But
by Corollary 2.15, f→ is a homeomorphism. Consequently by Theorem 3.18, F
converges in (LX ,U ). Hence, (LX , U ) is complete. ¤
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Definition 3.33. Let (LX , U ) be an L-semi-uniform space and A ∈ LX . Let for
any U ∈ U , UA : LX → LX be a mapping such that

UA(xα) =
{

U(xα) if xα ⊆ A,
0 if xα * A.

Then UA = {UA | U ∈ U } is an L-semi-uniformity on A, which we call a sub L-
semi-uniformity on A and (A, UA) to be the subspace. UA is called open or closed
sub L-semi-uniformity provided A = intUA

(A) or A = (intUA
(A′))′ respectively,

where intUA
is the interior operator generated by UA.

Theorem 3.34. Every closed sub L-semi-uniformity in a complete L-semi-uniform
space is complete.

Proof. Let (LX , U ) be a complete L-semi-uniform space and A ∈ LX such that
A = (intU (A′))′, where intU is the interior operator generated by U . Let F/ =
{F | F ⊆ A} be a Cauchy ultrafilter relative to an open set B with respect to
intUA

, where intUA
is the interior operator generated by UA. Now if B′ ∈ F/, then

from the definition of F/, B′ ⊆ A. But B′ ⊆ A implies A′ ⊆ B and consequently,
A′ 6∈ F/, as F/ is a filter relative to B. Also if, B′ 6∈ F/, then A′ 6∈ F/. Thus, in
either case F/ is an ultrafilter in (LX , U ) relative to A′. Now, since for any U ∈ U
UA ⊆ U , therefore F/ is also Cauchy in (LX , U ). Thus, F/ is a Cauchy ultrafilter
in (LX , U ) relative to the open set A′ and consequently there exists xα ∈ Pt(LX)
such that F/ → xα. But as A = (intU (A′))′, so by Theorem 3.19, xα ∈ A. Hence,
(A, UA) is complete. ¤

Definition 3.35. An L-semi-uniform space (LX ,U ) is said to be totally bounded
if for any U ∈ U there is a finite A ⊆ Pt(LX) such that

1 = U(A) =
⋃
{U(xα) | xα ∈ A}.

Theorem 3.36. In a totally bounded space (LX , U ), every ultrafilter is a Cauchy
filter.

Proof. Let F/ be an ultrafilter and U ∈ U . By totally boundedness there is a finite
A ⊆ Pt(LX) such that 1 = U(A) =

⋃{U(xα) | xα ∈ A}. But as 1 ∈ F/, therefore
by Lemma 3.23, U(xα) ∈ F/, for some xα ∈ A. ¤

Theorem 3.37. Let (LX , U ) be an L-semi-uniform space. Then the space is com-
pact iff (i) (LX , U ) is totally bounded and (ii) (LX , U ) is complete.

Proof. Let (LX , U ) be a compact space.
(i) Let U ∈ U and ‘cl’ be the closure operator generated by U . Then {int(U(xα)) |

xα ∈ Pt(LX)} is an open cover of 1. Since cl(1) = 1, therefore by compactness, for
this open cover there is a finite A ⊆ Pt(LX) such that 1 =

⋃{int(U(xα)) | xα ∈ A}.
Hence (LX , U ) is totally bounded.

(ii) Follows from Theorems 3.27 and 3.30.
Conversely, if the space is totally bounded and complete, then, by Theorems 3.36,

3.30 and 3.27 the space is compact. ¤
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