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Abstract. Traditional reliability studies assume that transition rates
or probabilities in Markov models are accurate. However, in reality, reli-
ability data is either insufficient or mixed with uncertainty. The purpose
of this paper is to evaluate the fuzzy reliability of condensate system. In
this paper, the fuzzy Kolmogorov’s differential equations are developed by
using fuzzy Markov model of condensate system and to evaluate the fuzzy
reliability of condensate system, the fuzzy Kolmogorov’s differential equa-
tions are solved by an existing analytical method for solving nth order
fuzzy linear differential equations.
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1. Introduction

The conventional reliability of a system is defined as the probability that a sys-
tem performs its function properly during a predefined period of time under the
condition that the system behavior is fully characterized in the context of proba-
bility measures. In various engineering problems, the binary state assumption in
conventional reliability theory is not extensively acceptable. Since 1965, a higher
importance in scientific environment has been given to fuzzy theory due to L. A.
Zadeh, when he presented the basic concepts of fuzzy set theory [13]. This theory
can handle all the possible states between a fully working state and completely failed
state. Thus binary state assumption in conventional reliability is replaced by fuzzy
state assumption.

Kumar et al. [9] described a method of fuzzy Markov model for determination
of fuzzy state probabilities of generating units including the effect of maintenance
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scheduling. Binh and Khoa [2] discussed the application of fuzzy markov in calcu-
lating reliability of power systems. Chongshan [4] calculated fuzzy availability of
a repairable consecutive-2-out-of-3: F-system. Kumar et al. [10] calculated fuzzy
reliability and fuzzy availability of the serial process in butter-oil processing plant.
Uprety and Zaheeruddin [12] evaluated the fuzzy reliability of gracefully degradable
computing systems. Kumar and Kumar [7] computed the fuzzy reliability of the
stainless steel utensil manufacturing unit for the constant failure and repair rates.
Liu and Huang [11] introduced a modified fuzzy multi-state system availability as-
sessment approach to compute the system availability under the fuzzy user demand.
Aminifar et al. [1] proposed reliability modeling of PMU and the Markov process is
employed to analyze the proposed model. Kumar and Kumar [8] used the concept
of fuzzy approach in the evaluation of the reliability of biscuit manufacturing plant.

To evaluate the fuzzy reliability using fuzzy Markov model there is need to solve
fuzzy Kolmogorov’s differential equations. To the best of our knowledge till now
there are only two analytical methods for solving nth order fuzzy linear differential
equations, introduced by Buckley and Feuring [3]. Their first method of solution
was to fuzzify the crisp solution and then checked to see if it satisfies the differential
equation with fuzzy initial conditions and the second method was the reverse of
the first method, in that they first solved the fuzzy initial value problem and then
checked to see if it defines a fuzzy function.

Gupta and Tewari [5] used crisp Markov model to evaluate the crisp reliability
of condensate system. In this paper, a fuzzy Markov model is constructed with the
help of an existing crisp Markov model of condensate system and to evaluate the
fuzzy reliability of condensate system, the fuzzy Kolmogorov’s differential equations,
obtained by using the constructed fuzzy Markov model, are solved with the help of
existing method [3].

This paper is organized as follows. In Section 2, some basic definitions and arith-
metic operations between α-cut of trapezoidal fuzzy numbers are presented. In Sec-
tion 3, the existing method for solving nth order fuzzy linear differential equations
is presented. In Section 4, the fuzzy Kolmogorov’s differential equations, developed
by using fuzzy Markov model of condensate system, are solved with the help of ex-
isting method and the obtained solution is used to evaluate the fuzzy reliability of
condensate system. The conclusion is discussed in Section 5.

2. Preliminaries

In this section, some basic definitions and arithmetic operations between α-cut of
trapezoidal fuzzy numbers are presented.

2.1. Basic definitions. In this section, some basic definitions are presented.

Definition 2.1 ([6]). A fuzzy number Ã = (a, b, c, d) is said to be a trapezoidal
fuzzy number if its membership function is given by

µÃ(x)=


(x−a)
(b−a) , a ≤ x < b,

1, b ≤ x ≤ c
(x−d)
(c−d) , c < x ≤ d,

0, otherwise.
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Definition 2.2 ([6]). A trapezoidal fuzzy number Ã = (a, b, c, d) is said to be zero
trapezoidal fuzzy number if and only if a = 0, b = 0, c = 0, d = 0.

Definition 2.3 ([6]). An α-cut of a fuzzy number Ã is defined as a crisp set Aα =
{x : µÃ(x) ≥ α, x ∈ X}, where α ∈ [0, 1]. For a trapezoidal fuzzy number Ã =
(a, b, c, d) the α-cut is Aα = [a + (b− a)α, d− (d− c)α].

Definition 2.4 ([6]). Two α-cuts Aα = [a1, b1] and Bα = [a2, b2] are said to be
equal i.e., Aα = Bα if and only if a1 = a2 and b1 = b2.

2.2. Arithmetic operations between α-cut of trapezoidal fuzzy numbers.
In this section, some arithmetic operations between α-cut of trapezoidal fuzzy num-
bers are presented.

Let A = [a1, b1] and B = [a2, b2] be two α-cuts of trapezoidal fuzzy numbers Ã

and B̃ respectively. Then
(i) A + B = [a1 + a2, b1 + b2]
(ii) A−B = [a1 − b2, b1 − a2]

(iii) λA=
{

[λa1, λb1], λ ≥ 0
[λb1, λa1], λ ≤ 0

(iv) AB = [a, b], where

a = minimum(a1a2, a1b2, a2b1, b1b2) and b = maximum(a1a2, a1b2, a2b1, b1b2).

3. Existing method

Buckley and Feuring [3] introduced two analytical methods for solving nth order
fuzzy linear differential equations. In this section, one of these existing methods, for
solving nth order fuzzy linear differential equations, is presented.

The solution of nth order fuzzy linear differential equation
n∑

j=0

ãj ỹ
(j) = g̃(x), ỹ(j)(0) = γ̃j , j = 0, 1, ..., n− 1 (1)

where, ỹ(j) = dj ỹ
dxj and ãj are trapezoidal fuzzy numbers, can be obtained by using

the following steps:

Step 1: Find the α-cut
[aj(1)(x, α), aj(2)(x, α)], [y(j)

1 (x, α), y(j)
2 (x, α)], [γj(1)(0, α), γj(2)(0, α)]

and [g(x, α), g(x, α)], corresponding to fuzzy parameters ãj , ỹ
(j), γ̃j and g̃(x) respec-

tively.
Step 2: Convert the nth order fuzzy linear differential equation (1), into the follow-
ing nth order linear differential equation:

n∑
j=0

[aj(1)(x, α), aj(2)(x, α)][y(j)
1 (x, α), y(j)

2 (x, α)] = [g(x), g(x)],

[y(j)
1 (0, α), y(j)

2 (0, α)] = [γj(1)(0, α), γj(2)(0, α)], j = 0, 1, ..., n−1 (2)
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Step 3: Using Definition 2.4 and Section 2.2, the fuzzy differential equation, ob-
tained in Step 2, can be split into following ordinary differential equations:

n∑
j=0

Minimum
(
aj(1)(x, α)y(j)

1 (x, α), aj(1)(x, α)y(j)
2 (x, α),

aj(2)(x, α)y(j)
1 (x, α), aj(2)(x, α)y(j)

2 (x, α)
)

n∑
j=0

Maximum
(
aj(1)(x, α)y(j)

1 (x, α), aj(1)(x, α)y(j)
2 (x, α),

aj(2)(x, α)y(j)
1 (x, α), aj(2)(x, α)y(j)

2 (x, α))

y
(j)
1 (0, α) = γj(1)(0, α), y(j)

2 (0, α) = γj(2)(0, α)

Step 4: Solve the ordinary differential equations, obtained in Step 3, to find the
values of y1(x0, α) and y2(x0, α) corresponding to x = x0, where x0 is any real
number.
Step 5: Check that [y1(x0, α), y2(x0, α)] defines the α-cut of a fuzzy number or not
i.e., for the values of y1(x0, α) and y2(x0, α), the following conditions are satisfied
or not.

(i) y1(x0, α) is monotonically increasing function for α ∈ [0, 1]
(ii) y2(x0, α) is monotonically decreasing function for α ∈ [0, 1]
(iii) y1(x0, 1) = y2(x0, 1)

Case 1: If [y1(x0, α), y2(x0, α)] defines the α-cut of a fuzzy number then the fuzzy
solution ỹ(x0) of fuzzy differential equation (1) exist and [y1(x0, α), y2(x0, α)] repre-
sents the α-cut corresponding to fuzzy solution ỹ(x0).

Case 2: If [y1(x0, α), y2(x0, α) does not define the α-cut of a fuzzy number then the
fuzzy solution ỹ(x0) of fuzzy differential equation (1) does not exist.

4. Case study

Gupta and Tewari [5] used Markov model with crisp parameters to evaluate the
crisp reliability of condensate system. In this paper, the crisp parameters of the same
Markov model are replaced by fuzzy parameters and then the fuzzy Kolmogorov’s
differential equations, obtained with the help of fuzzy Markov model, are used to
evaluate the fuzzy reliability of condensate system.

4.1. Fuzzy Markov modeling of condensate system. Condensate system helps
the power plants to function efficiently and keeps them in continuous operation
for optimal performance. Condensate system consists of six sub-systems namely
A,B, C, D, E and F in series. Fuzzy Markov model of condensate system is shown
in Figure 1.
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1. Sub-system A consists of condenser. It is single unit arranged in series. Failure
of this unit causes the complete failure of the system.
2. Sub-system B consists of gland steam condenser arranged in series. Failure of
this unit causes the complete failure of the system.
3. Sub-system C consists of one drain cooler arranged in series. Failure of this unit
causes the complete failure of the system.
4. Sub-system D consists of three low pressure heaters arranged in series. Failure
of any one unit causes the complete failure of the system.
5. Sub-system E consists of deaerator arranged in series. Failure of this unit causes
the complete failure of the system.
6. Sub-system F consists of two condensate extraction pumps arranged in parallel;
one operative and other in cold standby. Complete failure of the system will occur
when both failed at a time.

4.2. Assumptions. In this section, the assumptions that are used for analyzing the
fuzzy reliability of condensate system are presented.
1. The states of all components are mutually independent (statistically indepen-
dent).
2. Components do not fail simultaneously and the probability that two or more
failed components could be repaired and switched to operation at the same time is
zero.
3. When one component fails, it is instantaneously replaced by one of the standby
subsystems if there is one.
4. A repaired system is as good as new, performance wise, for a specified duration
and standby sub-systems if any are of the same nature and capacity as that of active
systems.
5. Failure rates and repair rates are represented by trapezoidal fuzzy numbers and
are independent with each other.
6. At any given time, the system is either in operating state or in the failed state.
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4.3. Notation. In this section, notation that is used for analyzing the fuzzy relia-
bility of condensate system are presented.
© : Indicates the system is in full working state.

: Indicates the system is in failed state.
A,B,C, D, E, F : Represent full working states of sub-systems.
F1 : Denote that the subsystem F is working on standby unit.
a, b, c, d, e, f : Represent failed states of sub-systems.
P̃0(t) : Fuzzy probability of the system working with full capacity at

time t.
P̃1(t) : Fuzzy probability of the system in cold standby state.
P̃2(t) to P̃12(t) : Fuzzy probability of the system in failed state.
φ̃i, i = 1 to 6 : Fuzzy failure rates of sub-systems A,B,C, D, E and F

respectively.
λ̃i, i = 1 to 6 : Fuzzy repair rates of sub-systems A,B,C, D, E and F

respectively.
d/dt : Represents the derivative with respect to time t.

4.4. Data. The fuzzy failure rates and fuzzy repair rates, represented by trapezoidal
fuzzy numbers, that are assumed for evaluating the fuzzy reliability of condensate
system are shown in Table 1.

Table 1: Fuzzy failure rate and fuzzy repair rate for the different sub-systems of condensate system

Fuzzy failure rate Fuzzy repair rate

φ̃1 =(0.00615,0.00684,0.00836,0.00919) λ̃1 =(0.243,0.27,0.33,0.363)

φ̃2 =(0.00818,0.00909,0.01111,0.01222) λ̃2 =(0.122,0.135,0.165,0.182)

φ̃3 =(0.00332,0.00369,0.00451,0.00496) λ̃3 =(0.284,0.315,0.385,0.424)

φ̃4 =(0.00616,0.00684,0.00836,0.00919) λ̃4 =(0.203,0.225,0.275,0.303)

φ̃5 =(0.00267,0.00297,0.00363,0.00399) λ̃5 =(0.151,0.168,0.206,0.226)

φ̃6 =(0.0243,0.027,0.033,0.0363) λ̃6 =(0.223,0.248,0.303,0.333)

4.5. Fuzzy Kolmogorov’s differential equations for the condensate system.
In this section, fuzzy Kolmogorov’s differential equations are developed by using
fuzzy Markov model of the condensate system.

Fuzzy Kolmogorov’s differential equations, developed by using fuzzy Markov model
of condensate system, shown in Figure 1, are:

dP̃0(t)
dt ⊕δ̃1P̃0(t) = λ̃1P̃2(t)⊕λ̃2P̃3(t)⊕λ̃3P̃4(t)⊕λ̃4P̃5(t)⊕λ̃5(t)P̃6(t)⊕λ̃6(t)P̃1(t) (3)

dP̃1(t)
dt ⊕ δ̃2P̃1(t) = λ̃1P̃7(t)⊕ λ̃2P̃8(t)⊕ λ̃3P̃9(t)⊕ λ̃4P̃10(t)⊕ λ̃5P̃11(t)

⊕λ̃6P̃12(t)⊕φ̃6P̃0(t) (4)
dP̃1+i(t)

dt ⊕λ̃iP̃1+i(t) = φ̃iP̃0(t), i = 1, 2, 3, 4, 5 (5)
dP̃6+i(t)

dt ⊕λ̃iP̃6+i(t) = φ̃iP̃1(t), i = 1, 2, 3, 4, 5, 6 (6)

where δ̃1 = φ̃1 ⊕ φ̃2 ⊕ φ̃3 ⊕ φ̃4 ⊕ φ̃5 ⊕ φ̃6 and δ̃2 = φ̃1 ⊕ φ̃2 ⊕ φ̃3 ⊕ φ̃4 ⊕ φ̃5 ⊕ φ̃6 ⊕ λ̃6

with fuzzy initial conditions
P̃0(0)=(0.95, 0.955, 0.965, 0.97), P̃1(0)=(0.004, 0.0045, 0.0055, 0.006) and P̃j(0)=(0, 0, 0, 0),
j=2 to 12.
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4.6. Solution of fuzzy Kolmogorov’s differential equations of condensate
system. The solution of fuzzy Kolmogorov’s differential equations of condensate
system, developed in Section 4.5, is obtained by using the existing method [3], dis-
cussed in Section 3, for α = 0, 0.2, 0.4, 0.6, 0.8, 1 at t = 48 and the solution is shown
in Table 2.
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4.7. Fuzzy reliability evaluation of condensate system. In this section, the
results of fuzzy Kolmogorov’s differential equations, shown in Table 2, are used to
evaluate the fuzzy reliability of condensate system.

Using the fuzzy probabilities for the condensate system, shown in Table 2, the
α-cuts corresponding to fuzzy reliability R̃(t) = p̃1(t) ⊕ p̃2(t) of condensate system
are computed for α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 at t = 48 and are
shown in Table 3.

Table 3: Fuzzy reliability of condensate system at t = 48

Fuzzy Reliability R̃(t)
−→
α ↓ R1(t, α) R2(t, α)

0 0.820536 0.839315

0.1 0.820978 0.838825

0.2 0.821421 0.838335

0.3 0.821863 0.837845

0.4 0.822306 0.837356

0.5 0.822748 0.836866

0.6 0.823191 0.836376

0.7 0.823633 0.835887

0.8 0.824076 0.835397

0.9 0.824518 0.834907

1 0.824961 0.834418

The variation in reliability of condensate system at t = 48 corresponding to different
presumption levels is shown in Figure 2.

Also, the reliability curves, shown in Figure 3 to Figure 5, represents the vari-
ation in reliability of condensate system with time at presumption level 0, 0.6, 1
respectively.
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5. Conclusions

The fuzzy reliability of condensate system is evaluated by solving the fuzzy Kol-
mogorov’s differential equations, developed by fuzzy Markov model of the condensate
system. The variation in reliability of condensate system corresponding to different
presumption levels is shown with the help of table and graph. Also, the reliability
curves are shown to represent the variation in reliability of condensate system with
time at different presumption levels.

Acknowledgements. The authors would like to thank to the editor and anony-
mous referees for various suggestions which have led to an improvement in both the
quality and clarity of the paper. I, Dr. Amit Kumar, want to acknowledge the ado-
lescent inner blessings of Mehar. I believe that Mehar is an angel for me and without
Mehar’s blessing it was not possible to think the idea proposed in this paper. Mehar
is a lovely daughter of Parmpreet Kaur (Research Scholar under my supervision)

References

[1] F. Aminifar, S. B. Shouraki, M. F. Firuzabad and M. Shahidehpour, Reliability modeling of

PMUs using fuzzy sets, IEEE T. Power Deliver. 25 (2010) 2384–2391.
[2] P. T. T. Binh and T. Q. D. Khoa, Application of fuzzy markov in calculating reliability

of power systems, Proceedings of IEEE PES Transmission and Distribution Conference and
Exposition Latin America, Venezuela (2006) 1–4.

[3] J. J. Buckley and T. Feuring, Fuzzy initial value problem for Nth-order fuzzy linear differential

equations, Fuzzy Sets and Systems 121 (2001) 247–255.
[4] G. Chongshan, Fuzzy availability analysis of a repairable consecutive-2-out-of-3:F System,

Proceedings of IEEE International Conference on Grey Systems and Intelligent Services (2009)

434–437.
[5] S. Gupta and P. C. Tewari, Simulation model for stochastic analysis and performance evalu-

ation of condensate system of a thermal power plant, Bangladesh J. Sci. Ind. Res. 44 (2009)

387–398.
[6] A. Kaufmann and M. M. Gupta, Introduction to Fuzzy Arithmetics: Theory and Applications,

Van Nostrand Reinhold, New York (1985).
[7] K. Kumar and P. Kumar, Mathematical modeling and analysis of stainless steel utensil

manufacturing unit using fuzzy reliability, International Journal of Engineering Science and

Technology 2 (2010) 2370–2376.
[8] K. Kumar and P. Kumar, Fuzzy availability modeling and analysis of biscuit manufacturing

plant: a case study, International Journal of Systems Assurance Engineering and Management
2 (2011) 193–204.

[9] D. Kumar, P. K. Sadhu and R. Chakrabarti, Fuzzy markov model for determination of fuzzy

state probabilities of generating units including the effect of maintenance scheduling, IEEE

Trans. Power Syst. 20 (2005) 2117–2124.
[10] K. Kumar, J. Singh and P. Kumar, Fuzzy reliability and fuzzy availability of the serial process

in butter oil processesing plant, J. Math. Stat. 5 (2009) 65–71.
[11] Y. Liu and H. Z. Huang, Reliability assessment for fuzzy multi-state systems, Internat. J.

Systems Sci. 41 (2010) 365–379.

[12] I. Uprety and Zaheeruddin, Fuzzy reliability of gracefully degradable computing systems,

Proceedings of International Conference on Methods and Models on Computer Science (2009)
1–4.

[13] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.

290



Amit Kumar et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 2, 281–291

Amit Kumar (amit rs iitr@yahoo.com)
School of Mathematics and Computer Applications, Thapar University, Patiala-
147004, India

Sneh Lata (sneh.thaparian@gmail.com)
School of Mathematics and Computer Applications, Thapar University, Patiala-
147004, India

291


	 Reliability evaluation of condensate system using fuzzy Markov model. By 

