Annals of Fuzzy Mathematics and Informatics Volume 4, No. 2, (October 2012), pp. 225–233 ISSN 2093–9310 http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

\mathcal{N} -structures applied to ideals in semigroups

SANG TAE JUNG, TAE SAM KIM, SANG WOOK YUN

Received 30 November 2011; Revised 26 January 2012; Accepted 1 February 2012

ABSTRACT. The notions of (regular) \mathcal{N} -subsemigroups, left (right) \mathcal{N} -ideals, and (generalized) \mathcal{N} -bi-ideals are introduced, and several properties are investigated. Conditions for an \mathcal{N} -structure to be a regular \mathcal{N} -subsemigroup are provided, and conditions for a generalized \mathcal{N} -bi-ideal to be an \mathcal{N} -bi-ideal are considered. Characterizations of a regular \mathcal{N} -subsemigroup, a left (right) \mathcal{N} -ideal and a generalized \mathcal{N} -bi-ideal are displayed.

2010 AMS Classification: 20M12, 08A72

Keywords: (Regular) \mathcal{N} -subsemigroup, Left (right) \mathcal{N} -ideal, (Generalized) \mathcal{N} -bi-ideal.

Corresponding Author: Sang Wook Yun (yswig@hanmail.net)

1. INTRODUCTION

 ${f A}$ (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_A: X \to \{0,1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval [0, 1] and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval [0, 1]. Hur et al. [2] studied fuzzy sub-semigroups and fuzzy ideals with operators in semigroups, and Kim et al [7] discussed ideal theory of sub-semigroups based on the bipolar valued fuzzy set theory. Shabir and Ahmad [9] applied the soft set theory to ternary semigroups. Aslam et al. [1] investigated properties of rough (m, n)-bi-ideals and generalized rough (m, n)-bi-ideals in semigroups. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [5] introduced and used a new function which is called negative-valued function, and constructed \mathcal{N} -structures. They discussed \mathcal{N} -subalgebras and \mathcal{N} -ideals in BCK/BCI-algebras. The important achievement of the paper [5] was that one can deal with positive and negative information simultaneously by combining ideas in [5] and already well known positive information. Jun et al. discussed the \mathcal{N} -structure in hyper *BCK*-algebras, subtraction algebras and *BCH*-algebras (see [3, 4, 6]).

In this article, we introduce the notion of (regular) \mathcal{N} -subsemigroups, left (right) \mathcal{N} -ideals, and (generalized) \mathcal{N} -bi-ideals. We provide conditions for an \mathcal{N} -structure to be a regular \mathcal{N} -subsemigroup, and for a generalized \mathcal{N} -bi-ideal to be an \mathcal{N} -bi-ideal. We discuss characterizations of a regular \mathcal{N} -subsemigroup, a left (right) \mathcal{N} -ideal and a generalized \mathcal{N} -bi-ideal.

2. Preliminaries

Let S be a semigroup. For any subsets A and B of S, the multiplication of A and B is defined as follows:

$$AB = \{ab \in S \mid a \in A \text{ and } b \in B\}.$$

An element $x \in S$ is said to be *regular* if there exists an element $a \in S$ such that x = xax. A semigroup S is said to be *regular* if every element of S is regular. For any $x \in S$, we write

$$R_x := \{a \in S \mid x = xax\}.$$

A nonempty set subset A of S is called a *subsemigroup* of S if $AA \subseteq A$. A nonempty set subset A of S is called a *left (right) ideal* of S if $SA \subseteq A$ ($AS \subseteq A$). Further, A is called a two-sided ideal of S if it is both a left and a right ideal of S. A subsemigroup A of S is called a *bi-ideal* of S if $ASA \subseteq A$. A nonempty set subset A of S is called a *generalized bi-ideal* of S if $ASA \subseteq A$. For the undefined notions we refer to the book [8].

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\bigvee \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$
$$\bigwedge \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

Denote by $\mathcal{F}(S, [-1, 0])$ the collection of functions from a set S to [-1, 0]. We say that an element of $\mathcal{F}(S, [-1, 0])$ is a *negative-valued function* from S to [-1, 0] (briefly, \mathcal{N} -function on S). By an \mathcal{N} -structure we mean an ordered pair (S, f) of S and an \mathcal{N} -function f on S. For any \mathcal{N} -structure (S, f) and $\alpha \in [-1, 0]$, the set

$$C(f;\alpha) := \{x \in S \mid f(x) \le \alpha\}$$

is called the closed support of (S, f) related to α .

3. \mathcal{N} -subsemigroups

In what follows, let S denote a semigroup unless otherwise specified.

Let (S, f) and (S, g) be two \mathcal{N} -structures. The \mathcal{N} -product of (S, f) and (S, g) is an \mathcal{N} -structure $(S, f \circ g)$ in which

$$(f \,\tilde{\circ}\, g)\,(x) = \begin{cases} \bigwedge_{\substack{x=ab \\ 0 \\ \end{array}}} \{ \bigvee \{f(a), g(b)\} \} & \text{if } x = ab \text{ for some } a, b \in S \\ 0 & \text{otherwise.} \end{cases}$$

Obviously, the operation $\tilde{\circ}$ is associative. For a nonempty subset A of S, the *characteristic* \mathcal{N} -function κ_A is defined as follows:

$$\kappa_A : S \to [-1, 0], \quad x \mapsto \begin{cases} -1 & \text{if } x \in A, \\ 0 & \text{otherwise} \end{cases}$$

Definition 3.1. By an \mathcal{N} -subsemigroup of S we mean an \mathcal{N} -structure (S, f) in which f satisfies:

(3.1)
$$(\forall x, y \in S) \left(f(xy) \le \bigvee \{ f(x), f(y) \} \right).$$

Example 3.2. Let $S = \{a, b, c, x, y, z\}$ be a semigroup with the following multiplication table:

		b	c	x	y	z
a	a	a	a	x	a	a
b	a	b	b	x	b	b
c	a	b	c	x	y	y
x	a	a	x	x	x	x
y	a	b	c	x	y	y
z	a	b	c	x	y	z

Let (S, f) be an \mathcal{N} -structure in which f is defined by

$$f = \begin{pmatrix} a & b & c & x & y & z \\ -0.9 & -0.7 & -0.4 & -0.5 & -0.2 & -0.1 \end{pmatrix}.$$

Then (S, f) is an \mathcal{N} -subsemigroup of S.

Theorem 3.3. An \mathcal{N} -structure (S, f) is an \mathcal{N} -subsemigroup of S if and only if the nonempty closed support of (S, f) related to α is a subsemigroup of S for all $\alpha \in [-1, 0]$.

Proof. Let $\alpha \in [-1,0]$ be such that $C(f;\alpha) \neq \emptyset$. Let $x, y \in C(f;\alpha)$. Then $f(x) \leq \alpha$ and $f(y) \leq \alpha$. It follows from (3.1) that $f(xy) \leq \bigvee \{f(x), f(y)\} \leq \alpha$ so that $xy \in C(f,\alpha)$. Hence $C(f,\alpha)$ is a subsemigroup of S.

Conversely, assume that the nonempty closed support of (S, f) related to α is a subsemigroup of S for all $\alpha \in [-1, 0]$. If there exist $a, b \in S$ such that

$$f(ab) > \beta = \bigvee \{f(a), f(b)\}$$

then $a, b \in C(f, \beta)$ but $ab \notin C(f, \beta)$. This is a contradiction, and so

$$f(xy) \le \bigvee \{f(x), f(y)\}$$

for all $x, y \in S$. Therefore (S, f) is an \mathcal{N} -subsemigroup of S.

Theorem 3.4. An \mathcal{N} -structure (S, f) is an \mathcal{N} -subsemigroup of S if and only if $f \subseteq f \circ f$.

Proof. Straightforward.

Definition 3.5. An \mathcal{N} -subsemigroup (S, f) of S is said to be *regular* if the following condition is valid:

$$(3.2) \qquad (\forall x \in S) \left[f(x) \neq 0 \Rightarrow (\exists a \in R_x) \left(f(x) \geq f(a) \right) \right].$$

Theorem 3.6. An \mathcal{N} -structure (S, f) is a regular \mathcal{N} -subsemigroup of S if and only if the nonempty closed support of (S, f) related to α is a regular subsemigroup of S for all $\alpha \in [-1, 0]$.

Proof. With Theorem 3.3, it is sufficient to show that (S, f) satisfies the condition (3.2) if and only if each element of $C(f, \alpha)$, $\alpha \in [-1, 0]$, is regular. Assume that (S, f) satisfies the condition (3.2). Then there exists $a \in R_x$ such that $f(x) \ge f(a)$, and furthermore, for every $x \in C(f, \alpha)$, $f(a) \le f(x) \le \alpha$. This implies that $a \in C(f, \alpha)$, and so $C(f, \alpha)$ is a regular subsemigroup of S.

Conversely, suppose that each element of $C(f, \alpha)$, $\alpha \in [-1, 0]$, is regular. Assume that (3.2) does not hold, i.e, there exists $x \in S$ such that $f(x) \neq 0$ and f(x) < f(a) for all $a \in R_x$. Set $\alpha = f(x)$. Clearly, $x \in C(f, \alpha)$ and $a \notin C(f, \alpha)$ for all $a \in R_x$. This contradicts the fact that $C(f, \alpha)$ is regular. Thus (3.2) is true. Consequently, (S, f) is a regular \mathcal{N} -subsemigroup of S.

Theorem 3.7. For a nonempty subset A of S, the following are equivalent:

- (1) (S, κ_A) is a regular \mathcal{N} -subsemigroup of S.
- (2) A is a regular subsemigroup of S.

Proof. Assume that (S, κ_A) is a regular \mathcal{N} -subsemigroup of S and let $x, y \in A$. Then $\kappa_A(xy) \leq \bigvee \{\kappa_A(x), \kappa_A(y)\} = -1$, and so $xy \in A$. Moreover, if $x \in A$ then $f(x) = -1 \neq 0$ and so there exists $a \in R_x$ such that $f(x) \geq f(a)$ by (3.2). Thus f(a) = -1, i.e., $a \in A$. Therefore A is a regular subsemigroup of S.

Conversely, let A be a regular subsemigroup of S and let $x, y \in S$. If $x, y \in A$, then $xy \in A$ and so $\kappa_A(xy) = -1 = \bigvee \{\kappa_A(x), \kappa_A(y)\}$. If $x \notin A$ or $y \notin A$, then $\kappa_A(x) = 0$ or $\kappa_A(y) = 0$. Hence $\kappa_A(xy) \leq \bigvee \{\kappa_A(x), \kappa_A(y)\}$. From the regularity of A, we know that there exists $a \in R_x$ such that $a \in A$, i.e., $\kappa_A(a) = -1$. Thus $\kappa_A(x) \geq -1 = \kappa_A(a)$, i.e., (3.2) holds. This shows that (S, κ_A) is a regular \mathcal{N} subsemigroup of S.

Proposition 3.8. If (S, f) is a regular \mathcal{N} -subsemigroup of S, then $f \circ f = f$.

Proof. By Theorem 3.4, we have that $f \subseteq f \circ f$. Now, for any $x \in S$, if f(x) = 0, then $f(x) \leq (f \circ f)(x)$ which implies that $(f \circ f)(x) = f(x)$. If $f(x) \neq 0$, then there exists $a \in R_x$ such that $f(x) \geq f(a)$ because (S, f) is regular. Hence

$$(f \circ f)(x) = \bigwedge_{yz=x} \left\{ \bigvee \{f(y), f(z)\} \right\}$$
$$\leq \bigvee \{f(xa), f(x)\}$$
$$\leq \bigvee \{f(a), f(x)\} = f(x),$$

i.e., $(f \circ f) \subseteq f$. Thus $f \circ f = f$.

Let $S^e = S \cup \{e\}$ and xe = ex = x for all $x \in S^e$. Then S^e is a semigroup with identity e. For any \mathcal{N} -structure (S, f), we define an \mathcal{N} -structure (S^e, f^e) in which f^e is defined as follows:

$$f^{e}(x) = \begin{cases} -1 & \text{if } x = e, \\ f(x) & x \in S. \end{cases}$$

Clearly, $e \in C(f^e, \alpha)$ for all $\alpha \in [-1, 0]$.

We provide a condition for an \mathcal{N} -structure to be a regular \mathcal{N} -subsemigroup.

Theorem 3.9. Consider an \mathcal{N} -structure (S, f) which satisfies the following condition:

(3.3)
$$(\forall x \in S) \begin{pmatrix} f(x) \neq 0 \Rightarrow \exists \beta \in [-1,0) \text{ and} \\ an \text{ idempotent element } w \in C(f,\beta) \\ such \text{ that } xC(f^e,\beta) = wC(f,\beta), \\ where \beta = f(x) \end{pmatrix}.$$

Then (S, f) is a regular \mathcal{N} -subsemigroup of S.

Proof. Let (S, f) be an \mathcal{N} -structure which satisfies the condition (3.3). According to Theorem 3.6, it is sufficient to show that the nonempty closed support $C(f, \alpha)$ of (S, f) related to $\alpha \in [-1, 0)$ is a regular subsemigroup of S. If $C(f, \alpha) \neq \emptyset$ for every $\alpha \in [-1, 0)$, then $f(x) \leq \alpha$ for all $x \in C(f, \alpha)$. We set $f(x) = \alpha$ and have $\alpha_0 < \alpha$. By assumption, there is an idempotent element $w \in C(f, \alpha_0)$ such that $xC(f^e, \alpha_0) = wC(f, \alpha_0)$. Therefore $\exists y \in C(f, \alpha_0)$ with x = wy and $\exists z \in C(f^e, \alpha_0)$ with xz = w. Now $wx = w^2y = wy = x$, i.e., xzx = x, and so $z \in R_x$ and $f(z) \leq \alpha_0 < \alpha$, i.e., $z \in C(f, \alpha)$. Consequently,

$$(\forall x \in C(f, \alpha)) (\exists z \in R_x) (z \in C(f, \alpha))$$

Hence $C(f, \alpha)$ is a regular subsemigroup of S. This completes the proof.

4. N-ideals

Definition 4.1. By a *left* N-*ideal* (resp. *right* N-*ideal*) of S we mean an N-structure (S, f) in which f satisfies:

(4.1)
$$(\forall x, y \in S) (f(xy) \le f(y) \text{ (resp. } f(xy) \le f(x))).$$

Example 4.2. Consider the semigroup $S = \{a, b, c, x, y, z\}$ as in Example 3.2. Let (S, f) be an \mathcal{N} -structure in which f is defined by

$$f = \begin{pmatrix} a & b & c & x & y & z \\ -0.6 & -0.5 & -0.3 & -0.7 & -0.1 & 0 \end{pmatrix}$$

Then (S, f) is a left \mathcal{N} -ideal of S, but not a right \mathcal{N} -ideal of S.

Obviously, every left (right) \mathcal{N} -ideal is an \mathcal{N} -subsemigroup, but the converse is not true as shown in the following example.

Example 4.3. Consider the semigroup $S = \{a, b, c, x, y, z\}$ as in Example 3.2. Let (S, f) be an \mathcal{N} -structure in which f is defined by

$$f = \begin{pmatrix} a & b & c & x & y & z \\ -0.7 & -0.6 & -0.5 & -0.4 & -0.4 & -0.3 \end{pmatrix}.$$
229

Then (S, f) is an \mathcal{N} -subsemigroup of S. But it is not a left \mathcal{N} -ideal of S since f(dc) = f(d) = -0.4 > -0.5 = f(c).

We note that the semigroup S can be considered an \mathcal{N} -function on S which is given by S(x) = -1 for all $x \in S$.

Theorem 4.4. An \mathcal{N} -structure (S, f) is a left (resp. right) \mathcal{N} -ideal of S if and only if $f \subseteq S \circ f$ (resp. $f \subseteq f \circ S$).

Proof. Assume that (S, f) is a left \mathcal{N} -ideal of S. Let $x \in S$. If $(S \circ f)(x) = 0$, then it is clear that $f \subseteq S \circ f$. Otherwise, there exist elements $a, b \in S$ such that x = ab. Hence

$$\begin{split} (S \,\tilde{\circ}\, f)(x) &= \bigwedge_{x=ab} \left\{ \bigvee \left\{ S(a), f(b) \right\} \right\} \ge \bigwedge_{x=ab} \left\{ \bigvee \left\{ -1, f(ab) \right\} \right\} \\ &= \bigwedge \left\{ \bigvee \left\{ -1, f(x) \right\} \right\} = f(x), \end{split}$$

and so $f \subseteq S \circ f$.

Conversely, assume that $f \subseteq S \circ f$. Let x and y be any elements of S. Let a = xy. Then we have

$$\begin{aligned} f(xy) &= f(a) \leq (S \circ f)(a) = \bigwedge_{a=bc} \left\{ \bigvee \left\{ S(b), f(c) \right\} \right\} \\ &\leq \bigvee \left\{ S(x), f(y) \right\} = \bigvee \left\{ -1, f(y) \right\} = f(y). \end{aligned}$$

Hence (S, f) is a left \mathcal{N} -ideal of S. For the case of right \mathcal{N} -ideal, it can be seen in a similar manner. \Box

Definition 4.5. By a *generalized* \mathcal{N} *-bi-ideal* of S we mean an \mathcal{N} -structure (S, f) in which f satisfies:

(4.2)
$$(\forall x, a, y \in S) \left(f(xay) \le \bigvee \{ f(x), f(y) \} \right).$$

A generalized \mathcal{N} -bi-ideal which is also an \mathcal{N} -subsemigroup is called an \mathcal{N} -bi-ideal of S.

Example 4.6. Let $S = \{a, b, c, d\}$ be a semigroup with the following multiplication table:

	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	b	a
d	a	a	b	b

Let (S, f) be an \mathcal{N} -structure in which f is defined by

$$f = \begin{pmatrix} a & b & c & d \\ -0.6 & -0.1 & -0.3 & -0.1 \end{pmatrix}.$$

Then (S, f) is a generalized \mathcal{N} -bi-ideal of S. But, it is not an \mathcal{N} -bi-ideal of S since $f(cc) = f(b) = -0.1 > -0.3 = \bigvee \{f(c), f(c)\}.$

We now provide a condition for a generalized \mathcal{N} -bi-ideal to be an \mathcal{N} -bi-ideal.

Theorem 4.7. Every generalized \mathcal{N} -bi-ideal of a regular semigroup S is an \mathcal{N} -bi-ideal of S.

Proof. Let (S, f) be a generalized \mathcal{N} -bi-ideal of a regular semigroup S. Let $a, b \in S$. Since S is regular, there exists an element x in S such that b = bxb. Then we have

$$f(ab) = f(a(bxb)) = f(a(bx)b) \le \bigvee \{f(a), f(b)\},\$$

and so (S, f) is an \mathcal{N} -subsemigroup of S. Hence (S, f) is an \mathcal{N} -bi-ideal of S.

Theorem 4.8. Let A be a nonempty subset of a semigroup S. Then A is a generalized bi-ideal of S if and only if (S, κ_A) is a generalized N-bi-ideal of S.

Proof. Suppose that A is a generalized bi-ideal of S. Let x, y and a be any elements of S. If $x, y \in A$, then $\kappa_A(x) = \kappa_A(y) = -1$ and $xay \in ASA \subseteq A$. Hence $\kappa_A(xay) = -1 = \bigvee \{\kappa_A(x), \kappa_A(y)\}$. If $x \notin A$ or $y \notin A$, then $\kappa_A(x) = 0$ or $\kappa_A(y) = 0$ and so $\kappa_A(xay) \leq 0 = \bigvee \{\kappa_A(x), \kappa_A(y)\}$. Hence (S, κ_A) is a generalized \mathcal{N} -bi-ideal of S.

Conversely, assume that (S, κ_A) is a generalized \mathcal{N} -bi-ideal of S. Let $z \in ASA$. Then z = xay for some $x, y \in A$ and $a \in S$. Then

$$\kappa_A(z) = \kappa_A(xay) \le \bigvee \{\kappa_A(x), \kappa_A(y)\} = -1,$$

and thus $\kappa_A(z) = -1$. Hence $z \in A$, and so $ASA \subseteq A$. Therefore A is a generalized bi-ideal of S.

Note that, for a nonempty subset A of S, A is a subsemigroup of S if and only if (S, κ_A) is an \mathcal{N} -subsemigroup of S. Therefore, we have the following corollary.

Corollary 4.9. Let A be a nonempty subset of a semigroup S. Then A is a bi-ideal of S if and only if (S, κ_A) is an \mathcal{N} -bi-ideal of S.

Theorem 4.10. Let (S, f) be an \mathcal{N} -structure. Then (S, f) is a generalized \mathcal{N} -biideal of S if and only if $f \subseteq f \circ S \circ f$.

Proof. Assume that (S, f) is a generalized \mathcal{N} -bi-ideal of S. Let a be any element of S. If $(f \circ S \circ f)(a) = 0$, then it is clear that $f \subseteq f \circ S \circ f$. If $(f \circ S \circ f)(a) \neq 0$, then there exist $x, y, u, v \in S$ such that a = xy and x = uv. Since (S, f) is a generalized \mathcal{N} -bi-ideal of S, we have $f(uvy) \leq \bigvee \{f(u), f(y)\}$. Thus

$$\begin{aligned} (f \circ S \circ f)(a) &= \bigwedge_{a=xy} \left\{ \bigvee \left\{ (f \circ S)(x), f(y) \right\} \right\} \\ &= \bigwedge_{a=xy} \left\{ \bigvee \left\{ \bigwedge_{x=uv} \left\{ \bigvee \left\{ f(u), S(v) \right\} \right\}, f(y) \right\} \right\} \\ &= \bigwedge_{a=xy} \left\{ \bigvee \left\{ \bigwedge_{x=uv} \left\{ \bigvee \left\{ f(u), -1 \right\} \right\}, f(y) \right\} \right\} \\ &= \bigwedge_{a=uvy} \left\{ \bigvee \left\{ f(u), f(y) \right\} \right\} \\ &\geq \bigwedge_{a=uvy} f(uvy) = f(a), \end{aligned}$$

and so $f \subseteq f \circ S \circ f$.

Conversely, suppose that $f \subseteq f \circ S \circ f$. Let x, y and z be any elements of S. Set a = xyz. Then

$$\begin{split} f(xyz) &= f(a) \leq (f \circ S \circ f) (a) \\ &= \bigwedge_{a=bc} \left\{ \bigvee \left\{ (f \circ S)(b), f(c) \right\} \right\} \\ &\leq \bigvee \left\{ (f \circ S)(xy), f(z) \right\} \\ &= \bigvee \left\{ \bigwedge_{xy=uv} \left\{ \bigvee \left\{ f(u), S(v) \right\} \right\}, f(z) \right\} \\ &\leq \bigvee \left\{ \bigvee \left\{ f(x), S(y) \right\}, f(z) \right\} \\ &= \bigvee \left\{ \bigvee \left\{ f(x), -1 \right\}, f(z) \right\} \\ &= \bigvee \left\{ f(x), f(z) \right\}, \end{split}$$

and thus (S, f) is a generalized \mathcal{N} -bi-ideal of S.

Theorem 4.11. Every left (resp. right) \mathcal{N} -ideal of S is a generalized \mathcal{N} -bi-ideal of S.

Proof. Let (S, f) be a left \mathcal{N} -ideal of S and $x, a, y \in S$ Then

$$f(xay) = f((xa)y) \le f(y) \le \bigvee \{f(x), f(y)\}.$$

Thus (S, f) is a generalized \mathcal{N} -bi-ideal of S. The right case is proved in an analogous way.

Since every left (right) \mathcal{N} -ideal is an \mathcal{N} -subsemigroup, we have the following corollary.

Corollary 4.12. Every left (resp. right) \mathcal{N} -ideal of S is an \mathcal{N} -bi-ideal of S.

The converse of Theorem 4.11 is not true as seen in the following example.

Example 4.13. The generalized \mathcal{N} -bi-ideal (S, f) in Example 4.6 is not a left \mathcal{N} -ideal of S since f(dc) = f(b) = -0.1 > -0.3 = f(c).

Acknowledgements. The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

- M. Aslam, M. Shabir, N. Yaqoob and A. Shabir, On rough (m, n)-bi-ideals and generalized rough (m, n)-bi-ideals in semigroups, Ann. Fuzzy Math. Inform. 2 (2011) 141–150.
- [2] K. Hur, Y. B. Jun and H. S. Kim, Fuzzy sub-semigroups and fuzzy ideals with operators in semigroups, Ann. Fuzzy Math. Inform. 1 (2011) 1–12.
- [3] Y. B. Jun and M. S. Kang, Hyper N-ideals of hyper BCK-algebras, Appl. Math. Sci. 4 (2010) 1955–1966.
- [4] Y. B. Jun, J. Kavikumar and K. S. So, N-ideals of subtraction algebras, Commun. Korean math. Soc. 25 (2010) 173–184.

- [5] Y. B. Jun, K. J. Lee and S. Z. Song, *N*-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009) 417–437.
- [6] Y. B. Jun, M. A. Öztürk and E. H. Roh, N-structures applied to closed ideals in BCH-algebras, Int. J. Math. Math. Sci. 2010 Article ID 943565, 9 pages.
- [7] C. S. Kim, J. G. Kang and J. M. Kang, Ideal theory of sub-semigroups based on the bipolar valued fuzzy set theory, Ann. Fuzzy Math. Inform. 2 (2011) 193–206.
- $[8]\,$ M. Petrich, Introduction to Semigroups, Columbus, Ohio 1973.
- [9] M. Shabir and A. Ahmad, On soft ternary semigroups, Ann. Fuzzy Math. Inform. 3 (2012) 39–59.

SANG TAE JUNG (sangtaejeong01@gamil.com)

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

TAE SAM KIM (tttsskim@hanmail.net)

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

SANG WOOK YUN (yswig@hanmail.net)

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea