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Abstract. Let U be an initial universe and E a set of parameters. A
pair (F, A) is called a soft set over U if F : E → P (U) where P (U) denotes
the power set of U and A ⊆ E. In this paper, we introduce the concept of
soft Γ-semigroups and soft (left, right) ideals using soft sets and investigate
some properties.
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1. Introduction

In 1999, the notion of soft sets was introduced as an effective mathematical
tool to deal with uncertainly by Molodtsov (see [6]). In 2003, Maji, Biswas and Roy
defined binary operations on soft sets (see [5]). However, these binary operations was
corrected by Ali, Feng, Lui, Min and Shabir in [3]. There are relations between soft
sets and algebraic structures. In [1, 2, 4], the authors applied soft sets to semirings,
rings and groups, respectively. In [8], the authors defined soft semigroups and soft
ideals over a semigroup. Recently, Shabir and Ahmad introduced the concept of soft
ternary semigroups as a collection of ternary subsemigroup of a ternary semigroup
and defined soft (left, right, lateral, quasi, bi) ideals of a ternary semigroup (see [7]).

In [9], Sen and Saha defined a Γ-semigroup as a generalization of a semigroup.
The purpose of this paper is to introduce soft Γ-semigroups, soft (left, right) ideals
and investigate some properties.

Let us recall some definitions concerning Γ-semigroups. Let S and Γ be two
nonempty sets. Then S is called a Γ-semigroup if there exists a mapping S×Γ×S →
S, written as (x, γ, y) 7→ xγy, such that (xγy)βz = xγ(yβz) for all x, y, z ∈ S and
all γ, β ∈ Γ. For nonempty subsets A and B of S, let

AΓB = {aγb | a ∈ A, b ∈ B, γ ∈ Γ}.
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For x ∈ S, let AΓx = AΓ{x} and xΓA = {x}ΓA. A nonempty subset T of S is
called a Γ-subsemigroup of S if for all x, y ∈ T and γ ∈ Γ, xγy ∈ T . S is said to be
commutative if for all x, y ∈ S and γ ∈ Γ, xγy = yγx.

Let S be a Γ-semigroup. A nonempty subset A of S is called a left (right) ideal
of S if SΓA ⊆ A (AΓS ⊆ A). If A is both left and right ideal of S, then A is called
an ideal of S. An ideal A of S is said to be idempotent if AΓA = A.

Hereafter, let S be a Γ-semigroup.

2. Preliminaries

Let U be an initial universe and E a set of parameters. A pair (F, A) is called a
soft set over U if

F : E → P (U)
where P (U) denotes the power set of U and A ⊆ E. For two soft sets (F, A) and
(G,B) over a common universe U , we say that (F, A) is a subset of (G,B), denoted
by (F,A) ⊆ (G,B), if

(i) A ⊆ B,
(ii) F (a) ⊆ G(a) for all a ∈ A.

We say that (F, A) and (G,B) are equal if (F,A) ⊆ (G,B) and (G,B) ⊆ (F, A).
The following are operations defined between soft sets.

Definition 2.1. Let (F, A) and (G,B) be soft sets over a common universe U .
Let “(F,A)OR(G,B)” be a soft set over U , denoted by (F, A) ∨ (G,B), defined by
(F, A) ∨ (G,B) = (K, A×B) where

K(a, b) = F (a) ∪G(b)

for all (a, b) ∈ A×B.

Definition 2.2. Let (F, A) and (G,B) be soft sets over a common universe U . Let
“(F, A)AND(G,B)” be a soft set over U , denoted by (F, A) ∧ (G,B), defined by
(F, A) ∧ (G,B) = (H, A×B) where

H(a, b) = F (a) ∩G(b)

for all (a, b) ∈ A×B.

Definition 2.3. Let (F, A) and (G,B) be soft sets over a common universe U .
(1) The extension union of (F, A) and (G,B), denoted by (F, A) ∪E (G,B), is

the soft set (H,C) where C = A ∪B and for e ∈ C,

H(e) =





F (e) if e ∈ A \B,
G(e) if e ∈ B \A,
F (e) ∪G(e) if e ∈ A ∩B.

(2) The restricted union of (F, A) and (G,B), denoted by (F, A) ∪R (G, B), is
the soft set (H,C) where C = A ∩B and for e ∈ C, H(e) = F (e) ∪G(e).

(3) The extension intersection of (F, A) and (G,B), denoted by (F, A)∩E (G,B),
is the soft set (H, C) where C = A ∪B and for e ∈ C,

H(e) =





F (e) if e ∈ A \B,
G(e) if e ∈ B \A,
F (e) ∩G(e) if e ∈ A ∩B.
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(4) The restricted intersection of (F, A) and (G,B), denoted by (F,A)∩R(G,B),
is the soft set (H, C) where C = A ∩B and for e ∈ C, H(e) = F (e) ∩G(e).

Hereafter, we shall consider a soft set over S, a Γ-semigroup.

3. Main results

Definition 3.1. The Γ-restricted product of soft sets (F,A) and (G,B) over S,
denoted by (F, A)Γ(G,B), is defined as a soft set

(K, D) = (F, A)Γ(G,B)
where D = A ∩B 6= ∅ and K : D → P (S) such that

K(d) = F (d)ΓG(d)

for all d ∈ D.

Definition 3.2. A soft set (F, A) over S is called a soft Γ-semigroup over S if
(F, A)Γ(F, A) ⊆ (F,A).

Example 3.3. Let M = {−i, 0, i} and Γ = A = {−i, i}. We have M is a Γ-
semigroup. Define F : A → P (M) by F (i) = F (−i) = A. Then (F, A) is a soft
Γ-semigroup over M .

Example 3.4. Let M and Γ be the set of all 3× 3 diagonal matrices over the set of
positive integers. Then M is a Γ-semigroup under the usual matrix multiplication.
Let N be the set of all positive integers. Define F : N→ P (M) by F (n) = {A ∈ M :
det(A) ≥ n}. We obtain (F,N) is a soft Γ-semigroup over M .

Example 3.5. For n ∈ N such that n ≥ 4, we consider

Z2n = {[0], [1], [2], . . . , [2n− 1]} and Γ = {[0], [n]}.
It is easy to see that Z2n is a Γ-semigroup. Take A = {[4a] : 0 ≤ a ≤ n} and
B = {[2b] : 0 ≤ b ≤ n}. Define F : A → P (Z2n) by F ([x]) = {[0], [2x]} and defined
G : B → P (Z2n) by G([x]) = {[0], [2x], [4x]}. We have

F ([a])ΓF ([a]) = {[0]} ⊆ F ([a]) and G([b])ΓG([b]) = {[0]} ⊆ G([b])
for all [a] ∈ A, [b] ∈ B. Hence (F, A) and (G,B) are soft Γ-semigroups over Z2n.

Theorem 3.6. A soft set (F, A) over S is a soft Γ-semigroup over S if and only if
for all a ∈ A such that F (a) 6= ∅, F (a) is a Γ-subsemigroup of S.

Proof. Assume that a soft set (F, A) over S is a soft Γ-semigroup over S. Let a ∈ A
be such that F (a) 6= ∅. We have

(F, A)Γ(F,A) = (K, A ∩A) and K(a) = F (a)ΓF (a)

for all a ∈ A. Since K ⊆ F , K(a) ⊆ F (a). So, F (a)ΓF (a) ⊆ F (a). Thus F (a) is a
Γ-subsemigroup of S.

Conversely, assume that F (a) is a Γ-subsemigroup of S for all a ∈ A such that
F (a) 6= ∅. We have

(F, A)Γ(F,A) = (K, A ∩A) and K(a) = F (a)ΓF (a)
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for all a ∈ A. By assumption, K(a) ⊆ F (a). Thus (K,A) ⊆ (F,A). Therefore, a
soft set (F,A) over S is a soft Γ-semigroup over S. ¤

Let (S, E) be the soft set over S defined by S(e) = S for all e ∈ S. This is called
an absolute soft set over S.

Definition 3.7. A soft set (F,A) over S is called a soft l-idealistic (r-idealistic) over
S if (S,E)Γ(F,A) ⊆ (F, A) ((F, A)Γ(S, E) ⊆ (F,A)).

Example 3.8. We consider Z8 = {[0], [1], [2], [3], [4], [5], [6], [7]}. Let Γ = {[1], [4]},
then Z8 is a Γ-semigroup. Take C = {[0], [4]}. Define H : C → P (Z8) by H(c) = C
for all c ∈ C. Then (H, C) is a soft l-idealistic over Z8.

Theorem 3.9. A soft set (F, A) over S is a soft l-idealistic (r-idealistic) over S if
and only if for all a ∈ A such that F (a) 6= ∅, F (a) is a left (right) ideal of S.

Proof. Assume that a soft set (F, A) over S is a soft l-idealistic over S. Let a ∈ A
be such that F (a) 6= ∅. We have

(S,E)Γ(F, A) = (K, E ∩A) and K(a) = S(a)ΓF (a)

for all a ∈ A. Since K ⊆ F , K(a) ⊆ F (a). Since SΓF (a) = S(a)ΓF (a) ⊆ F (a),
F (a) is a left ideal of S.

Conversely, assume that F (a) is a left ideal of S for all a ∈ A such that F (a) 6= ∅.
We have

(S,E)Γ(F, A) = (K, E ∩A) and K(a) = S(a)ΓF (a)

for all a ∈ A. By assumption, K(a) = S(a)ΓF (a) = SΓF (a) ⊆ F (a). Thus
(K,A) ⊆ (F, A). Therefore, a soft set (F, A) over S is a soft l-idealistic over S.

That a soft set (F,A) over S is a soft r-idealistic over S if and only if for all a ∈ A
such that F (a) 6= ∅, F (a) is a right ideal of S can be proved similarly. ¤

Proposition 3.10. Let (F,A) and (G, B) be soft Γ-semigroups over S. If A∩B 6= ∅,
then (F,A) ∩R (G,B) is a soft Γ-semigroup over S.

Proof. Assume that A∩B 6= ∅. Let (H,C) = (F,A)∩R(G,B) where C = A∩B 6= ∅
and H(c) = F (c) ∩ G(c) for all c ∈ C. To show that (H,C) is a soft Γ-semigroup
over S, we have to show that (H, C)Γ(H, C) ⊆ (H, C). Let (K, D) = (H, C)Γ(H,C)
where D = C ∩ C and K(d) = H(d)ΓH(d) for all d ∈ D. For d ∈ D, we have

K(d) = H(d)ΓH(d) = (F (d) ∩G(d))Γ(F (d) ∩G(d)) ⊆ F (d) ∩G(d) = H(d)

Then K ⊆ H. Therefore, (F, A) ∩R (G,B) is a soft Γ-semigroup over S. ¤

Proposition 3.11. Let (F,A) and (G, B) be soft Γ-semigroups over S. If A∩B 6= ∅,
then (F,A) ∪E (G, B) is a soft Γ-semigroup over S.

Proof. Assume that A ∩B 6= ∅. Let (H, C) = (F, A) ∪E (G,B) where

H(c) =





F (c) if c ∈ A \B,
G(c) if c ∈ B \A,
F (c) ∩G(c) if c ∈ A ∩B.
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To show that (H, C) is a soft Γ-semigroup over S, we have to show that

(H,C)Γ(H, C) ⊆ (H,C).

Let (K, D) = (H, C)Γ(H, C) where D = C ∩ C and K(d) = H(d)ΓH(d) for all
d ∈ D. For d ∈ D, we have

K(d) = H(d)ΓH(d) ⊆




F (d) if d ∈ A \B,
G(d) if d ∈ B \A,
F (d) ∩G(d) if d ∈ A ∩B.

Then K(d) ⊆ H(d). Therefore, (F, A) ∪E (G,B) is a soft Γ-semigroup over S. ¤

Proposition 3.12. Let (F,A) and (G,B) be soft Γ-semigroups over S. Then
(F, A) ∧ (G,B) is a soft Γ-semigroup over S.

Proof. Let (F, A)∧ (G,B) = (H,A×B) where H(a, b) = F (a)∩G(b) for all (a, b) ∈
A×B. To show that (H, A×B) is a soft Γ-semigroup over S, let (K,D) = (H, A×
B)Γ(H,A×B) where D = (A×B)∩ (A×B) and K(a, b) = H(a, b)ΓH(a, b) for all
(a, b) ∈ D. For (a, b) ∈ D, we have

K(a, b) = H(a, b)ΓH(a, b) = (F (a) ∩G(b))Γ(F (a) ∩G(b)) ⊆ F (a) ∩G(b) = H(a, b)

Then K ⊆ H. Therefore, (F, A) ∧ (G,B) is a soft Γ-semigroup over S. ¤

Definition 3.13. Let (F, A) and (G,B) be soft sets over a Γ-semigroup S. Define
(F, A)Γ∗(G,B) is a soft set (K, A×B) where K(a, b) = F (a)ΓG(b).

Proposition 3.14. Let (F, A) and (G, B) be soft Γ-semigroups over S. If S is
commutative, then (F, A)Γ∗(G, B) is a soft Γ-semigroup over S.

Proof. Let (F, A)Γ∗(G, B) = (H, A×B) where H(a, b) = F (a)ΓG(b) for all (a, b) ∈
A×B. To show that (H, A×B) is a soft Γ-semigroup over S, let

(K,D) = (H,A×B)Γ(H, A×B)

where D = (A×B) ∩ (A×B) and K(a, b) = H(a, b)ΓH(a, b) for all (a, b) ∈ D. For
(a, b) ∈ D, since S is commutative, we have

K(a, b) = H(a, b)ΓH(a, b) = (F (a)ΓG(b))Γ(F (a)ΓG(b)) ⊆ F (a)ΓG(b) = H(a, b)

Then K ⊆ H. Therefore, (F, A)Γ∗(G,B) is a soft Γ-semigroup over S. ¤

Proposition 3.15. If (F,A) and (G,B) are soft l-idealistics (r-idealistics) over S,
then (F, A) ∩R (G,B) is a soft l-idealistic (r-idealistic) over S contained in both
(F, A) and (G,B).

Proof. Assume that (F, A) and (G,B) are soft l-idealistic over S. Let (H,C) =
(F, A)∩R(G,B) where C = A∩B 6= ∅ and H(c) = F (c)∩G(c) for all c ∈ C. To show
that (H, C) is a soft l-idealistic over S, we have to show that (S, E)Γ(H, C) ⊆ (H, C).
Let (K, D) = (S, E)Γ(H, C) where D = S∩C and K(d) = S(d)ΓH(d) for all d ∈ D.
For d ∈ D, we have

K(d) = S(d)ΓH(d) = S(d)Γ(F (d) ∩G(d)) ⊆ F (d) ∩G(d) = H(d)
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Then K ⊆ H. Therefore, (F, A) ∩R (G,B) is a soft l-idealistic over S. Similarly,
if (F, A) and (G,B) are soft r-idealistics over S, then (F,A) ∩R (G,B) is a soft r-
idealistic over S. It is clear by definition that (F, A) ∩R (G,B) is contained in both
(F, A) and (G,B). ¤
Proposition 3.16. If (F,A) and (G,B) are soft l-idealistics (r-idealistics) over S,
then (F,A)∪E (G,B) is a soft l-idealistic (r-idealistic) over S containing both (F, A)
and (G, B).

Proof. Straightforward. ¤
Proposition 3.17. If (F,A) and (G,B) are soft l-idealistics (r-idealistics) over S,
then (F,A) ∨ (G,B) is a soft l-idealistic (r-idealistic) over S.

Proof. Straightforward. ¤
Proposition 3.18. If (F,A) and (G,B) are soft l-idealistics (r-idealistics) over S,
then (F,A) ∧ (G, B) is a soft l-idealistic (r-idealistic) over S containing both (F, A)
and (G, B).

Proof. Straightforward. ¤
Definition 3.19. Let (F, A) and (G,B) be soft sets over S such that (G,B) ⊆
(F, A). Then (G,B) is called a soft Γ-subsemigroup of (F, A) if G(b) is a Γ-subsemi-
group of F (b) for all b ∈ B.

Definition 3.20. Let (F, A) and (G,B) be soft sets over S such that (G,B) ⊆
(F, A). Then (G,B) is called a soft ideal of (F, A) if G(b) is an ideal of F (b) for all
b ∈ B.

Example 3.21. Let M = [0, 1] and Γ = { 1
n : n ∈ N}. For n ∈ N, let An = [0, 1

n ]
and Bn = [0, 1

2n ]. We define Fn : An → P (M) by Fn(x) = [0, x] for all x ∈ An and
Gn : Bn → P (M) by Gn(y) = [0, y

2 ] for all y ∈ Bn. For m,n ∈ N such that m ≤ n
the following hold.

(1) (Fn, An) and (Gn, Bn) are soft Γ-semigroups over M .
(2) (Gn, Bn) is a soft Γ-subsemigroup of (Fm, Am).
(3) (Gn, Bn) is a soft ideal of (Fm, Am).
(4) (Fn, An) and (Gn, Bn) are soft l-idealistics over M .

Example 3.22. We have Z8 = {[0], [1], [2], [3], [4], [5], [6], [7]} is a Γ-semigroup where
Γ = {[1], [4]}. Let A = {[0], [1], [2], [4]} and B = {[0], [1], [4]}. Defined F : A →
P (Z8) by F (a) = A for all a ∈ A and G : B → P (Z8) by G(b) = B for all b ∈ B.
Then (F,A) and (G,B) are soft Γ-semigroups over Z8. Moreover, (G, B) is a soft
Γ-subsemigroup of (F,A). However, (G,B) is not a soft ideal of (F,A) because
[2] = [1][1][2] ∈ G([1])ΓF ([1]) and [2] 6∈ B = G([1]), G([1])ΓF ([1]) * G([1]).

Theorem 3.23. Let (F,A) be a soft Γ-semigroup over S. Let {(Hi, Bi) | i ∈ I} be
a nonempty family of soft Γ-subsetmigroups of (F, A).

(1)
⋂

R(Hi, Bi) is a soft Γ-subsetmigroup of (F, A).
(2) ∧i∈I(Hi, Bi) is a soft Γ-subsetmigroup of ∧i∈I(F,A).
(3)

⋃
E(Hi, Bi) is a soft Γ-subsetmigroup of (F, A) if Bi, i ∈ I}, are pair wise

disjoint.
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Proof. Straightforward. ¤
Theorem 3.24. Let (F,A) be a soft Γ-semigroup over S. Let {(Hi, Bi) | i ∈ I} be
a nonempty family of soft ideals of (F,A).

(1)
⋂

R(Hi, Bi) is a soft ideal of (F,A).
(2) ∧i∈I(Hi, Bi) is a soft ideal of ∧i∈I(F, A).
(3)

⋃
E(Hi, Bi) is a soft ideal of (F, A).

(4) ∨i∈I(Hi, Bi) is a soft ideal of ∨i∈I(F, A).

Proof. Straightforward. ¤
Theorem 3.25. If (G,B) is a soft ideal of (F,A), then (G,B) is a soft Γ-subsemigroup
of (F, A).

Proof. Let (G,B) be a soft ideal of (F, A). Then for all b ∈ B we have G(b) ⊆ F (b)
and G(b) is an ideal of F (b). Hence for all b ∈ B we obtain G(b)ΓG(b) ⊆ G(b)ΓF (b) ⊆
F (b). Thus (G, B) is a soft Γ-subsemigroup of (F, A). ¤
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