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1. INTRODUCTION

Uniform spaces play a very important role as a bridge between metric spaces
and general topological spaces. Many generalizations of uniform spaces, viz. quasi-
uniform spaces [5], semi-uniform spaces, semi-quasi-uniform spaces, locally uniform
spaces [22] and locally quasi-uniform spaces [9, [15] have been developed in general
topology. Semi-quasi-uniform spaces were introduced and a necessary and sufficient
condition under which semi-quasi-uniform spaces are topological was obtained in
[20]. The problem of completeness for a closure space in terms of semi-quasi-uniform
space was considered in [20]. Closure spaces in relation to semi-uniform spaces have
been studied and various results on semi-uniformly continuous and semi-pseudo-
metrization have been obtained in [3]. Different types of completeness on t-semi-
uniformity were considered in [2].

Uniform spaces and quasi-uniform spaces in the fuzzy setting have been studied
by several authors [10} 11} 13| 14, 17, 18]. Garcia et. al. [21] introduced uniform
spaces in a unifying framework of GL-monoid to include both the categories of Lowen
Uniformity and Hutton type uniformities. In their recent work, Hazarika and Mitra
[6, 19] developed L-local uniformity and L-local quasi-uniformity as generalizations
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of Hutton’s uniformity and quasi-uniformity respectively in the category L-TOP.
Further, in their subsequent work [7] 8], the same authors developed L-semi-quasi-
uniformity and L-semi-uniformity in the same category as generalizations of L-local
quasi-uniformity and L-local uniformity respectively. A sufficient condition for an L-
semi-quasi-uniformity for generating an L-topological space was obtained. Various
results on L-semi-uniformly continuous functions were obtained. The notion of L-
semi-pseudo-metric as a generalization of Hutton’s metric was introduced and it was
established that every L-semi-uniform space with countable base is L-semi-pseudo-
metrizable.

In this paper we take up the problem of completeness for the L-semi-uniformity %
on LX which satisfies the condition x, € U(z,), instead of our earlier assumption
that 2, C U(za), VU € %, 2o € Pt(LX). In the process we have obtained a
subclass of the class of the L-semi-uniformities developed in the earlier papers. This
change has been necessitated in order to accommodate the system of Q-nbd at an
L-fuzzy point z,. The Q-nbd system, as may be noted, plays an important role in
the theory of convergence. We shall continue to call this subclass of L-semi-uniform
spaces as L-semi-uniform spaces for sake of convenience.

Throughout the paper (L, <, A, V,’) is a completely distributive lattice with
order reversing involution ’; Oy and 1 are respectively inf and sup in L. X is
an arbitrary set and LX will denote the collection of all mappings A : X — L.
Any member of LX is an L-fuzzy set. The L-fuzzy sets z, : X — L defined by
Zo(y) = 0p if © # y and x,(y) = « if © = y are the L-fuzzy points. The set
of all L-fuzzy points on X is denoted by Pt(LX). The mappings A : X — L
and B : X — L defined by A(z) = 1, Vz € X and B(x) = 01, Vz € X are
denoted by 1 and 0 respectively. For any A, B € L¥, the union and intersection
of A and B are defined as A{JB = A(z) \/,cx B(z) and A\ B = A(x) \,cx B(x)
respectively; we say A C B iff A(z) < B(x) and z, € A iff a < A(z), where z,
is an L-fuzzy point; complement of A is defined as A’(z) = A(x)’ An L-topology F
on L¥ is a subset of L¥X closed under finite intersection and arbitrary union. The
elements of F are called open sets and their complements are the closed sets. For
basic fuzzy topological definitions we refer to [4]. We consider Hutton’s uniformity
and quasi-uniformity [I1]. Our definition of totally boundedness generalizes the
notion of totally boundedness of G. Artico and R. Moresco [1]. We adopt Hutton’s
compactness in an interior space.

2. PRELIMINARIES

Definition 2.1 ([16]). For any z,, A, B € LX, z, is said to be quasi-coincident
with A, denoted as z, < A if o € A’ ie., a £ A'(x).

A is called quasi-coincident with B at y if A(y) £ B'(y). A is called quasi-
coincident with B, denoted as A¢B, if A quasi-coincides with B at some y € X.

Definition 2.2 ([16]). For any ordinary mapping f : X — Y, the induced L-
fuzzy mapping f— : LX — LY and its L-fuzzy reverse mapping f— : LY — LX
respectively are defined as:
f7A) ) = V{A(@@) [z € X, f(x) =y}, VAL, VyeY.
f=(B)(z) = B(f(x)), VBe LY, Yz € X.
294



D. Hazarika et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 2, 293-303

Definition 2.3 ([16]). Let L* and LY be L-fuzzy spaces, f : X — Y an ordinary
mapping. Then
(i) f~ : LX — LY is said to be injective, if for any A, B € LX, f~(A) = f~(B)
implies A = B.
(i) f~ : LX — LY is said to be surjective, if for any B € LY there exists A € LX
such that f~(A) = B.
(iii) f~ : LY — LY is said to be bijective, if it is both injective and surjective.

Theorem 2.4 ([16]). Let LX and LY be L-fuzzy spaces, f : X — Y an ordinary
mapping. Then

(i) f7 is injective if and only if f is injective.

(ii) f— is surjective if and only if f is surjective.

(i) f— s bijective if and only if [ is bijective.

We shall now adopt all the necessary definitions and results of L-semi-uniform
spaces in this setting.

Definition 2.5. Let i : LX — LX be a mapping on LX. Then i is called an interior
operator on LX if it fulfills the following conditions:

(I01) i(1) = 1.

(I02) i(A) C A, VA e LX.

(I03) i(ANB) =i(A)Ni(B), YA, B € LX.

LX together with an interior operator ‘%’ shall be called an interior space. For
any A € L¥, we shall call (i(A"))" is the closure of A with respect to the interior
operator ‘i’ [denoted by cl(A) | and A is called closed or open with respect to that
interior operator according as A = cl(A4) or A = i(A) respectively.

Obviously, for any interior operator ‘i’ and A € LX, we have A is open with
respect to ‘¢’ iff A’ is closed with respect to that interior operator.

An interior operator ‘i’ is said to be an L-topological interior operator if in addition
it satisfies the following:

(I04) i(i(A)) =i(A), VA e LX.

We shall call a closure operator an L-topological closure operator iff the relative
interior operator is L-topological.

Definition 2.6 ([11]). Let % * be the collection of all maps U : LX — LX which
satisfy:

(s1) ACU.

(52) U(Uy Vo) = U\ U(Vy), Vi € L*.
Here A : LX — L such that A(A) = A, A€ LX. Forany U,V € %*,UoV is the
composition of functions. Obviously, AoU =U =Uo A, AoU and U o A are the
composition of functions.

Definition 2.7 ([I1]). For any U € Z*, U"(za) = (W{ys | U(ys) € z,}. Then
U € %* and (U")" = U, by proposition 10.2 in [I1]. If U = U", then U is said to
be symmetric.

Definition 2.8 ([7, 8]). An L-semi-quasi-uniformity % on LX is a non empty
subfamily of % * satisfying the following:
SQHUNOVew, YUV e%.
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(SQ2) If V € %* such that U C V, for some U € %, then V € % .
The pair (LX, %) is called an L-semi-quasi-uniform space.

Definition 2.9 ([7,8]). A non empty subfamily Z of % * is called a base for some
L-semi-quasi-uniformity % if for any U € %, there is B € % such that B C U.

A non empty subfamily & of Z* is a base for some L-semi-quasi-uniformity %
if it satisfies the following:
(SQ1’) For any U, V € %, there is W € % such that W CU (V.

Definition 2.10 (|7, 8]). An L-semi-quasi-uniformity %/ on L¥ is said to be an
L-semi-uniformity if 2 has a base 4 such that:

(SQ3) For any B € % implies B" € A.
The pair (LX, %) is then called an L-semi-uniform space.

Also, the collection of symmetric members of % is a base for % .

Theorem 2.11 ([7]). Let (LX, %) be an L-semi-quasi-uniform space and % be any
base of % . Then the mapping int : LX — LX defined by, int(A) = J{zs | IV €
B s.t. V(xg) C A}, is an interior operator on L.

Every fuzzy semi-quasi-uniformity therefore generates an interior space. Further,
for any L-semi-uniform space (LX,% ), since the interior space is generated by ‘int’,
so, in particular, for any x, € Pt(LX), the collection A, = {U(x,) | U € %}
is the neighborhood system at x, in the generated interior space. If the family
{ M, | 2o € Pt(LX)} is a neighborhood system for some L-topology F, we say that
F is the L-topology generated by % .

Theorem 2.12 ([7]). Every L-semi-quasi-uniformity generates an L-topological
space under the following condition:

For any U € % and x, € Pt(LX), there exists V. € % such that to each yg €
V(zq) there corresponds W € % with W (yg) C U(zq).

Definition 2.13 ([8]). Let (L*,%) and (LY,?) be L-semi-uniform spaces. A
function f= : (LX,%) — (LY,V) is called L-semi-uniformly continuous iff for
every V € ¥, there exists U € % such that F(U) C V, where F(ma, yg) =
(f~(xza), f~(ys)). The function f~ is said to be an L-semi-uniformly isomorphism
iff f7 is bijective and both f— and f are L-semi-uniformly continuous.

Now since F(U) C V implies F(U)(f_’(xa)) CV(f~ (7)), Yzo € Pt(LY),
therefore we have the following:

Theorem 2.14 ([8]). L-semi-uniformly continuous functions on L-semi-uniform
spaces are continuous with respect to the relative interior spaces.

Proof. Let (LX,%) and (LY, 7)) be L-semi-uniform spaces. Let f— : (LX, %) —

(LY, ?) be L-semi-uniformly continuous, ints and inty respectively be the interior

operators generated by % and 7. For z, € Pt(L¥) and for each neighborhood N of

/7 (z4) in the interior space generated by ¥, we may choose V € ¥ and U € % so

that V(f~(24)) € N and f—(U) C V. Therefore, = (U(za)) = f~ (U)(f~(2a)) C

V(f~(za)) € N. O
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Corollary 2.15 ([8]). Every L-semi-uniformly isomorphism is an L-semi- homeo-
morphism.

3. COMPLETENESS AND COMPACTNESS

In this section by characterizing completeness and compactness in terms of Cauchy
ultrafilter and ultrafilter respectively, we show that in a totally bounded L-semi-
uniform space, the notions of completeness and compactness are equivalent.

Definition 3.1. Let ‘i’ be an interior operator on LX. Then for any z, € Pt(L¥),
we shall call an L-fuzzy set N to be a neighborhood (ubd) at x, with respect to ‘¢’,
if there is G € L¥ such that i(G) € z, and i(G) C N. The family of all nbds at
Zq in the interior space is denoted by, 4;(x,). We shall call an L-fuzzy set F' to
be a quasi-coincident neighborhood (Q-nbd) at x, with respect to ‘¢’, if there is an
L-fuzzy set B such that z, < i(B) and B C F. The family of all Q-nbd at z, in
the interior space is denoted by, 2;(z4).

Definition 3.2. Let ‘i’ be an interior operator on LX. Then a subfamily .« of LX
is said to be a
(i) nbd baseif o C A;(z4) and for every N € Aj(z,), I A € & such that A C N.
(ii) Q-nbd base if &7 C 2;(z,) and for every F' € 2;(x,), 3 B € & such that
BCF.

Lemma 3.3. Let (L, %) be an L-semi-uniform space. Then for any A € LX,
=V | Ve’

Proof. Let % be a base for % consisting of symmetric members of % . Now,
int(A) = U{zo | U € B s.t. Uzy) C A’}
= U{U{za | U(za) C A}, U € £}

ULIU™(A)) | U € #}

=H{[UA)) |U e B}, sinceU e BZ=U"=U.
={[V(A)]" |V € %}, since B is a base for % .
=[N{V(A) |V e A}
Hence, cl(A4) = (int(A")) = ({V(A) |V e % }. O

Theorem 3.4. Let (LX, %) be an L-semi-uniform space. Then for any A € LX,
cl(A) satisfies the following:

(CO1) cl(0) = 0.

(CO2) A C cl(A).

(CO3) cl(AUB) =cl(A)Ycl(B), VB e LX.

Proof. Since, by Lemma 3.3} cl(A) = (int(A4"))’, V A € L, therefore,
(CO1) cl(0) = (int(0"))" = (int(1))’. Then by (IO1) cl(0) = (1)’ = 0.
(CO2) (int(A")) = cl(A) = ((A")) Ccl(A), by (I02). Therefore, A C cl(A).
(CO3) cl(AUB) = (int(AUB)') = (mt(A’ (\B’)). Then, by (103), cl(AU B) =
(int(A") Nint(B"))’. Then, cl(AU B) = (int(A")) U(int(B")) = cl(4) Jcl(B). O

Remark 3.5. Obviously, ‘cl’ on L¥ is an L-topological operator iff it satisfies the
following axiom: (CO4) cl(cl(A)) = cl(4), VA e L¥X.
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Definition 3.6. For any z, € Pt(LX) we define its dual point as an L-fuzzy point

a7, such that
vy | o fy=um
Taly) = { 0 if y+# .
In view of Theorem 2.3.24 in [16], we have the following:

Theorem 3.7. Let ‘i’ be an interior operator on LX and A € LX. Then x, €
(i(A") iff each neighborhood of its dual point x¥ is quasi-coincident with A.

The following definitions are from [16] which are adapted to an interior space:

Definition 3.8. A non empty sub collection .% of L¥ is said to be a filter in an
interior space, if:

(Fl)o¢ 7.

F)U,VeF =UNV € Z.

(F3) U € % and G € L¥ such that U C G then G € .Z.

Let A € LX such that for any F C A, F ¢ .#. Then .Z is said to be a filter
relative to A.

Definition 3.9. A subfamily % of L¥ is called a filter base in an interior space if
(B1) 0 ¢ #
(B2) for any U, V € A, there exists W € % such that W CU (V.

Definition 3.10. A filter % is said to be closed with respect to some interior
operator ‘i’ if for any F' € .% implies F' = ¢(F).

Definition 3.11. Let x, € Pt(L¥) and .# be a filter. Then .% is said to be
convergent to x, with respect to some interior operator ‘i’, denoted by % — =z, if
for any U € 2;(x4) there exists F' € .Z such that F' C U, that is, 2;(z,) C .Z.

Definition 3.12. Cluster set of .# with respect to some interior operator ‘i’, is
given by ({cl(F) | F € Z}.

For any x, € Pt(LX), if z, is in the cluster set of .#, then we denote it by
F ~> T

Remark 3.13. Cluster set of a filter with respect to an L-topological space was
defined by Hutton in an analogous way.

Remark 3.14. If z, is in the cluster set of .# with respect to some interior operator
‘0, then for any F € #, zo C (i(F")). But zo C (i(F")) = o < (i(F")) (z) =
(@(F"))(z) £ a = o &£ i(F')(z). Now o &£ i(F')(z) = 2z} & i(F') = G ¢
F', VG € #;(x%). This implies that GgF, V¥ G € #;(x%). But for any A, B € L,
AgB implies A B # 0. For if AgB, then there exists € X such that A(z) £ B'(z).
So, 0, < A(x) and B’(z) < 1. Hence, 0, < A(z) and 0, < B(z). We then have,
A(x) A B(z) # 0. So, A(\B # 0. Hence, G F # 0, VG € A;(z¥). Again since
G is a nbd at z}, iff G is a Q-nbd at x,. Therefore, # ~~ z, implies that z, is a
cluster point of .# in the sense of [16].

Definition 3.15. Let %’ be an interior operator on LX. A subset .# of L¥ is said
to satisfy the F. I. P. relative to an open set G with respect to the interior operator
ViR, Foe F =N B € G
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Obviously, every subset .% of LX which satisfies the F. I. P. relative to G is
contained in a filter relative to G.

Definition 3.16. Let LX and LY be interior spaces with respect to the interior
operators ix and iy respectively. Then a function f~— : LX — LY is said to be
open with respect to the interior operators, if for any G' € L such that ix(G) = G
implies iy (f~(G)) = £~ (G).

Definition 3.17. Let LX and LY be interior spaces with respect to the interior
operators ix and iy respectively. Then a function f~ : LX — LY is said to be
continuous with respect to the interior operators iff for each z, € Pt(L¥) and
each neighborhood V of f~(x,) with respect to the interior operator iy, there is a
neighborhood U of z,, with respect to the interior operator i x such that f—(U) C V.

The following result follows from Theorem 5.2.27 in [16].

Theorem 3.18. Letix and iy be two interior operators on LX and LY respectively.
Then a function f— : LX — LY is continuous with respect to the interior operators
if and only if for any filter F converging on LX with respect to the interior operator
ix implies that f~(F) = {f~(F) | F € F} converges on LY with respect to the
interior operator iy .

In view of Theorem 5.2.9 in [16], we obtain the following:

Theorem 3.19. Let ‘i ’ be an interior operator on LX and A € LX. Then zo €
(i(A"))" iff there is a filter F relative to A’ such that F — x,, with respect to that
interior operator i’.

Definition 3.20. Let A € L*. We shall call the maximal filter (with respect to
partial ordering by set inclusion) %, relative to A as an ultrafilter relative to A. If
A =0, then we simply call .%, to be an wultrafilter.

Theorem 3.21. Let %’ be an interior operator and F be a filter on LX. Let
zo € Pt(LYX) such that F — x, with respect to i’. Then F ~ .

Proof. Let F be any member of .%. Now we consider the following two cases:

Case I. Let F' ¢ %#. Then, & is a filter relative to F’ and % — xz,. So, by
Theorem [3.19, z,, € (i(F"))’.

Case II. Let I/ € # and N be any Q-nbd at z,. Then N € .# and hence
F'(YN # 0. Then, there exists ys € I such that y; € N. This implies that
N(y) £ (F(y))" and hence NgF. Therefore, by Theorem 3.7, z, € (i(F’))". Thus,
in either case x, € (i(F"))!, V F € #. Hence, F ~ z,. O

The following result can be obtained from Theorem 5.2.16 in [16] and Theorem
3.21l

Theorem 3.22. Let %’ be an interior operator and %, be an ultrafilter on LX.
Then F, ~ xqo iff Fu — Tq.
In view of Lemma 11 in [12], we have the following:
Lemma 3.23. For any ultrafilter %, and A, B € L™ such that A\J B € .%,, either
Ae %, or Be .Z,.
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Definition 3.24. Let ‘4’ be an interior operator on LX, an open cover € of an
L-fuzzy set A is a collection of open sets with respect to the interior operator ‘7’
such that A C (Jgey G-

In view of Definition 5 in [12], we adopt the following definition for an interior
space.

Definition 3.25. An interior space is said to be compact if it satisfies any of the
following equivalent conditions:

(1) Every open cover € of a closed set has a finite subcover.

(2) Every collection of closed sets .# satisfying the F. I. P. relative to an open set
G has Npea F L G.

We now state the following lemma:
Lemma 3.26. For any U € %* and z,,ys € Pt(LX) we get
ys CU(2zq) iff 2o C U (yp)-

Proof. Since, (U™)" = U. So, we need to prove only one way implication. Here,
U'(ys) = W2y | U(2}) C yz}. Let yg C U(za). Then [U(zo)]” C yj. Let
A: X — L be a mapping defined by

B vy if U(ny) Qyﬁy
Vze X, Az) —{ O if U(2) € yj-

Then U"(yg) = () A. Let B: X — L be a mapping defined by

it Ulw,) € [U(za)],
Ywe X, B(w) = { 0; if U(wﬂ) g [U(xa)}/
Let w be any element of X. Then B'(w) =n = B(w) =7 = U(wy) C [U(z.)] =
U(wy) € ys = A(w) = 1. Therefore B C A and hence (JA' C |JB. Again
by €'B = U(b,) € [Ure)]' = Uby) € = by, € . 1 ollows that U B € af, =
UA' Cal, = 2 C A Hence, 2, € U"(ys). =

Theorem 3.27. Let (L, %) be an L-semi-uniform space and ‘int’ be the induced
interior operator on LX. Then the respective interior space is compact iff every
ultrafilter relative to an open set with respect to ‘int’ is convergent.

Proof. Let the space be compact and %, be an ultrafilter relative to an open set G
on the space. Then by Theorem 3.4, .% = {cl(F') | F € #,} is a collection of closed
sets satisfying F. 1. P. relative to the open set G. Consequently, by compactness,
Npez, (F) € G. This implies that there is some z, € Pt(LX) such that x, C
Nrez, cl(F). Thus by Theorem [3.22, we have F, — z,.

Conversely, let % be a collection of closed sets satisfying F. 1. P. relative to an
open set G. Let .F* be a filter relative to the open set G and containing .%. Then
Nprcg F* € Npeg F. Let Z, be an ultrafilter relative to the open set G. We
then have,

(3.1) N S () F< () F

F,e %, FreF* Fe7z
300
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Let %, — 4. Then 2(z,) ={U(z2) |U € 7} C .%,. Now let U be any symmetric
member of %. Let F, be any member of .%,. Then U(z}) € .%, implies that
F,NU(z}) # 0. Hence there exists yg C F, such that yg C U(z}). This further
implies z}, C U (yg) = U(yp), by Lemma3.26 But y3 C F, implies U(yg) C U(E,).
Hence, for any symmetric member U of %, we get z¥ C U(F,). Again since the

collection of symmetric members of % is a base for %, therefore by Lemma [3.3]
xf Ccl(F,) =F, VF,ec.%, Hence,

(3.2) xS (] Fe

F.eZ,
Now, if 2% C G, then there is U € % such that U(z}) C G, as G is open. But
then G € %, and this contradicts the fact that ., is an ultrafilter relative to
G. So x}, ¢ G. This implies (g ¢ Fu € G, by (3.2). Thus by (3.1), we have
Npez F ¢ G. Hence, the space is compact. O

Definition 3.28. A filter .# in an L-semi-uniform space (LX,%) is said to be
Cauchy if for each U € %, Iz, € Pt(LX) and F € . such that F C U(z,).

Definition 3.29. An L-semi-uniform space (L*,%) is said to be complete if and
only if for every Cauchy filter .% relative to an open set with respect to the interior
operator generated by %, (\pcg cl(F) # 0.

The following result follows from Theorem [3.22.

Theorem 3.30. An L-semi-uniform space (LX,%) is complete iff every Cauchy
ultrafilter relative to an open set with respect to the interior operator generated by
U is convergent.

Theorem 3.31. Let (LX,%) and (LY, V) be L-semi-uniform spaces and let f~ :
LY — LY be L-semi-uniformly continuous. If .F is a Cauchy filter in (L, %),
then f~(F) is a Cauchy filter in (LY, 7).

Proof. Let .# be a Cauchy filter on LX. Let V € #. Since f~ : LX — LY is
L-semi-uniformly continuous, therefore there exists U € % such that F(U ) C V.
Now, .7 is a Cauchy filter on L*. Hence, there exists F' € .# and z, € Pt(L¥) such
that F C U(z,). Then f7(F) C V(f~(z4,)). Hence, f~ (%) is a Cauchy filter on
(LY, 7). O

Theorem 3.32. Let (LX, %) and (LY, V) be two L-semi-uniform spaces and let
[~ LX — LY be an L-semi-uniformly isomorphism. Then (LX,%) is complete iff
(LY, ) is complete.

Proof. Let (LY,7) be complete and .# be a Cauchy filter on LX relative to an
open set G. Let V € ¥. Then by Theorem 331, f(&) is a Cauchy filter on
(LY, 7). Again, since f~ is L-semi-uniformly continuous, therefore by Theorem
2.14, f< is continuous and so f~ is open. Hence, f~(G) is open in LY. Also, as
G C f~(f7(@) and G ¢ %, therefore f— (%) is a Cauchy filter relative to the
open set f~(G). Thus, f~(.%) is convergent in (LY, %), it being complete. But
by Corollary 2.15, f— is a homeomorphism. Consequently by Theorem [3.18, %
converges in (L*,% ). Hence, (LX,% ) is complete. O
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Definition 3.33. Let (LX,%) be an L-semi-uniform space and A € LX. Let for
any U € %, Uy : LX — LX be a mapping such that

| U(za) if zq C A,
Ualwa) = { 0 ifa.ZA

Then %4 = {Ua | U € %} is an L-semi-uniformity on A, which we call a sub L-
semi-uniformity on A and (A, Z4) to be the subspace. %4 is called open or closed
sub L-semi-uniformity provided A = intg,(A) or A = (intg, (A’))" respectively,
where inty, is the interior operator generated by %a.

Theorem 3.34. Every closed sub L-semi-uniformity in a complete L-semi-uniform
space is complete.

Proof. Let (L, %) be a complete L-semi-uniform space and A € L¥ such that
A = (inte (A’))’, where inty is the interior operator generated by % . Let %, =
{F | F C A} be a Cauchy ultrafilter relative to an open set B with respect to
inte, , where intg,, is the interior operator generated by %4. Now if B’ € .%,, then
from the definition of .%,, B C A. But B’ C A implies A’ C B and consequently,
A & Z,, as F, is a filter relative to B. Also if, B’ ¢ .%,, then A’ ¢ .%,. Thus, in
either case .7, is an ultrafilter in (LX, %) relative to A’. Now, since for any U € %
Ua C U, therefore .%, is also Cauchy in (LX, %). Thus, .%, is a Cauchy ultrafilter
in (L%, %) relative to the open set A’ and consequently there exists x, € Pt(LY)
such that %, — xz,. But as A = (int4 (A"))’, so by Theorem 3.19, z, € A. Hence,
(A, %4) is complete. O

Definition 3.35. An L-semi-uniform space (LX,%) is said to be totally bounded
if for any U € % there is a finite A C Pt(L*) such that

1=U(4) = U{U(xa) | za € A}

Theorem 3.36. In a totally bounded space (L, %), every ultrafilter is a Cauchy
filter.

Proof. Let #, be an ultrafilter and U € % . By totally boundedness there is a finite
A C Pt(LYX) such that 1 = U(A) = U{U(z,) | zo € A}. But as 1 € Z,, therefore
by Lemma [3.23, U(x,) € %,, for some z,, € A. O

Theorem 3.37. Let (LX, %) be an L-semi-uniform space. Then the space is com-
pact iff (i) (L, %) is totally bounded and (ii) (L, %) is complete.

Proof. Let (LX,%) be a compact space.

(i) Let U € % and ‘cl’ be the closure operator generated by %/. Then {int(U(z,,)) |
7o € Pt(LX)} is an open cover of 1. Since cl(1) = 1, therefore by compactness, for
this open cover there is a finite A C Pt(LY) such that 1 = [J{int(U(z,)) | 7o € A}.
Hence (LX, %) is totally bounded.

(ii) Follows from Theorems [3.27 and [3.30!

Conversely, if the space is totally bounded and complete, then, by Theorems [3.36,
3.30l and 13.27| the space is compact. O
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