Annals of Fuzzy Mathematics and Informatics Volume 4, No. 2, (October 2012), pp. 293–303 ISSN 2093–9310 http://www.afmi.or.kr

© FMII
© Kyung Moon Sa Co.
http://www.kyungmoon.com

On some convergence structures in L-semi-uniform spaces

D. HAZARIKA, D. K. MITRA

Received 25 February 2011; Revised 1 September 2011; Accepted 18 September 2011

ABSTRACT. The notion of completeness on L-semi-uniform spaces is introduced in this paper. We have established that completeness is weakly hereditary and preserved under L-semi-uniform isomorphism. Finally, we have shown that in a totally bounded L-semi-uniform space, completeness is equivalent to compactness.

2010 AMS Classification: 54A40

 $\mbox{{\tt Keywords:}} \quad \mbox{L-semi-uniformity, L-semi-quasi-uniformity, Compact, Cauchy filter,} \\ \mbox{Totally bounded, Cauchy ultrafilter, Complete.}$

Corresponding Author: D. Hazarika (debajit@tezu.ernet.in)

1. Introduction

Uniform spaces play a very important role as a bridge between metric spaces and general topological spaces. Many generalizations of uniform spaces, viz. quasi-uniform spaces [5], semi-uniform spaces, semi-quasi-uniform spaces, locally uniform spaces [22] and locally quasi-uniform spaces [9, 15] have been developed in general topology. Semi-quasi-uniform spaces were introduced and a necessary and sufficient condition under which semi-quasi-uniform spaces are topological was obtained in [20]. The problem of completeness for a closure space in terms of semi-quasi-uniform space was considered in [20]. Closure spaces in relation to semi-uniform spaces have been studied and various results on semi-uniformly continuous and semi-pseudo-metrization have been obtained in [3]. Different types of completeness on t-semi-uniformity were considered in [2].

Uniform spaces and quasi-uniform spaces in the fuzzy setting have been studied by several authors [10, 11, 13, 14, 17, 18]. Garcia et. al. [21] introduced uniform spaces in a unifying framework of GL-monoid to include both the categories of Lowen Uniformity and Hutton type uniformities. In their recent work, Hazarika and Mitra [6, 19] developed L-local uniformity and L-local quasi-uniformity as generalizations

of Hutton's uniformity and quasi-uniformity respectively in the category L-TOP. Further, in their subsequent work [7, 8], the same authors developed L-semi-quasi-uniformity and L-semi-uniformity in the same category as generalizations of L-local quasi-uniformity and L-local uniformity respectively. A sufficient condition for an L-semi-quasi-uniformity for generating an L-topological space was obtained. Various results on L-semi-uniformly continuous functions were obtained. The notion of L-semi-pseudo-metric as a generalization of Hutton's metric was introduced and it was established that every L-semi-uniform space with countable base is L-semi-pseudo-metrizable

In this paper we take up the problem of completeness for the L-semi-uniformity \mathscr{U} on L^X which satisfies the condition $x_\alpha \in U(x_\alpha)$, instead of our earlier assumption that $x_\alpha \subseteq U(x_\alpha)$, $\forall \ U \in \mathscr{U}, \ x_\alpha \in \operatorname{Pt}(L^X)$. In the process we have obtained a subclass of the class of the L-semi-uniformities developed in the earlier papers. This change has been necessitated in order to accommodate the system of Q-nbd at an L-fuzzy point x_α . The Q-nbd system, as may be noted, plays an important role in the theory of convergence. We shall continue to call this subclass of L-semi-uniform spaces as L-semi-uniform spaces for sake of convenience.

Throughout the paper $(L, \leq, \bigwedge, \bigvee, ')$ is a completely distributive lattice with order reversing involution '; 0_L and 1_L are respectively inf and sup in L. X is an arbitrary set and L^X will denote the collection of all mappings $A: X \to L$. Any member of L^X is an L-fuzzy set. The L-fuzzy sets $x_\alpha: X \to L$ defined by $x_\alpha(y) = 0_L$ if $x \neq y$ and $x_\alpha(y) = \alpha$ if x = y are the L-fuzzy points. The set of all L-fuzzy points on X is denoted by $\operatorname{Pt}(L^X)$. The mappings $A: X \to L$ and $B: X \to L$ defined by $A(x) = 1_L$, $\forall x \in X$ and $B(x) = 0_L$, $\forall x \in X$ are denoted by 1 and 0 respectively. For any $A, B \in L^X$, the union and intersection of A and B are defined as $A \cup B = A(x) \bigvee_{x \in X} B(x)$ and $A \cap B = A(x) \bigwedge_{x \in X} B(x)$ respectively; we say $A \subseteq B$ iff $A(x) \leq B(x)$ and $A(x) \in A$ iff $A(x) \in A(x)$, where $A(x) \in A(x)$ is a subset of $A(x) \in A(x)$ closed under finite intersection and arbitrary union. The elements of $A(x) \in A(x)$ are called open sets and their complements are the closed sets. For basic fuzzy topological definitions we refer to [4]. We consider Hutton's uniformity and quasi-uniformity [11]. Our definition of totally boundedness generalizes the notion of totally boundedness of $A(x) \in A(x)$. We adopt Hutton's compactness in an interior space.

2. Preliminaries

Definition 2.1 ([16]). For any x_{α} , A, $B \in L^{X}$, x_{α} is said to be *quasi-coincident* with A, denoted as $x_{\alpha} \ll A$ if $x_{\alpha} \nsubseteq A'$ i.e., $\alpha \nleq A'(x)$.

A is called quasi-coincident with B at y if $A(y) \nleq B'(y)$. A is called quasi-coincident with B, denoted as $A\widehat{q}B$, if A quasi-coincides with B at some $y \in X$.

Definition 2.2 ([16]). For any ordinary mapping $f: X \to Y$, the induced *L-fuzzy mapping* $f^{\to}: L^X \to L^Y$ and its *L-fuzzy reverse mapping* $f^{\leftarrow}: L^Y \to L^X$ respectively are defined as:

```
f^{\rightarrow}(A)(y) = \bigvee \{A(x) \mid x \in X, \ f(x) = y\}, \ \forall A \in L^X, \ \forall y \in Y.
f^{\leftarrow}(B)(x) = B(f(x)), \ \forall B \in L^Y, \ \forall x \in X.
```

Definition 2.3 ([16]). Let L^X and L^Y be L-fuzzy spaces, $f: X \to Y$ an ordinary mapping. Then

- (i) $f^{\rightarrow}: L^X \rightarrow L^Y$ is said to be *injective*, if for any $A, B \in L^X$, $f^{\rightarrow}(A) = f^{\rightarrow}(B)$ implies A = B.
- (ii) $f^{\rightarrow}: L^X \rightarrow L^Y$ is said to be *surjective*, if for any $B \in L^Y$ there exists $A \in L^X$ such that $f^{\rightarrow}(A) = B$. (iii) $f^{\rightarrow}: L^X \rightarrow L^Y$ is said to be *bijective*, if it is both injective and surjective.

Theorem 2.4 ([16]). Let L^X and L^Y be L-fuzzy spaces, $f: X \to Y$ an ordinary mapping. Then

- (i) f^{\rightarrow} is injective if and only if f is injective.
- (ii) f^{\rightarrow} is surjective if and only if f is surjective.
- (iii) f^{\rightarrow} is bijective if and only if f is bijective.

We shall now adopt all the necessary definitions and results of L-semi-uniform spaces in this setting.

Definition 2.5. Let $i:L^X\to L^X$ be a mapping on L^X . Then i is called an interior operator on L^X if it fulfills the following conditions:

- (IO1) i(1) = 1.
- (IO2) $i(A) \subseteq A, \ \forall A \in L^X$.
- (IO3) $i(A \cap B) = i(A) \cap i(B), \ \forall A, B \in L^X$.

 L^X together with an interior operator 'i' shall be called an interior space. For any $A \in L^X$, we shall call (i(A'))' is the closure of A with respect to the interior operator 'i' [denoted by cl(A)] and A is called *closed* or *open* with respect to that interior operator according as A = cl(A) or A = i(A) respectively.

Obviously, for any interior operator 'i' and $A \in L^X$, we have A is open with respect to 'i' iff A' is closed with respect to that interior operator.

An interior operator 'i' is said to be an L-topological interior operator if in addition it satisfies the following:

(IO4)
$$i(i(A)) = i(A), \forall A \in L^X$$
.

We shall call a closure operator an L-topological closure operator iff the relative interior operator is L-topological.

Definition 2.6 ([11]). Let \mathcal{U}^* be the collection of all maps $U: L^X \to L^X$ which satisfy:

- (s1) $\Delta \subseteq U$.
- (s2) $U(\bigcup_{\lambda} V_{\lambda}) = \bigcup_{\lambda} U(V_{\lambda}), V_{\lambda} \in L^{X}$.

Here $\Delta: L^X \to L^X$ such that $\Delta(A) = A$, $A \in L^X$. For any $U, V \in \mathcal{U}^*$, $U \circ V$ is the composition of functions. Obviously, $\Delta \circ U = U = U \circ \Delta$, $\Delta \circ U$ and $U \circ \Delta$ are the composition of functions.

Definition 2.7 ([11]). For any $U \in \mathcal{U}^*$, $U^r(x_\alpha) = \bigcap \{y_\beta \mid U(y'_\beta) \subseteq x'_\alpha\}$. Then $U^r \in \mathcal{U}^*$ and $(U^r)^r = U$, by proposition 10.2 in [11]. If $U = U^r$, then U is said to be symmetric.

Definition 2.8 ([7, 8]). An L-semi-quasi-uniformity \mathscr{U} on L^X is a non empty subfamily of \mathcal{U}^* satisfying the following:

(SQ1)
$$U \cap V \in \mathcal{U}$$
, $\forall U, V \in \mathcal{U}$.

(SQ2) If $V \in \mathcal{U}^*$ such that $U \subseteq V$, for some $U \in \mathcal{U}$, then $V \in \mathcal{U}$.

The pair (L^X, \mathcal{U}) is called an L-semi-quasi-uniform space.

Definition 2.9 ([7, 8]). A non empty subfamily \mathscr{B} of \mathscr{U}^* is called a *base* for some L-semi-quasi-uniformity \mathscr{U} if for any $U \in \mathscr{U}$, there is $B \in \mathscr{B}$ such that $B \subseteq U$.

A non empty subfamily \mathscr{B} of \mathscr{U}^* is a base for some L-semi-quasi-uniformity \mathscr{U} if it satisfies the following:

(SQ1') For any $U, V \in \mathcal{U}$, there is $W \in \mathcal{B}$ such that $W \subseteq U \cap V$.

Definition 2.10 ([7, 8]). An *L*-semi-quasi-uniformity \mathscr{U} on L^X is said to be an *L*-semi-uniformity if \mathscr{U} has a base \mathscr{B} such that:

(SQ3) For any $B \in \mathcal{B}$ implies $B^r \in \mathcal{B}$.

The pair (L^X, \mathcal{U}) is then called an L-semi-uniform space.

Also, the collection of symmetric members of $\mathscr U$ is a base for $\mathscr U$.

Theorem 2.11 ([7]). Let (L^X, \mathcal{U}) be an L-semi-quasi-uniform space and \mathcal{B} be any base of \mathcal{U} . Then the mapping int : $L^X \to L^X$ defined by, $\operatorname{int}(A) = \bigcup \{x_\alpha \mid \exists \ V \in \mathcal{B} \text{ s.t. } V(x_\alpha) \subseteq A\}$, is an interior operator on L^X .

Every fuzzy semi-quasi-uniformity therefore generates an interior space. Further, for any L-semi-uniform space (L^X, \mathcal{U}) , since the interior space is generated by 'int', so, in particular, for any $x_{\alpha} \in \operatorname{Pt}(L^X)$, the collection $\mathcal{N}_{x_{\alpha}} = \{U(x_{\alpha}) \mid U \in \mathcal{U}\}$ is the neighborhood system at x_{α} in the generated interior space. If the family $\{\mathcal{N}_{x_{\alpha}} \mid x_{\alpha} \in \operatorname{Pt}(L^X)\}$ is a neighborhood system for some L-topology \mathbb{F} , we say that \mathbb{F} is the L-topology generated by \mathcal{U} .

Theorem 2.12 ([7]). Every L-semi-quasi-uniformity generates an L-topological space under the following condition:

For any $U \in \mathcal{U}$ and $x_{\alpha} \in \text{Pt}(L^X)$, there exists $V \in \mathcal{U}$ such that to each $y_{\beta} \in V(x_{\alpha})$ there corresponds $W \in \mathcal{U}$ with $W(y_{\beta}) \subseteq U(x_{\alpha})$.

Definition 2.13 ([8]). Let (L^X, \mathscr{U}) and (L^Y, \mathscr{V}) be L-semi-uniform spaces. A function $f^{\rightarrow}: (L^X, \mathscr{U}) \rightarrow (L^Y, \mathscr{V})$ is called L-semi-uniformly continuous iff for every $V \in \mathscr{V}$, there exists $U \in \mathscr{U}$ such that $\widehat{f^{\rightarrow}}(U) \subseteq V$, where $\widehat{f^{\rightarrow}}(x_{\alpha}, y_{\beta}) = (f^{\rightarrow}(x_{\alpha}), f^{\rightarrow}(y_{\beta}))$. The function f^{\rightarrow} is said to be an L-semi-uniformly isomorphism iff f^{\rightarrow} is bijective and both f^{\rightarrow} and f^{\leftarrow} are L-semi-uniformly continuous.

Now since $\widehat{f^{\rightarrow}}(U) \subseteq V$ implies $\widehat{f^{\rightarrow}}(U)(f^{\rightarrow}(x_{\alpha})) \subseteq V(f^{\rightarrow}(x_{\alpha})), \ \forall x_{\alpha} \in Pt(L^{X}),$ therefore we have the following:

Theorem 2.14 ([8]). L-semi-uniformly continuous functions on L-semi-uniform spaces are continuous with respect to the relative interior spaces.

Proof. Let (L^X, \mathscr{U}) and (L^Y, \mathscr{V}) be L-semi-uniform spaces. Let $f^{\to}: (L^X, \mathscr{U}) \to (L^Y, \mathscr{V})$ be L-semi-uniformly continuous, $\operatorname{int}_{\mathscr{U}}$ and $\operatorname{int}_{\mathscr{V}}$ respectively be the interior operators generated by \mathscr{U} and \mathscr{V} . For $x_{\alpha} \in \operatorname{Pt}(L^X)$ and for each neighborhood N of $f^{\to}(x_{\alpha})$ in the interior space generated by \mathscr{V} , we may choose $V \in \mathscr{V}$ and $U \in \mathscr{U}$ so that $V(f^{\to}(x_{\alpha})) \subseteq N$ and $\widehat{f^{\to}}(U) \subseteq V$. Therefore, $f^{\to}(U(x_{\alpha})) = \widehat{f^{\to}}(U)(f^{\to}(x_{\alpha})) \subseteq V(f^{\to}(x_{\alpha})) \subseteq N$.

Corollary 2.15 ([8]). Every L-semi-uniformly isomorphism is an L-semi-homeomorphism.

3. Completeness and Compactness

In this section by characterizing completeness and compactness in terms of Cauchy ultrafilter and ultrafilter respectively, we show that in a totally bounded L-semi-uniform space, the notions of completeness and compactness are equivalent.

Definition 3.1. Let 'i' be an interior operator on L^X . Then for any $x_{\alpha} \in \operatorname{Pt}(L^X)$, we shall call an L-fuzzy set N to be a neighborhood (nbd) at x_{α} with respect to 'i', if there is $G \in L^X$ such that $i(G) \nsubseteq x_{\alpha}$ and $i(G) \subseteq N$. The family of all nbds at x_{α} in the interior space is denoted by, $\mathcal{N}_i(x_{\alpha})$. We shall call an L-fuzzy set F to be a quasi-coincident neighborhood (Q-nbd) at x_{α} with respect to 'i', if there is an L-fuzzy set E such that E such

Definition 3.2. Let 'i' be an interior operator on L^X . Then a subfamily \mathscr{A} of L^X is said to be a

- (i) nbd base if $\mathscr{A} \subseteq \mathscr{N}_i(x_\alpha)$ and for every $N \in \mathscr{N}_i(x_\alpha)$, $\exists A \in \mathscr{A}$ such that $A \subseteq N$.
- (ii) Q-nbd base if $\mathscr{A} \subseteq \mathscr{Q}_i(x_\alpha)$ and for every $F \in \mathscr{Q}_i(x_\alpha)$, $\exists B \in \mathscr{A}$ such that $B \subseteq F$.

Lemma 3.3. Let (L^X, \mathcal{U}) be an L-semi-uniform space. Then for any $A \in L^X$,

$$cl(A) = \bigcap \{ V(A) \mid V \in \mathscr{U} \}.$$

Proof. Let ${\mathscr B}$ be a base for ${\mathscr U}$ consisting of symmetric members of ${\mathscr U}$. Now,

$$\operatorname{int}(A') = \bigcup \{x_{\alpha} \mid \exists U \in \mathcal{B} \text{ s.t. } U(x_{\alpha}) \subseteq A'\}$$

$$= \bigcup \{\bigcup \{x_{\alpha} \mid U(x_{\alpha}) \subseteq A'\}, U \in \mathcal{B}\}.$$

$$= \bigcup \{[U^{r}(A)]' \mid U \in \mathcal{B}\}, \text{ since } U \in \mathcal{B} \Rightarrow U^{r} = U.$$

$$= \bigcup \{[V(A)]' \mid V \in \mathcal{U}\}, \text{ since } \mathcal{B} \text{ is a base for } \mathcal{U}.$$

$$= [\bigcap \{V(A) \mid V \in \mathcal{B}\}]'.$$

Hence, $\operatorname{cl}(A) = (\operatorname{int}(A'))' = \bigcap \{V(A) \mid V \in \mathscr{U}\}.$

Theorem 3.4. Let (L^X, \mathcal{U}) be an L-semi-uniform space. Then for any $A \in L^X$, cl(A) satisfies the following:

```
(CO1) \operatorname{cl}(\underline{0}) = \underline{0}.
```

(CO2) $A \subseteq cl(A)$.

(CO3) $\operatorname{cl}(A \bigcup B) = \operatorname{cl}(A) \bigcup \operatorname{cl}(B), \quad \forall B \in L^X.$

Proof. Since, by Lemma 3.3, cl(A) = (int(A'))', $\forall A \in L^X$, therefore,

(CO1)
$$\operatorname{cl}(\underline{0}) = (\operatorname{int}(\underline{0}'))' = (\operatorname{int}(\underline{1}))'$$
. Then by (IO1) $\operatorname{cl}(\underline{0}) = (\underline{1})' = \underline{0}$.

(CO2)
$$(\operatorname{int}(A'))' = \operatorname{cl}(A) \Rightarrow ((A'))' \subseteq \operatorname{cl}(A)$$
, by (IO2). Therefore, $A \subseteq \operatorname{cl}(A)$.

(CO3)
$$\operatorname{cl}(A \bigcup B) = (\operatorname{int}(A \bigcup B)')' = (\operatorname{int}(A' \cap B'))'$$
. Then, by (IO3), $\operatorname{cl}(A \bigcup B) = (\operatorname{int}(A') \cap \operatorname{int}(B'))'$. Then, $\operatorname{cl}(A \bigcup B) = (\operatorname{int}(A'))' \cup (\operatorname{int}(B'))' = \operatorname{cl}(A) \cup \operatorname{cl}(B)$. \square

Remark 3.5. Obviously, 'cl' on L^X is an L-topological operator iff it satisfies the following axiom: $(CO4) \operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A), \ \forall A \in L^X.$

Definition 3.6. For any $x_{\alpha} \in \text{Pt}(L^X)$ we define its *dual point* as an *L*-fuzzy point x_{α}^* such that

$$x_{\alpha}^{*}(y) = \begin{cases} \alpha' & \text{if } y = x, \\ 0_{L} & \text{if } y \neq x. \end{cases}$$

In view of Theorem 2.3.24 in [16], we have the following:

Theorem 3.7. Let 'i' be an interior operator on L^X and $A \in L^X$. Then $x_{\alpha} \in (i(A'))'$ iff each neighborhood of its dual point x_{α}^* is quasi-coincident with A.

The following definitions are from [16] which are adapted to an interior space:

Definition 3.8. A non empty sub collection \mathscr{F} of L^X is said to be a *filter* in an interior space, if:

- (F1) $\underline{0} \notin \mathscr{F}$.
- $(\text{F2})\ U,\,V\in\mathscr{F}\,\Rightarrow\,U\bigcap V\,\in\,\mathscr{F}.$
- (F3) $U \in \mathscr{F}$ and $G \in L^X$ such that $U \subseteq G$ then $G \in \mathscr{F}$.

Let $A \in L^X$ such that for any $F \subseteq A$, $F \notin \mathscr{F}$. Then \mathscr{F} is said to be a filter relative to A.

Definition 3.9. A subfamily \mathscr{B} of L^X is called a *filter base* in an interior space if (B1) $0 \notin \mathscr{B}$

(B2) for any $U, V \in \mathcal{B}$, there exists $W \in \mathcal{B}$ such that $W \subseteq U \cap V$.

Definition 3.10. A filter \mathscr{F} is said to be *closed* with respect to some interior operator 'i' if for any $F \in \mathscr{F}$ implies F = c(F).

Definition 3.11. Let $x_{\alpha} \in \operatorname{Pt}(L^X)$ and \mathscr{F} be a filter. Then \mathscr{F} is said to be convergent to x_{α} with respect to some interior operator 'i', denoted by $\mathscr{F} \to x_{\alpha}$, if for any $U \in \mathscr{Q}_i(x_{\alpha})$ there exists $F \in \mathscr{F}$ such that $F \subseteq U$, that is, $\mathscr{Q}_i(x_{\alpha}) \subseteq \mathscr{F}$.

Definition 3.12. Cluster set of \mathscr{F} with respect to some interior operator 'i', is given by $\bigcap \{\operatorname{cl}(F) \mid F \in \mathscr{F}\}.$

For any $x_{\alpha} \in Pt(L^X)$, if x_{α} is in the cluster set of \mathscr{F} , then we denote it by $\mathscr{F} \leadsto x_{\alpha}$.

Remark 3.13. Cluster set of a filter with respect to an *L*-topological space was defined by Hutton in an analogous way.

Remark 3.14. If x_{α} is in the cluster set of \mathscr{F} with respect to some interior operator 'i', then for any $F \in \mathscr{F}$, $x_{\alpha} \subseteq (i(F'))'$. But $x_{\alpha} \subseteq (i(F'))' \Rightarrow \alpha \le (i(F'))'(x) \Rightarrow (i(F'))'(x) \not< \alpha \Rightarrow \alpha' \not< i(F')(x)$. Now $\alpha' \not< i(F')(x) \Rightarrow x_{\alpha}^* \not\in i(F') \Rightarrow G \not\subseteq F'$, $\forall G \in \mathscr{N}_i(x_{\alpha}^*)$. This implies that $G\widehat{q}F$, $\forall G \in \mathscr{N}_i(x_{\alpha}^*)$. But for any $A, B \in L^X$, $A\widehat{q}B$ implies $A \cap B \neq 0$. For if $A\widehat{q}B$, then there exists $x \in X$ such that $A(x) \not\leq B'(x)$. So, $0_L < A(x)$ and $B'(x) < 1_L$. Hence, $0_L < A(x)$ and $0_L < B(x)$. We then have, $A(x) \wedge B(x) \neq 0_L$. So, $A \cap B \neq 0$. Hence, $G \cap F \neq 0$, $\forall G \in \mathscr{N}_i(x_{\alpha}^*)$. Again since G is a nbd at x_{α}^* iff G is a Q-nbd at x_{α} . Therefore, $\mathscr{F} \leadsto x_{\alpha}$ implies that x_{α} is a cluster point of \mathscr{F} in the sense of [16].

Definition 3.15. Let 'i' be an interior operator on L^X . A subset \mathscr{F} of L^X is said to satisfy the F. I. P. relative to an open set G with respect to the interior operator 'i' if $F_1, ..., F_n \in \mathscr{F} \Rightarrow \bigcap_{i=1}^n F_i \nsubseteq G$.

Obviously, every subset \mathscr{F} of L^X which satisfies the F. I. P. relative to G is contained in a filter relative to G.

Definition 3.16. Let L^X and L^Y be interior spaces with respect to the interior operators i_X and i_Y respectively. Then a function $f^{\to}: L^X \to L^Y$ is said to be *open* with respect to the interior operators, if for any $G \in L^X$ such that $i_X(G) = G$ implies $i_Y(f^{\to}(G)) = f^{\to}(G)$.

Definition 3.17. Let L^X and L^Y be interior spaces with respect to the interior operators i_X and i_Y respectively. Then a function $f^{\to}: L^X \to L^Y$ is said to be *continuous* with respect to the interior operators iff for each $x_{\alpha} \in \operatorname{Pt}(L^X)$ and each neighborhood V of $f^{\to}(x_{\alpha})$ with respect to the interior operator i_Y , there is a neighborhood U of x_{α} with respect to the interior operator i_X such that $f^{\to}(U) \subseteq V$.

The following result follows from Theorem 5.2.27 in [16].

Theorem 3.18. Let i_X and i_Y be two interior operators on L^X and L^Y respectively. Then a function $f^{\rightarrow}: L^X \rightarrow L^Y$ is continuous with respect to the interior operators if and only if for any filter \mathscr{F} converging on L^X with respect to the interior operator i_X implies that $f^{\rightarrow}(\mathscr{F}) = \{f^{\rightarrow}(F) \mid F \in \mathscr{F}\}$ converges on L^Y with respect to the interior operator i_Y .

In view of Theorem 5.2.9 in [16], we obtain the following:

Theorem 3.19. Let 'i ' be an interior operator on L^X and $A \in L^X$. Then $x_{\alpha} \in (i(A'))'$ iff there is a filter \mathscr{F} relative to A' such that $\mathscr{F} \to x_{\alpha}$, with respect to that interior operator 'i'.

Definition 3.20. Let $A \in L^X$. We shall call the maximal filter (with respect to partial ordering by set inclusion) \mathscr{F}_{\bowtie} relative to A as an ultrafilter relative to A. If $A = \underline{0}$, then we simply call \mathscr{F}_{\bowtie} to be an ultrafilter.

Theorem 3.21. Let 'i' be an interior operator and \mathscr{F} be a filter on L^X . Let $x_{\alpha} \in \operatorname{Pt}(L^X)$ such that $\mathscr{F} \to x_{\alpha}$ with respect to 'i'. Then $\mathscr{F} \leadsto x_{\alpha}$.

Proof. Let F be any member of \mathscr{F} . Now we consider the following two cases: Case I. Let $F' \notin \mathscr{F}$. Then, \mathscr{F} is a filter relative to F' and $\mathscr{F} \to x_{\alpha}$. So, by Theorem 3.19, $x_{\alpha} \in (i(F'))'$.

Case II. Let $F' \in \mathscr{F}$ and N be any Q-nbd at x_{α} . Then $N \in \mathscr{F}$ and hence $F' \cap N \neq \underline{0}$. Then, there exists $y_{\beta} \in F$ such that $y_{\beta}^* \in N$. This implies that $N(y) \nleq (F(y))'$ and hence $N\widehat{q}F$. Therefore, by Theorem 3.7, $x_{\alpha} \in (i(F'))'$. Thus, in either case $x_{\alpha} \in (i(F'))'$, $\forall F \in \mathscr{F}$. Hence, $\mathscr{F} \leadsto x_{\alpha}$.

The following result can be obtained from Theorem 5.2.16 in [16] and Theorem 3.21.

Theorem 3.22. Let 'i' be an interior operator and \mathscr{F}_{H} be an ultrafilter on L^{X} . Then $\mathscr{F}_{H} \hookrightarrow x_{\alpha}$ iff $\mathscr{F}_{H} \to x_{\alpha}$.

In view of Lemma 11 in [12], we have the following:

Lemma 3.23. For any ultrafilter \mathscr{F}_{n} and $A, B \in L^{X}$ such that $A \bigcup B \in \mathscr{F}_{n}$, either $A \in \mathscr{F}_{n}$ or $B \in \mathscr{F}_{n}$.

Definition 3.24. Let 'i' be an interior operator on L^X , an open cover $\mathscr C$ of an L-fuzzy set A is a collection of open sets with respect to the interior operator 'i' such that $A \subseteq \bigcup_{G \in \mathscr C} G$.

In view of Definition 5 in [12], we adopt the following definition for an interior space.

Definition 3.25. An interior space is said to be *compact* if it satisfies any of the following equivalent conditions:

- (1) Every open cover \mathscr{C} of a closed set has a finite subcover.
- (2) Every collection of closed sets \mathscr{F} satisfying the F. I. P. relative to an open set G has $\bigcap_{F \in \mathscr{F}} F \not\subseteq G$.

We now state the following lemma:

Lemma 3.26. For any $U \in \mathcal{U}^*$ and $x_{\alpha}, y_{\beta} \in Pt(L^X)$ we get

$$y_{\beta} \subseteq U(x_{\alpha}) \text{ iff } x_{\alpha} \subseteq U^{r}(y_{\beta}).$$

Proof. Since, $(U^r)^r = U$. So, we need to prove only one way implication. Here, $U^r(y_\beta) = \bigcap \{z_\gamma \mid U(z'_\gamma) \subseteq y'_\beta\}$. Let $y_\beta \subseteq U(x_\alpha)$. Then $[U(x_\alpha)]' \subseteq y'_\beta$. Let $A: X \to L$ be a mapping defined by

$$\forall z \in X, \quad A(z) = \left\{ \begin{array}{ll} \gamma & \text{if } U(z'_{\gamma}) \subseteq y'_{\beta}, \\ 0_L & \text{if } U(z'_{\gamma}) \not\subseteq y'_{\beta}. \end{array} \right.$$

Then $U^r(y_\beta) = \bigcap A$. Let $B: X \to L$ be a mapping defined by

$$\forall w \in X, \quad B(w) = \begin{cases} \eta & \text{if } U(w_{\eta}) \subseteq [U(x_{\alpha})]', \\ 0_L & \text{if } U(w_{\eta}) \not\subseteq [U(x_{\alpha})]'. \end{cases}$$

Let w be any element of X. Then $B'(w) = \eta \Rightarrow B(w) = \eta' \Rightarrow U(w'_{\eta}) \subseteq [U(x_{\alpha})]' \Rightarrow U(w'_{\eta}) \subseteq y'_{\beta} \Rightarrow A(w) = \eta$. Therefore $B' \subseteq A$ and hence $\bigcup A' \subseteq \bigcup B$. Again $b_{\mu} \subseteq B \Rightarrow U(b_{\mu}) \subseteq [U(x_{\alpha})]' \Rightarrow U(b_{\mu}) \subseteq x'_{\alpha} \Rightarrow b_{\mu} \subseteq x'_{\alpha}$. It follows that $\bigcup B \subseteq x'_{\alpha} \Rightarrow \bigcup A' \subseteq x'_{\alpha} \Rightarrow x_{\alpha} \subseteq \bigcap A$. Hence, $x_{\alpha} \subseteq U^{r}(y_{\beta})$.

Theorem 3.27. Let (L^X, \mathcal{U}) be an L-semi-uniform space and 'int' be the induced interior operator on L^X . Then the respective interior space is compact iff every ultrafilter relative to an open set with respect to 'int' is convergent.

Proof. Let the space be compact and \mathscr{F}_{n} be an ultrafilter relative to an open set G on the space. Then by Theorem 3.4, $\mathscr{F} = \{\operatorname{cl}(F) \mid F \in \mathscr{F}_{\mathsf{n}}\}$ is a collection of closed sets satisfying F. I. P. relative to the open set G. Consequently, by compactness, $\bigcap_{F \in \mathscr{F}_{\mathsf{n}}} \operatorname{cl}(F) \nsubseteq G$. This implies that there is some $x_{\alpha} \in \operatorname{Pt}(L^X)$ such that $x_{\alpha} \subseteq \bigcap_{F \in \mathscr{F}_{\mathsf{n}}} \operatorname{cl}(F)$. Thus by Theorem 3.22, we have $\mathscr{F}_{\mathsf{n}} \to x_{\alpha}$.

Conversely, let \mathscr{F} be a collection of closed sets satisfying F. I. P. relative to an open set G. Let \mathscr{F}^* be a filter relative to the open set G and containing \mathscr{F} . Then $\bigcap_{F^* \in \mathscr{F}^*} F^* \subseteq \bigcap_{F \in \mathscr{F}} F$. Let \mathscr{F}_{H} be an ultrafilter relative to the open set G. We then have,

$$\bigcap_{F_{\mathsf{H}} \in \mathscr{F}_{\mathsf{H}}} F_{\mathsf{H}} \subseteq \bigcap_{F^* \in \mathscr{F}^*} F^* \subseteq \bigcap_{F \in \mathscr{F}} F.$$
300

Let $\mathscr{F}_{\mbox{\tiny H}} \to x_{\alpha}$. Then $\mathscr{Q}(x_{\alpha}) = \{U(x_{\alpha}^*) \mid U \in \mathscr{U}\} \subseteq \mathscr{F}_{\mbox{\tiny H}}$. Now let U be any symmetric member of \mathscr{U} . Let $F_{\mbox{\tiny H}}$ be any member of $\mathscr{F}_{\mbox{\tiny H}}$. Then $U(x_{\alpha}^*) \in \mathscr{F}_{\mbox{\tiny H}}$ implies that $F_{\mbox{\tiny H}} \cap U(x_{\alpha}^*) \neq \underline{0}$. Hence there exists $y_{\beta} \subseteq F_{\mbox{\tiny H}}$ such that $y_{\beta} \subseteq U(x_{\alpha}^*)$. This further implies $x_{\alpha}^* \subseteq U^r(y_{\beta}) = U(y_{\beta})$, by Lemma 3.26. But $y_{\beta} \subseteq F_{\mbox{\tiny H}}$ implies $U(y_{\beta}) \subseteq U(F_{\mbox{\tiny H}})$. Hence, for any symmetric member U of \mathscr{U} , we get $x_{\alpha}^* \subseteq U(F_{\mbox{\tiny H}})$. Again since the collection of symmetric members of \mathscr{U} is a base for \mathscr{U} , therefore by Lemma 3.3, $x_{\alpha}^* \subseteq \operatorname{cl}(F_{\mbox{\tiny H}}) = F_{\mbox{\tiny H}}$, $\forall F_{\mbox{\tiny H}} \in \mathscr{F}_{\mbox{\tiny H}}$. Hence,

$$(3.2) x_{\alpha}^* \subseteq \bigcap_{F_{\bowtie} \in \mathscr{F}_{\bowtie}} F_{\bowtie}.$$

Now, if $x_{\alpha}^* \subseteq G$, then there is $U \in \mathscr{U}$ such that $U(x_{\alpha}^*) \subseteq G$, as G is open. But then $G \in \mathscr{F}_{\pi}$ and this contradicts the fact that \mathscr{F}_{π} is an ultrafilter relative to G. So $x_{\alpha}^* \nsubseteq G$. This implies $\bigcap_{F_{\alpha} \in \mathscr{F}_{\pi}} F_{\pi} \nsubseteq G$, by (3.2). Thus by (3.1), we have $\bigcap_{F \in \mathscr{F}} F \nsubseteq G$. Hence, the space is compact.

Definition 3.28. A filter \mathscr{F} in an L-semi-uniform space (L^X, \mathscr{U}) is said to be Cauchy if for each $U \in \mathscr{U}$, $\exists x_{\alpha} \in \operatorname{Pt}(L^X)$ and $F \in \mathscr{F}$ such that $F \subseteq U(x_{\alpha})$.

Definition 3.29. An *L*-semi-uniform space (L^X, \mathscr{U}) is said to be *complete* if and only if for every Cauchy filter \mathscr{F} relative to an open set with respect to the interior operator generated by \mathscr{U} , $\bigcap_{F \in \mathscr{F}} \operatorname{cl}(F) \neq \underline{0}$.

The following result follows from Theorem 3.22.

Theorem 3.30. An L-semi-uniform space (L^X, \mathcal{U}) is complete iff every Cauchy ultrafilter relative to an open set with respect to the interior operator generated by \mathcal{U} is convergent.

Theorem 3.31. Let (L^X, \mathscr{U}) and (L^Y, \mathscr{V}) be L-semi-uniform spaces and let f^{\rightarrow} : $L^X \rightarrow L^Y$ be L-semi-uniformly continuous. If \mathscr{F} is a Cauchy filter in (L^X, \mathscr{U}) , then $f^{\rightarrow}(\mathscr{F})$ is a Cauchy filter in (L^Y, \mathscr{V}) .

Proof. Let \mathscr{F} be a Cauchy filter on L^X . Let $V \in \mathscr{V}$. Since $f^{\to}: L^X \to L^Y$ is L-semi-uniformly continuous, therefore there exists $U \in \mathscr{U}$ such that $\widehat{f^{\to}}(U) \subseteq V$. Now, \mathscr{F} is a Cauchy filter on L^X . Hence, there exists $F \in \mathscr{F}$ and $x_{\alpha} \in \operatorname{Pt}(L^X)$ such that $F \subseteq U(x_{\alpha})$. Then $f^{\to}(F) \subseteq V(f^{\to}(x_{\alpha}))$. Hence, $f^{\to}(\mathscr{F})$ is a Cauchy filter on (L^Y, \mathscr{V}) .

Theorem 3.32. Let (L^X, \mathscr{U}) and (L^Y, \mathscr{V}) be two L-semi-uniform spaces and let $f^{\rightarrow}: L^X \rightarrow L^Y$ be an L-semi-uniformly isomorphism. Then (L^X, \mathscr{U}) is complete iff (L^Y, \mathscr{V}) is complete.

Proof. Let (L^Y, \mathscr{V}) be complete and \mathscr{F} be a Cauchy filter on L^X relative to an open set G. Let $V \in \mathscr{V}$. Then by Theorem 3.31, $f(\mathscr{F})$ is a Cauchy filter on (L^Y, \mathscr{V}) . Again, since f^{\leftarrow} is L-semi-uniformly continuous, therefore by Theorem 2.14, f^{\leftarrow} is continuous and so f^{\rightarrow} is open. Hence, $f^{\rightarrow}(G)$ is open in L^Y . Also, as $G \subseteq f^{\leftarrow}(f^{\rightarrow}(G))$ and $G \notin \mathscr{F}$, therefore $f^{\rightarrow}(\mathscr{F})$ is a Cauchy filter relative to the open set $f^{\rightarrow}(G)$. Thus, $f^{\rightarrow}(\mathscr{F})$ is convergent in (L^Y, \mathscr{V}) , it being complete. But by Corollary 2.15, f^{\rightarrow} is a homeomorphism. Consequently by Theorem 3.18, \mathscr{F} converges in (L^X, \mathscr{U}) . Hence, (L^X, \mathscr{U}) is complete.

Definition 3.33. Let (L^X, \mathcal{U}) be an L-semi-uniform space and $A \in L^X$. Let for any $U \in \mathcal{U}, \ U_A : L^X \to L^X$ be a mapping such that

$$U_A(x_{\alpha}) = \left\{ \begin{array}{ll} U(x_{\alpha}) & \text{if } x_{\alpha} \subseteq A, \\ \underline{0} & \text{if } x_{\alpha} \not\subseteq A. \end{array} \right.$$

Then $\mathscr{U}_A = \{U_A \mid U \in \mathscr{U}\}\$ is an L-semi-uniformity on A, which we call a $sub\ L$ -semi-uniformity on A and (A, \mathscr{U}_A) to be the subspace. \mathscr{U}_A is called open or closed $sub\ L$ -semi-uniformity provided $A = \operatorname{int}_{\mathscr{U}_A}(A)$ or $A = (\operatorname{int}_{\mathscr{U}_A}(A'))'$ respectively, where $\operatorname{int}_{\mathscr{U}_A}$ is the interior operator generated by \mathscr{U}_A .

Theorem 3.34. Every closed sub L-semi-uniformity in a complete L-semi-uniform space is complete.

Proof. Let (L^X, \mathscr{U}) be a complete L-semi-uniform space and $A \in L^X$ such that $A = (\operatorname{int}_{\mathscr{U}}(A'))'$, where $\operatorname{int}_{\mathscr{U}}$ is the interior operator generated by \mathscr{U} . Let $\mathscr{F}_{\mathfrak{n}} = \{F \mid F \subseteq A\}$ be a Cauchy ultrafilter relative to an open set B with respect to $\operatorname{int}_{\mathscr{U}_A}$, where $\operatorname{int}_{\mathscr{U}_A}$ is the interior operator generated by \mathscr{U}_A . Now if $B' \in \mathscr{F}_{\mathfrak{n}}$, then from the definition of $\mathscr{F}_{\mathfrak{n}}$, $B' \subseteq A$. But $B' \subseteq A$ implies $A' \subseteq B$ and consequently, $A' \notin \mathscr{F}_{\mathfrak{n}}$, as $\mathscr{F}_{\mathfrak{n}}$ is a filter relative to B. Also if, $B' \notin \mathscr{F}_{\mathfrak{n}}$, then $A' \notin \mathscr{F}_{\mathfrak{n}}$. Thus, in either case $\mathscr{F}_{\mathfrak{n}}$ is an ultrafilter in (L^X, \mathscr{U}) relative to A'. Now, since for any $U \in \mathscr{U}$ $U_A \subseteq U$, therefore $\mathscr{F}_{\mathfrak{n}}$ is also Cauchy in (L^X, \mathscr{U}) . Thus, $\mathscr{F}_{\mathfrak{n}}$ is a Cauchy ultrafilter in (L^X, \mathscr{U}) relative to the open set A' and consequently there exists $x_{\alpha} \in \operatorname{Pt}(L^X)$ such that $\mathscr{F}_{\mathfrak{n}} \to x_{\alpha}$. But as $A = (\operatorname{int}_{\mathscr{U}}(A'))'$, so by Theorem 3.19, $x_{\alpha} \in A$. Hence, (A, \mathscr{U}_A) is complete.

Definition 3.35. An L-semi-uniform space (L^X, \mathcal{U}) is said to be totally bounded if for any $U \in \mathcal{U}$ there is a finite $A \subseteq Pt(L^X)$ such that

$$\underline{1} = U(A) = \bigcup \{ U(x_{\alpha}) \mid x_{\alpha} \in A \}.$$

Theorem 3.36. In a totally bounded space (L^X, \mathcal{U}) , every ultrafilter is a Cauchy filter.

Proof. Let \mathscr{F}_{κ} be an ultrafilter and $U \in \mathscr{U}$. By totally boundedness there is a finite $A \subseteq Pt(L^X)$ such that $\underline{1} = U(A) = \bigcup \{U(x_{\alpha}) \mid x_{\alpha} \in A\}$. But as $\underline{1} \in \mathscr{F}_{\kappa}$, therefore by Lemma 3.23, $U(x_{\alpha}) \in \mathscr{F}_{\kappa}$, for some $x_{\alpha} \in A$.

Theorem 3.37. Let (L^X, \mathcal{U}) be an L-semi-uniform space. Then the space is compact iff (i) (L^X, \mathcal{U}) is totally bounded and (ii) (L^X, \mathcal{U}) is complete.

Proof. Let (L^X, \mathcal{U}) be a compact space.

- (i) Let $U \in \mathcal{U}$ and 'cl' be the closure operator generated by \mathcal{U} . Then $\{\operatorname{int}(U(x_{\alpha})) \mid x_{\alpha} \in \operatorname{Pt}(L^X)\}$ is an open cover of $\underline{1}$. Since $\operatorname{cl}(\underline{1}) = \underline{1}$, therefore by compactness, for this open cover there is a finite $A \subseteq \operatorname{Pt}(L^X)$ such that $\underline{1} = \bigcup \{\operatorname{int}(U(x_{\alpha})) \mid x_{\alpha} \in A\}$. Hence (L^X, \mathcal{U}) is totally bounded.
 - (ii) Follows from Theorems 3.27 and 3.30.

Conversely, if the space is totally bounded and complete, then, by Theorems 3.36, 3.30 and 3.27 the space is compact.

References

- G. Artico and R. Moresco, Fuzzy proximities and totally bounded fuzzy uniformities, J. Math. Anal. Appl. 92 (1984) 320–337.
- [2] B. Batíková, Completion of semi-uniform spaces, Appl. Categor. Struct. 15 (2007) 483-491.
- [3] E. Čech, Topological Space, Interscience, New York, 1966.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [5] P. Fletcher and W. Lindgren, Quasi-uniform Spaces, Marcel Dekker INC., 1982.
- [6] D. Hazarika and D. K. Mitra, L-locally quasi-uniform spaces, J. Indian Acad. Math. 31(2) (2009) 317–324.
- [7] D. Hazarika and D. K. Mitra, On L-semi-pseudo metrization, Int. Math. Forum 5(23) (2010) 1141–1148.
- [8] D. Hazarika and D. K. Mitra, On some generalised classes of L-valued uniform structures, Abstracts (eds. P. Cintula, E. P. Klement and L. N. Stout), 31st Linz Seminar on Fuzzy Set Theory: Lattice Valued Logic and its Applications (9-13 February, 2010) 87–90, http://www.flll.uni-linz.ac.at/div/research/linz2010/LINZ2010Abstracts.pdf.
- [9] T. L. Hicks and S. M. Huffman, A note on locally quasi-uniform spaces, J. Canad. Math. Bull. 19(4) (1976) 501–504.
- [10] U. Höhle, Probabilistic uniformization of fuzzy topologies, Fuzzy Sets and Systems 1 (1978) 311–332.
- [11] B. Hutton, Uniformities of fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977) 559–571.
- [12] B. Hutton, Products of fuzzy topological spaces, Topology Appl. 11 (1980) 59–67.
- [13] A. K. Katsaras, On fuzzy uniform spaces, J. Math. Anal. Appl. 101 (1984) 97-113.
- [14] W. Kotzé, Uniform spaces, in Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, 1999.
- [15] W. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974) 231–240.
- [16] Y. M. Liu and M. K. Luo, Fuzzy Topology, Advances in Fuzzy Systems Applications and Theory, vol. 9, World Scientific, 1997.
- [17] R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981) 370-385.
- [18] H. C. Ming, Fuzzy topological spaces, J. Math. Anal. Appl. 110 (1985) 141–178.
- $[19]\,$ D. K. Mitra and D. Hazarika, L-locally uniform spaces, J. Fuzzy Math. 18(2) (2010) 505–516.
- [20] H. W. Pu and H. H. Pu, Semi-quasi-uniform spaces, J. Portugal. Math. 33 (1974) 177–184.
- [21] S. E. Rodabaugh and E. Klement (eds.), Topological and Algebraic Structures in Fuzzy Sets, A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, vol. 20, Kluwer Academic Publishers(Boston/ Dordrecht/ London), 2003.
- [22] J. Williams, Locally uniform spaces, Trans. Amer. Math. Soc. 168 (1972) 435–469.

D. HAZARIKA (debajit@tezu.ernet.in)

Department of Mathematical Sciences, Tezpur University, Napam - 784028, Assam, India

D. K. MITRA (dkrmitra@gmail.com)

Girijananda Institute of Management and Technology (GIMT), Tezpur, Assam, India