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Abstract. In this paper, a new method for solving DEA model with
interval data involving fuzzy parameters in constraints is proposed. To do
this, we use the concept of α-cuts to evaluate efficiency scores. Finally, we
compare our approach with Despotis et al.’s method.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric method for evaluating the
relative efficiency of decision-making units (DMUs) on the basis of multiple inputs
and outputs. The original DEA models assume that inputs and outputs are measured
by exact values on a ratio scale. Recently, Cooper et al. [1] studied how to deal with
imprecise data such as bounded data, ordinal data and ratio bounded data in DEA.
The resulting DEA model was called Imprecise DEA (IDEA). They proposed some
methods to convert the non-linear model to a linear one. Despotis and Smirlis [2]
converted a non-linear DEA model to an LP equivalent by transforming only on the
variables. In addition, Fang et al. [3], studied a linear programming problem with
fuzzy coefficients in coefficient matrix and right hand side vector. They have shown
that such problems can be reduced to linear semi-infinite programming problem. A
cutting plane algorithm has been proposed for solving a linear programming problem
with fuzzy coefficients in term of linear semi -infinite programming. In this paper,
we focused on DEA with fuzzy coefficients in constraints with infinite α-Cuts [6].

The rest of the paper is organized as follows. In Section 2, a DEA model for
dealing with interval data has been formulated. Section 3 presents a linear semi-
infinite programming problem. In Section 4, we present a DEA model with interval
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data with fuzzy coefficients in constraints using infinite α-Cuts. Conclusions are
given in Section 5.

2. A DEA model with interval data

Assume that there are n DMUs to be evaluated, that each produces s outputs by
using m inputs. DMUj consumes amounts Xj = {xij}of inputs (i = 1, 2, ...,m) and
produces amounts Yj = {yrj}of outputs(r = 1, 2, ..., s). Without loss of generality,
we assume that all the input and output data are known to lie within bounded
intervals, i.e. xij ∈ [xL

ij , x
U
ij ] and yrj ∈ [yL

rj , y
U
rj ] and assume strictly positive. The

following CCR DEA model evaluates DMUj :

(2.1)

max hj0 =
∑s

r=1 uryrj0

s.t.
∑m

i=1 vixij0 = 1,∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0, j = 1, ..., n,

ur, vi ≥ ε, for allr, i.

In this model u1, ..., us and v1, ..., vm are weights for outputs and inputs, respec-
tively.
To transform the above model (2.1) into an equivalent linear programming; the
following transformations have been applied to the variables xij and yrj :

xij = xl + sij(xU
ij − xL

ij), i = 1, ...,m; j = 1, ..., n, 0 ≤ sij ≤ 1,

yrj = yl + trj(yU
rj − yL

rj), r = 1, ..., s; j = 1, ..., n, 0 ≤ trj ≤ 1,

Using these transformations, model (2.1) is transformed into the following linear
programming:
(2.2)

max hj0 =
∑s

r=1 ury
L
rj0

+ prj0(y
U
rj0

− yL
rj0

)
s.t.

∑m
i=1 vix

L
ij0

+ qij0(x
U
ij0
− xL

ij0
) = 1,∑s

r=1 ury
L
rj + prj0(y

U
rj − yL

rj)−
∑m

i=1 vix
L
ij + qij(xU

ij − xL
ij) ≤ 0, j = 1, ..., n,

prj − ur ≤ 0, r = 1, ..., s; j = 1, ..., n,
qij − vi ≤ 0, i = 1, ...,m; j = 1, ..., n,

ur, vi ≥ ε, for all r, i,
prj ≥ 0, qij ≥ 0, for all i, r, j.

With prj = urtrj and qij = visij , where the new variables qij and prjmeet the
conditions 0 ≤ qij ≤ vi and 0 ≤ prj ≤ ur [3, 6].

The following model provides an upper bound of the efficiency scores for unitjo:

(2.3)

max
∑s

r=1 ury
U
rj0

s.t.
∑m

i=1 vix
L
ij0

= 1,∑s
r=1 ury

U
rj0

−
∑m

i=1 vix
L
ij0
≤ 0,∑s

r=1 ury
L
rj −

∑m
i=1 vix

U
ij ≤ 0, j = 1, ..., n, j 6= 0,

ur, vi ≥ ε, for all r, i,
100
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In this manner, the efficiency score is attained by unit jo the model (2.3) say hjo,
that h∗jo = hU

jo [2]. The model below provides a lower bound of the efficiency scores
for unit jo say hjo, that h∗jo = hL

jo[2]:

(2.4)

max
∑s

r=1 ury
L
rj0

s.t.
∑m

i=1 vix
U
ij0

= 1,∑s
r=1 ury

L
rj0

−
∑m

i=1 vix
U
ij0
≤ 0,∑s

r=1 ury
U
rj −

∑m
i=1 vix

L
ij ≤ 0, j = 1, ..., n, j 6= 0,

ur, vi ≥ ε, for all r, i,

Now we are in a possition to find the DEA efficiency with interval data by a
numerical example. Here, 5 units with 2 inputs and 2 outputs are taken into consid-
eration in a way that input-output data are known to lie within bounded intervals,
and the efficiency scores are obtained by applying models (2.3) and (2.4) [2, 5].

Table 1. Efficiency scores for interval data.

DMU Inputs Inputs outputs outputs Efficiencies Efficiencies
J X1j X2j Y1j Y2j hL

j h∗j
1 12 15 0.21 0.48 138 144 21 22 0.224 1

2 10 17 0.1 0.7 143 159 28 35 0.227 1

3 4 12 0.16 0.35 157 198 21 29 0.823 1

4 19 22 0.12 0.19 158 181 21 25 0.445 0.907

5 14 15 0.06 0.09 157 161 28 40 1 1

3. Liner semi-infinite programming problem (LSIP)

In this section, linear programming problem with fuzzy coefficients in both A and
b has been considered:

(3.1)
min

∑n
j=1 Cjxj

s.t.
∑n

j=1 ãijxj ≥α b̃i,∀α ∈ [0, 1], i = 1, ...,m,

xj ≥ 0, j = 1, ..., n.

It is shown that the model (3.1) can be reduced to a linear semi-infinite program-
ming (LSIP) problem [3, 6].

(3.2)

min
∑n

j=1 Cjxj

s.t.

 f11(t) . . . f1n(t)
...

. . .
...

fm1(t) . . . fmn(t)


 x1

...
xn

 ≥

 b1(t)
...

bm(t)

 ∀t ∈ T

xj ≥ 0, j = 1, ..., n.
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where T is a compact metric space, fij(t) and bi(t), (i = 1, . . . ,m, j = 1, . . . , n) are
real-valued continuous functions on T and

fij(t) =

{
LÃij(t)

i = 1, ...,m
RÃij(t)

i = m + 1, ..., 2m

bi(t) =

{
LB̃ij(t)

i = 1, ...,m

RB̃ij(t)
i = m + 1, ..., 2m

In the above relations Ã = [LÃ(α), RÃ(α)], B̃ = [LB̃(α), RB̃(α)] and LÑ (α) ∼=
min{x ∈ R | µÑ (x) ≥ α}, RÑ (α) ∼= max{x ∈ R | µÑ (x) ≥ α}; Ñ is a fuzzy set
defined on R with a membership function µÑ and Ñ ∼= {x ∈ R | µÑ (x) ≥ α} for all
α ∈ [0, 1].

Problem (3.2) is a linear semi-infinite programming problem with n variables
and infinitely many constraints. In this paper, the feasible region and the optimal
objective value are denoted by FP and v(LSIP ), respectively. Dual model (3.2)
is used to solve the mentioned problem, and according to the Strong Duality we
conclude that v(LSIP ) = v(DLSIP ).

Let T be a compact metric space, c(T ) be the space of all real-valued continuous
functions on T , M(T ) be the space of bounded regular borel measures on T , C+(T ) ∼=
{h ∈ C(T ) | h(t) ≥ 0,∀t ∈ T} and M+(T ) ∼= {M ∈ M(T ) | µ(B) ≥ 0,∀B ∈ B(T )},
where B(T ) is the set of all Borel set in T . The dual problem of LSIP (3.2) denoted
by DLSIP could be considered as follows:

(3.3)
max

∑m
i=1

∫
t∈T

bi(t)dµi

s.t.
∑m

i=1

∫
t∈T

fij(t)dµi ≤ cj , j = 1, ..., n,
µi ∈ M+(T ), i = 1, ...,m.

Let FD and v(DLSIP ) be the feasible region and optimal objective value of DLSIP ,
then we have the follwoing theorems [3].

Theorem 3.1. Assume that FD 6= Ø and −∞ < v(DLSIP ) < ∞. If there exists
µ0 = (µ0

1, µ
0
2, ..., µ

0
m) ∈ (M+(T ))m such that

∑m
i=1

∫
T

fij(T )dµ0
i < cj , j = 1, ..., n.

Then FD 6= Ø and v(LSIP ) = v(DLSIP ).

Theorem 3.2. Assume that v(LSIP) =v(DLSIP), then x∗ ∈ FP solves (LSIP)
and µ∗ ∈ FD solves (DLSIP) if and if

∑n
j=1 fij(t)x∗j − bi(t) = 0,∀t ∈ sup(µ∗i ), (i =

1, ...,m) and cj −
∑m

i=1

∫
t∈T

fij(t)dµ∗i = 0, for all j ∈ {k | x∗k 6= 0}.

Theorem 3.3. If FP is bounded, then LSIP has an optimal solution which is an
extreme point of FP .

Definition 3.4 ([3]). Let E and F be real linear spaces, and A : E → F a linear
operator. Consider the following linear program (LP):

(3.4)
min (C∗, X)
s.t. AX = b,

x ∈ p.

Where C∗ is a linear functional in E, b ∈ F , and P is a positive convex cone in E. For
x0 ∈ p, B(X0) = {x ∈ E | x0 ± λx ∈ p, λ > 0}. In this case x0 is an extreme point
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of the feasible region for (LP) if and only if B(X0)∩N(A) = 0 Where 0 denotes the
zero vector and N(A) = {x ∈ E | AX = 0} is the null space of A.

There are many semi-infinite programming algorithms for solving linear semi-
infinite programming problems. Based on a recent review [4], the cutting plane
approach is an effective one for such applications. We can easily design an itera-
tive algorithm which adds m constraints at each time until an optimal solution is
identified.

At the kth iteration, given Tk = {t1, t2, ..., tk}, where tk = (tk1 , tk2 , ..., tkm) ∈ Tm,
k ≥ 1, the following linear programming problem (LP k) would be considered:

(3.5)

min
∑n

j=1 Cjxj

s.t.



f11(t11) . . . f1n(t11)
...

. . .
...

fm1(t1m) . . . fmn(t1m)
...

. . .
...

f11(tk1) . . . f1n(tk1)
...

. . .
...

fm1(tkm) . . . fmn(tkm)



 x1

...
xn

 ≥



b1(t11)
...

bm(t1m)
...

b1(tk1)
...

bm(tkm)


xj ≥ 0, j = 1, ..., n.

Let F k be the feasible region of (LP k) and Xk = (xk
1 , ..., xk

n) is an optimal solution
of (LP k). We define the ”constraint violation functions” as follows:

V k+1
i

∼=
n∑

j=1

fij(t)xk
j − bi(t) ∀t ∈ T, i = 1, ...,m

Since fij(t) and bi(t) are continuous over T and also T is compact, the function
V k+1

i (t) achieves its minimum over T , for i = 1, ...,m.

A cutting plane algorithm for solving (LSIP)[3]:

Step 1. Set k = 1, V k+1
i (tk+1

i ) ≥ 0. Choose any t1i ∈ T ; set T1 = {t1}.
Step 2. Solve problem (3.5) and obtain an optimal solution xk.
Step 3. Find a minimize tk+1

i of V k+1
i (t) over T , for i = 1, ...,m.

Step 4. If V k+1
i (tk+1

i ) ≥ 0, for i = 1, ...,m, then stop; xk is an optimal solution
of LSIP . Otherwise; set TK+1 = Tk ∪ {tk+1} and k + 1 → k; go to Step 1.

Theorem 3.5 ([3]). Let {xk} be a sequence generated by the above algorithm. If
there exists an M > 0 such that ‖xk‖ ≤ M for each k, then there is a subsequence of
{xk} which converges to an optimal solution of LSIP .

4. The suggested method

To solve DEA problems with interval data as a linear semi- infinite programming
problem the cutting plane approach was used. Please consider 5 units with 2 inputs
and 2 outputs in a way that inputs and outputs are placed within bounded intervals.
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The membership function for each input and output is calculated separately. For
example for DMU1 given in Table 1, we have the following membership function:

Table 2. Fuzzy data for DMU1.

X11 X21 Y11 Y21

[21 22] [12 15] [0.21 0.48] [138 144]
21.5 13.5 0.345 141

µ1̃3.5(x) =

{ x−12
1.5 12 ≤ x ≤ 13.5,

15−x
1.5 13.5 ≤ x ≤ 15,

µ
0̃.345

(x) =

{ x−0.21
0.135 0.21 ≤ x ≤ 0.345,

0.48−x
0.135 0.345 ≤ x ≤ 0.48,

µ1̃41(x) =

{ x−138
3 138 ≤ x ≤ 141,

144−x
3 141 ≤ x ≤ 144,

µ2̃1.5(x) =

{ x−21
0.5 21 ≤ x ≤ 21.5,

22−x
0.5 21.5 ≤ x ≤ 22.

Table 3. Fuzzy Data for all DMUs.

DMU inputs inputs outputs outputs
j I1 I2 O1 O2

1 1̃3.5 0̃.345 1̃41 2̃1.5
2 1̃3.5 0̃.4 1̃541 3̃1.5
3 8̃ 0̃.255 1̃77.5 2̃5
4 2̃0.5 0̃.155 1̃69.5 2̃3
5 1̃4.5 0̃.075 1̃59 3̃4

Consider the following DEA model:

(4.1)

max
∑s

r=1 uryrj0

s.t.
∑m

i=1 vixij0 = 1,∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0, j = 1, ..., n,

ur, vi ≥ 0, for allr, i.

The above model becomes as follows for DMU5:

(4.2)

max 157u1 + 28u2

s.t. 1̃4.5v1 + 0̃.075v2 = 1,

1̃41u1 + 2̃1.5u2 − 1̃3.5v1 − 0̃.345v2 ≤ 0,

1̃51u1 + 3̃1.5u2 − 1̃3.5v1 − 0̃.4v2 ≤ 0,

1̃77u1 + 2̃5u2 − 8̃v1 − 0̃.255v2 ≤ 0,

1̃69u1 + 2̃3u2 − 2̃0v1 − 0̃.155v2 ≤ 0,

1̃59u1 + 3̃4u2 − 1̃4.5v1 − 0̃.075v2 ≤ 0,
u1, u2, v1, v2,≥ 0.
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Including membership function, we would have:

(4.3)
max 157u1 + 28u2

s.t.
(

0.5t15 + 14 0.015t15 + 0.06
15− 0.5t110 0.09− 0.015t110

)(
v1

v2

)
=

(
1
1

)
,



1.5t11 + 12 0.135t11 + 0.21 3t11 + 138 0.5t11 + 21
3.5t12 + 10 0.3t12 + 0.1 8t12 + 143 3.5t12 + 28
4t13 + 4 0.095t13 + 0.16 20.5t13 + 157 4t13 + 21
1.5t14 + 19 0.035t14 + 0.12 11.5t14 + 158 2t14 + 21
0.5t15 + 14 0.015t15 + 0.06 2t15 + 157 6t15 + 28
15− 1.5t16 0.48− 0.135t16 144− 3t16 22− 0.5t16
17− 3.5t17 0.7− 0.3t17 159− 8t17 35− 3.5t17
12− 4t18 0.35− 0.095t18 198− 20.5t18 29− 4t18
22− 1.5t19 0.19− 0.035t19 181− 11.5t19 25− 2t19
15− 0.5t110 0.09− 0.015t110 161− 2t110 40− 6t110




v1

v2

u1

u2



≤


0
0
...
0
0

.

Given any ti ∈ [α, 1], say α = 0.6 in this example and an arbitrary starting
point, say t1 = (t11, t

1
2, t

1
3, ..., t

1
10)=(0.6, 0.63, 0.61, 0.66, 1, 0.61, 0.63, 0.69, 0.91, 1) and

by substituting t1 into the model (4.3), we will reach the following solutions:

v = (v1, v2) = (0.069, 0), u = (u1, u2) = (0, 0.0189)

Also, in this case the optimal objective function is equal to 0.5305.
Given any ti ∈ [0.3, 1], sayα = 0.3 in this example for DMU3 and an arbitrary

starting point, say t2 = (t21, t
2
2, t

2
3, ..., t

2
10)=(0.3, 0.42, 1, 0.6, 0.61, 0.63, 0.69, 1, 0.8, 0.9)

and by substituting t2 within the model (4.3), we will reach the solution based on
the following transformation:

max 157u1 + 21u2

s.t.
(

4t23 + 4 0.095t23 + 0.16
12− 4t28 0.35− 0.095t28

)(
v1

v2

)
=

(
1
1

)
.

In this case we have v = (v1, v2) = (0.125, 0), u = (u1, u2) = (0.0056, 0). Also, the
optimal value of the objective function is equal to 0.8845.

In addition, using α = 0.3, ti ∈ [0.3, 1], we would begin with t3 = (t31, t
3
2, t

3
3, ..., t

3
10) =

(0.3, 0.42, 0.5, 1, 0.61, 0.63, 0.69, 0.7, 1, 0.9) for DMU4. Substituting t3 into the model
(4.3), we obtain the optimal solution using the following transformation:

max 158u1 + 21u2

s.t.
(

1.5t34 + 19 0.035t34 + 0.12
22− 1.5t39 0.19− 0.035t39

)(
v1

v2

)
=

(
1
1

)
.
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This gives the optimal solution as v = (v1, v2) = (0.0322, 2.1907), u = (u1, u2) =
(0.0039, 0). Also, the optimal value of the objective function is equal to 0.611.
Moreover, with α = 0.2 ,ti ∈ [0.2, 1], we would start with t4 = (t41, t

4
2, t

4
3, ..., t

4
10) =

(0.2, 1, 0.3, 1, 0.42, 0.61, 0.69, 1, 0.8, 0.85, 0.9) for DMU2. Thus, substituting t4 into
the model (4.3), gives the following transformation:

max 143u1 + 28u2

s.t.
(

3.5t42 + 10 0.035t42 + 0.1
17− 3.5t47 0.7− 0.3t47

)(
v1

v2

)
=

(
1
1

)
.

This gives the optimal solytaion as v = (v1, v2) = (0.0394, 1.1702), u = (u1, u2) =
(0, 0.0191). In addition, the optimal value of the objective function is equal to 0.5359.
Finally, with α = 0.3, ti ∈ [0.3, 1], we would start with t5 = (t51, t

5
2, t

5
3, ..., t

5
10) =

(1, 0.42, 0.5, 0.6, 0.61, 1, 0.63, 0.69, 0.7, 0.9) for DMU1. Substituting t5 into the model
(4.3), gives the following transformation:

max 138u1 + 21u2

s.t.
(

1.5t41 + 12 0.135t41 + 0.21
15− 1.5t46 0.48− 0.135t46

)(
v1

v2

)
=

(
1
1

)
.

This gives the optimal solution as v = (v1, v2) = (0.0463, 1.0866), u = (u1, u2) =
(0, 0.0219). Also, the optimal value of objective function is equal to 0.459.

In table 4 our suggested method has been compared with Despotis’s method. Con-
sidering the fact that the coefficients in constraints are fuzzicated in our suggested
method, the optimal solutions within this method have been closed together.

Table 4. Comparing Model (2.2) and Model (4.3).

DMU Desposit The suggested method v1 v2 u1 u2

j hl
j h∗j

1 0.224 1 0.459 0.0463 1.0866 0 0.0219
2 0.227 1 0.5359 0.0394 1.1702 0 0.0191
3 0.823 1 0.8845 0.125 0 0.0056 0
4 0.445 0.907 0.611 0.0322 2.1907 0.0039 0
5 1 1 0.5305 0.069 0 0 0.0189

5. Conclusions

In this paper, a linear programming with fuzzy coefficients in A and b considered
and then this problem has been reduced to a semi-infinite linear programming and it
has been solved using a cutting plane algorithm. We applied it to DEA model with
interval data, giving a new model. Finally our suggested method has been compared
with Despotis’s Method.

Acknowledgements. The authors would like to thank the anonymous reviewers
and honorable Editor of the journal for accepting the paper.

106



Sohrab Kordrostami et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 99–107

References

[1] W. W. Copper, K. S. Park and G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise
data in DEA, Management Sci. 45 (1999) 597–607.

[2] D. K. Despoti and Y. G. Smirlis, Data envelopment analysis with imprecise data, European

J. Oper. Res. 140 (2002) 24–36.
[3] C. S. Fang, F. C. Hu, H. F. Wang and S. Y. Wu, Linear programming with fuzzy coefficients

in constraints, Comput. Math. Appl. 37 (1999) 63–76.
[4] A. Hettich and K. Kortanek, Semi-infinite programming: Theory, method and applications,

SIAM Review 35 (1993) 380–429.

[5] C. Kao, Interval efficiency measures in data envelopment analysis with imprecise data, Euro-

pean J. Oper. Res. 174 (2006) 1087-1089.
[6] H. W. Lu, G. H. Huang and L. He, Development of an interval-valued fuzzy linear-programming

method based on infinite α-cuts for water resources management, Environ. Model. Softw. 25
(2010) 354–361.

Sohrab Kordrostami (krostami@guilan.ac.ir)
Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan,
Iran.

Alireza Amirteimoori (teimoori@guilan.ac.ir)
Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.

Shahla Kazemi (sh k500@yahoo.com)
Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan,
Iran.

Ali Ebrahimnejad (a.ebrahimnejad@qaemshahriau.ac.ir)
Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr,
Iran.

107


	 Application of -cuts for interval data in DEA with fuzzy coefficients. By 

