Annals of Fuzzy Mathematics and Informatics
Volume 4, No. 1, (July 2012), pp. 9- 24 @]FM]I

ISSN 2093-9310 © Kyung Moon Sa Co.
http://www.afmi.or.kr http://www.kyungmoon.com

Extension of network primal simplex algorithm for
solving minimum cost flow problem with fuzzy
costs based on ranking functions

ALl EBRAHIMNEJAD, SEYED HADI NASSERI

Received 31 July 2011; Accepted 23 September 2011

ABSTRACT. In this paper, we extend the network primal simplex algo-
rithm for solving minimum cost flow problem which involve fuzzy numbers
only in the cost coefficients using ranking function. In fact, by using linear
ranking functions we present the specialization of this algorithm, known
as the fuzzy network primal simplex algorithm that performs the simplex
operations directly on the network without the need of a simplex tableau.
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1. INTRODUCTION

Fuzzy set theory has been applied to many disciplines such as control theory
and management sciences, mathematical modeling and industrial applications. The
concept of fuzzy mathematical programming on general level was first proposed by
Tanaka et al. [12] in the framework of the fuzzy decision of Bellman and Zadeh [2].
The first formulation of fuzzy linear programming (FLP) is proposed by Zimmer-
mann [15]. Afterwards, many authors considered various types of the FLP problems
and proposed several approaches for solving these problems [4], [7, 8, 9, 10]. Some
authors used the concept of comparison of fuzzy numbers for solving fuzzy linear
programming problems. In effect, most convenient methods are based on the con-
cept of comparison of fuzzy numbers by use of ranking functions [3], [7, 8, 9, 10].
Of course, ranking functions have been proposed by researchers to suit their require-
ments of the problem under consideration and conceivably there are no generally
accepted criteria for application of ranking functions. Nevertheless, usually in such
methods authors define a crisp model which is equivalent to the FLP problem and
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then use optimal solution of the model as the optimal solution of the FLP problem.
A review of some common methods for ranking fuzzy numbers can be seen in [13].
Moreover, a review of the literature concerning fuzzy mathematical programming as
well as comparison of fuzzy numbers can be seen in Klir and Yuan [5] and also Lai
and Hwang [0].

In this paper we focus on solving minimum fuzzy cost network flow problem
that is the most fundamental of all fuzzy network flow problems. This problem
may be stated as follows: Ship the available supply through the network to satisfy
demand at minimum fuzzy cost. Minimum fuzzy cost network flow problems might
arise in a logistics network where people and materials are being moved between
various points in the world. Clearly, the minimum fuzzy cost flow problem can be
solved by fuzzy primal simplex algorithm [7, 8], [10]. But here we present the
specialization of the fuzzy primal simplex algorithm to network structured fuzzy
linear programming problems. This specialization, known as the network fuzzy
simplex algorithm, performs the simplex operations directly on the network without
the need of a simplex tableau.

This paper is organized as follows: In Section 2, we first give some necessary
notations and definitions of fuzzy set theory and also some fundamental concepts
of fuzzy set theory. Section 3 formulates the minimum fuzzy cost flow (MFCF)
problem. Computing the basic feasible solution corresponding to a rooted spanning
tree is given in Section 4. We compute the dual fuzzy variables corresponding to a
rooted spanning tree in Section 5. The ptimality conditions for the minimum fuzzy
cost flow problem is given in Section 6. Section 7 shows that how we can determine
the exiting arc and do pivot operations on network. We extend the fuzzy network
primal simplex algorithm in Section 8 and we explain it by an illustrative example.
Finally, we conclude in Section 9.

2. PRELIMINARIES

We review the fundamental notions of fuzzy set theory, initiated by Bellman and
Zadeh [2].

Definition 2.1 ([2]). A convex fuzzy set A on R is a fuzzy number if the following
conditions hold:
(a) Its membership function is piecewise continuous.
(b) There exist three intervals [a,b], [b,c] and [c,d] such that pu; is increasing
on [a,b], equal to 1 on [b, ], decreasing on [c¢, d] and equal to 0 elsewhere.

Remark 2.2. Let A = (a*,aY, a, B) denote the trapezoidal fuzzy number, where
(a* — a,aV + B3) is the support of A and [a”, a"] its core. We denote the set of all
trapezoidal fuzzy numbers by F(R).

Now, we define arithmetic on trapezoidal fuzzy numbers. Let @ = (a*,a, a, 3)
and b = (bl bY,v,0) be two trapezoidal fuzzy numbers. Define,

>0, z€R; za=(za® zd¥ za,z3)

r<0,zeR; za= (xaU,iwL, -z, —xa)

a+b=(a"+0" a" +0Y, 0 +~,6+0).
10
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One convenient approach for solving the fuzzy linear programming problems is based
on the concept of comparison of fuzzy numbers by use of ranking functions (see [7, 8],
[10]). An effective approach for ordering the elements of F'(R) is to define a ranking
function R : F(R) — R which maps each fuzzy number into the real line, where a
natural order exists.

We define orders on F'(R) by:

(2.1) il; if and only if R(a) > R(b)
if and only if R(a) > R(b)

a~b ifand only if R(a)= R(b)

S

where @ and b are in F(R). Also we write @ < b if and only if b = a.
We restrict our attention to linear ranking functions, that is, a ranking function
R such that

(2.4) R(ka + b) = kR(a) + R(b)
for any @ and b belonging to F(R) and any k € R.

Remark 2.3. For any trapezoidal fuzzy number @, the relation @ > 0 holds, if there
exist € > 0 and « > 0 such that a = (—¢,¢, a, «). We realize that R(—¢,¢,a,a) =0
(we also consider @ ~ 0 if and only if R(d) = 0). Thus, without loss of generality,
throughout the paper we let 0 = (0,0,0, 0) as the zero trapezoidal fuzzy number.

The following lemma is now immediate.

Lemma 2.4 ([8]). Let R be any linear ranking function. Then,

(i) arb if and only if a—b=0 if and only if —b = —a.
(i) Ifa=band ¢ = d, then a+¢ = b+d.

We consider the linear ranking functions on F(R) as:
(2.5) R(a) = crat + cyad¥ + cpa + caf,

where a = (aL,aU,a,ﬁ), and cr,, cy, cq,cg are constants, at least one of which is
nonzero. A special version of the above linear ranking function was first proposed

by Yager [14] (see also [3] and [11]) as follows:
1t
(2.6) R(@) = 5 / (inf @y + sup iy) dA
0
which reduces to
- a" +a¥ 1
(27) R@) =T+ 16— a).

Then, for trapezoidal fuzzy numbers @ = (a*,a",a, 3) and b = (bE, Y, ~,0), we
have

(2.8) a>b ifandonlyif af+a¥ +
11

1 1
§(ﬂfa)>bL+bU+§(0—7).
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3. MINIMUM COST FLOW PROBLEMS WITH FUZZY COSTS
A definition of the minimum cost flow problem (MCFP) is given in the below.

Definition 3.1. A directed network is a directed graph whose nodes and/or arcs
have associated numerical values (typically, costs, capacities, and /or supplies and
demands).

Let G = (V, E) be a directed network defined a set V' of n nodes and a set E of m
directed arcs. Each arc (i,j) € E has an associated fuzzy cost ¢;; that denotes the
cost per unit flow on that arc. We associate with each ¢ € V' a number b; representing
its supply/demand. If b; > 0, node i is a supply node; if b; < 0, node 7 is a demand
node with a demand of —b;; if b; = 0, node ¢ is a transshipment node. The decision
variables in the minimum fuzzy cost flow problem are arc flows and we represent
the flow on an arc (4,j) € E by x;;. The minimum fuzzy cost flow problem is an
optimization model formulated as follows:

min Z~ E Eijxij

(i,j)EE
(3.1) s.t. Z Tij — Z xzj; =b;, forallieV,
{7:(¢.5)€E} {5:(4,9)€EY}
(3.2) x;5 >0, for all (i,j) € E.

where Zbi = 0. Constraints (3.1) and (3.2) are called the mass balance con-
i=1

straints and nonnegative constraints, respectively. In the mass balance constraints,
Z x;; represents the total flow out of node 7 while Z xj; indicates the
{4:(4,5)€E} {4:G,9)eE}
total flow into node 1, Z Tij — Z x;; should be equal to b;.
{5:(.9)eE} {3:(5,1)€E}
Definition 3.2. Any flow (choices of the z;;s) satisfying constraints (3.1) and (3.2)
is called a feasible flow (solution).

Definition 3.3. For the minimum fuzzy cost flow problem stated in (3.1), we asso-
ciate the fuzzy variable w; with the mass balance constraint of node ¢. So, the dual
of minimum fuzzy cost flow problem can be stated as follows:

max § ~ Z w; b;
(3.3) ieN

st w; — ’LZ)]' = 6@‘, for all (l,j) € FE.

In matrix form, we represent (MFCF) problem as follows:

min Z~cx
(3.4) s.t. Az =b
x> 0.

In this formulation, A is an n X m matrix, called the node-arc indicate matrix of the
minimum fuzzy cost flow problem. The matrix A has one row for each node and one
12



A. Ebrahimnejad et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 9-24

column for each arc of the network. Each column of A contains exactly two nonzero
entries: a “+1” and a “17. The column associated with arc (¢, ) contains a “41”
in row 7, a “-1” in row j and zeros elsewhere. Thus the columns of A are given by
a;; = €; — e;, where e; and e; are unit vectors in E”, with 1’s in the ith and jth
positions respectively. Figure 1 presents a network with fuzzy costs.

b-s

2

Cij

(r'e'e-v-)

NS
K¢

0000 4 Py

(€10

Figure 1. An example network with fuzzy costs

(I'e'e-'v-)
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w

(€110

5

%‘
b5 =4

Figure 2. A rooted network

Clearly the matrix A does not have full rank since the sum of its rows is the zero
vector. It can be demonstrated that the rank of A is n — 1 (see [1]). Therefore
13
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an artificial variable is required so that the rank of the new matrix becomes n — 1.
Introducing an artificial variable corresponding to node n leads to the constraint
matrix (A, e,). Because, any basic solution must contain n linearly independent
columns, and hence the artificial variable must appear in every basic solution. If
we liberalize our definition of an arc, then the new column can be viewed as an arc
beginning at node n and terminating in space (see Figure 2). This one-ended arc is
called a root arc. The associated node (n) is called a root node.

Theorem 3.4 (Basic property [1]). Consider a minimum (fuzzy) cost network flow
problem defined on a connected network G with one root arc. Then B is a basic
matriz for this problem if and only if it is the node-arc incidence matriz of a rooted
spanning tree T of G.

For example, for the minimum fuzzy cost flow problem in Figure 2, the rooted
spanning tree 7' is given in Figure 3.

by=5

Figure 3. The rooted spanning tree

Definition 3.5. We say the basic solution corresponding to a rooted spanning tree
T is feasible, if its associated solution satisfy the nonnegative constraints.

Given a rooted spanning tree T (feasible basis ), the network fuzzy simplex algo-
rithm performs the following operations:
1. Determine the associated basic feasible solution.
2. Determine the associated dual fuzzy variables.
3. Check whether it is optimal, and if not then determine an entering nonbasic arc
(p, q)-
4. Represent the nonbasic arc (p,q) in terms of the basic arc to perform the pivot
operation while introducing the arc (p, ¢) into the rooted spanning tree.

We consider these fuzzy simplex operation one by one.

4. COMPUTING THE BASIC FEASIBLE SOLUTION

For the moment we shall postpone the difficulties associated with identifying
a feasible basic and assume that a feasible basis is at hand. Since, the MFCF
14
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problem has the same feasible region as minimum (crisp) cost flow problem, therefore
the calculation procedures are the same. That is, the process of obtaining the
basic solution corresponding to a rooted spanning tree T', proceeds from the ends
of the tree toward the root by using the mass balance constraints. For example to
computing primal variables of the rooted spanning tree T" given by the subgraph in
Figure 3, examining node 1, we see that it is an end of the basic tree. Hence the
corresponding mass balance constraints as follows:

x15:bz
5. —
)
.X]5:2

Similarly, we can compute the rest of the basic variables. Figure 4 represents the
basic feasible solution corresponding to the rooted spanning tree T' given in Figure
3.

by=s

Figure 4. The basic feasible solution

We have assume thus far that we have a starting basic feasible solution represented
by a rooted spanning tree T. We now give a method for generally attaining this
situation. We add a dummy node, n + 1, to network as the root node with b, =
0.Then, we add artifical arcs from each node i with b; > 0 to the dummy node and
from dummy node to each node ¢ with b; < 0. So, the new network arc has n new
arcs, one artifical arc between each original node and the dummy node. A feasible
basis for this new problem is given by that rooted spanning tree that is defined by
the n artcifical arcs in addition to the root arc.

Beginning with this artificial basis, we may proceed to apply the fuzzy two-phase
method, using fuzzy cost 1 ~ (1,1,0,0) for each artificial arc and fuzzy cost 0 for

15
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each original arc, until feasibility is achieved, if at all. If feasibility is achieved,
we may drop all of the artificial arcs not in the basis, keep the basic degenerated
artificial arcs and continue the optimization with initial fuzzy cost for each original
arc.

5. COMPUTING DUAL FUZZY VARIABLES

While the process of computing primal variable consisted of working from the
ends of the basic tree inward toward the root, the process of computing dual fuzzy
variables consists of working from the root of the basic tree outward toward the
ends.

We start with the dual fuzzy variable for the root node at zero fuzzy value, the
proceed away from the root toward the ends of the tree using the relationship that
W; — W; ~ ¢;; along the basic arcs in the tree. In the basic tree of Figure 4, for node
1 we have

~

Wi-W5=Cjs

. w,;=(1,3,2,2)

W 5=(0,0,0,0)

We next examine node 4. By using w4 — w5 =~ ¢45 we have

~ o~

W4=Ws=Cys

wy=(1,4,2,4)

W 5=(0,0,0,0)

In the same fashion we can compute the rest of the dual fuzzy variables; the fuzzy
values shown next to each node in Figure 5 specify these fuzzy values.
16
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Figure 5. The dual fuzzy variables

6. OPTIMALITY TESTING

Given a basic tree, the fuzzy simplex method compute the dual fuzzy variables
an then tests whether the basic structure satisfies the optimality conditions given in
Theorem 6.1.

We define the fuzzy variable Z;; for each (i,j) € E as Z;; ~ ¢gB~'a;j. Let
W~ égB~! and y;; = B~ 'a;;, hence we have Z;; ~ wa;; ~ w(e; — ;) ~ W; — W; or
Zij ~ CBYij-

Theorem 6.1. (Minimum fuzzy cost network flow optimality conditions) The fea-
sible basic solution corresponding to rooted spanning tree T is optimum if and only
if for each nonbasic arc (i,j) Zi; = C;j.

Proof. Suppose that we have an optimal basic feasible solution corresponding to
Tij, (Z,j) eT
0, (i,5) ¢ T
value is z ~ Z €i;Z;j. Now, let (p, q) is a nonbasic arc. The addition of arc (p, q)
(4,9)€T

to the rooted spanning tree T' creates the cycle C. We define the orientation of the
cycle C to align with the orientation of the arc (p,q). Let C; and Cs denote the
sets of forward and backward arcs in C, respectively. Suppose the addition of arc
(p, q) to the tree and the deleting the leaving arc (u, v) gives the following new basic
feasible solution corresponding to the new rooted spanning tree 1":

rooted spanning tree T, say; T;; = { whose objective fuzzy

Zij + Ty, (i,5) € Crand (i,7) # (p,q)

A Tij — Ty, (27]) € (s
Fo— J
Y Ty, (7"]) = (p7 Q)
0, otherwise.

17
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So, the objective fuzzy value corresponding to the new basic feasible solution is equal
to

Z~ E CijTij = E CijZij + g CijTij + CpqTpq

(i,5)€T’ (1,9)€C1, (4,5)#(p,q) (1,5)€C2

12

Z Eij (i'ij + i’uv) + Z éz](jm - i'u'u) + équuv
(i,9)€C1, (4,9)#(p,q) (,5)€C2

~ > i+ EyEy—( Y &y > Cij = Cpq)Tuv

(4,5)€C1, (4,5)#(p:q) (4,5)€C2 (4,5)€C2 (4,J)€C1, (4,5)#(p,q)

~ E CijZij + E CijTij — ( E Cij — E Cij)juv-

(1,9)€C1, (4,5)#(P,q) (1,J)€C2 (4,5)€C2 (i,5)€C1

Since

z E 61’]'*%1']’ ~ E 5ij5_cij + E 6ijiij

(i,5)€T (1,5)€Cn, (4,5)#(p,9) (1,5)€Cx

Zpg = E, Cij — E Cij

(i,§)€C2 (i,§)€Ch
and Ty, = £pq, we have

(6.1) 22— (Zpg — Cpg)Zpq

Now, from (6.1) it is obvious that if for any nonbasic arc (p, ¢), we have Z,; = €4,
then we can enter (p,q) into the rooted spanning tree T' and obtain 2 < z. This
is contradiction to the basic feasible solution corresponding to the rooted spanning
tree T is optimal. Also, if for each nonbasic arc (p,q), Zpq =X €pq, We have £ > Z for
any feasible solution and so the current basic feasible corresponding to the rooted
spanning tree T is optimal. |

Now to compute Z;; — &; for the nonbasic arc (i, j) we apply the definition Z;; —
6ij ~ 12)1 — II)]‘ — él]

example using the fuzzy values of dual variables obtained in previous section, we
summarize the value of Z;; — &; for each nonbasic arc (4, j) in Figure 6.
18
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to compute Z;; — ¢;; for each nonbasic arc (7, 7). We see, the addition of arc (7, j) to
the spanning tree T creates exactly one cycle, say C. We define the orientation of the
cycle C to align with the orientation of the arc (i, 7). Let C; and Cs denote the sets
of forward and backward arcs in C, respectively. So, y;; has a “+ 1" corresponding
to basic arcs in C7, a “ — 1” corresponding to basic arcs in C5 and zero otherwise.
Therefore, we can compute

Eij — Eij ~ éByij — éij ~ Z Eij — Z éij.
(4,5)€C2 (4,7)€C1
For example Z13 — ¢15 ~ €15 — C34 — C45 — C13 =~ (—2,5,8,6). Although this
gives another method of computing Z;; — ¢;;, it is less efficient the earlier method of
computing the dual fuzzy variables .

7. DETERMINING THE EXISTING COLUMN AND PIVOTING

If the spanning structure satisfies optimality conditions, it is optimal and the
algorithm terminates. Otherwise, suppose

R(Zpg — Cpq) = max{R(Z;; — Cij) : (4,5) € T}
If R(Zpq — Cpg) < 0, then stop; the current solution is optimal. Otherwise, we select
arc (p,q) as the entering arc. The addition of this arc to the tree T creates exactly
one cycle, say C. We define the direction of the cycle as the same as of the arc (p, q).
We send an additional amount of flow A around the unique cycle created when the
nonbasic arc is added to the basic tree T'. Sending flow against the direction of an

arc corresponds to decreasing flow on the arc. Consequently, the maximum flow A
that can be send along this cycle is

A = x,, = min{x;; : the direction of (¢, j) € C is against the direction of arc (p,q)}.

Thus, arc (u,v) is existing arc.

19
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In the forgoing example, R(Z13 — ¢13) = 1 > 0 and so arc (1, 3) is a candidate
to enter the basic tree. If we increase x13 by A, then to provide balance we must
increase x34 by A, increase x45 by A, and finally decrease x15 by A. As x13 increases
by A, the only basic variable to decrease is x15 and its new value is z15 = 2 — A.
Then the critical value of A is equal to 2, at which instant x5 drops to zero and
(1, 3) leaves the basic tree. All of the other basic variables are adjusted appropriately
in value and the new basic solution is given as follows.

8]

X132 . X34=3

Figure 7. The new basic feasible solution

To compute the discussion of an iteration of the network fuzzy simplex method,
we show how the fuzzy dual variables may be update rather than recomputed from
scratch with respect to the new basic tree. Suppose that x,4, enters the basic and
Zyy 18 the exiting variable. The deletion of the arc (u,v) from the current basic tree
partitions the set of nodes into two subtrees, one T}, containing the root node, and
the other, T3, not containing the root node. Hence the new dual fuzzy variable for
the nodes in T7 will remain the same as before, since the chains connecting these
nodes to the root node remained unchanged. For tree T,, we consider two cases.
First suppose that ¢ € T». Note for each (4, j) € Ty, we currently have w; —w; ~ &;.
If we change all the w;’s in T5 by a fuzzy constant, we will still satisfy w; — @, f_v:cij
for all (i, j) € T5. Consequently, once we know the new variable g (new) of the dual
variable associated with node ¢, we can compute the new fuzzy dual value w; ;) for
each node i in Ty as W; + (Wg(new) —Wq), SINCE Wy(new) —Wgq), is the amount by which
Wq has increasing. However, denoting dpq ™~ Zpqg — Zpg > 0, we have

(7.1) Opq = Wp — Wq — Cpq

also, (p,q) is a basic arc in new tree and then Wy(new) — Wy(new) = Cpq, and since
p € T1 we have Wy(new) = Wy- Hence, we have

(72) ’LDp — lf)q(new) ~ qu

substituting (7.2) into (7.1) we have

(73) 6pq = (wq(new) + E;Dq) - 7“Dq — Cpq
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or, Spq >~ Wy(new) — Wy, therefore, all the dual fuzzy variables in T simply increase
by Spq. On the other hand, if p € T3, then we have wWy(new) — Wy = ¢5¢, and
Wp(new) — Wp =2 ,Spq_ Hence in this case, all the duals of T} will remain the same
as previously, but dual of Ty will fall by 5pq. For example, in the foregoing pivot
operation, (p,q) = (1, 3) enters an (u,v) = (1, 5) leaves the basic tree. Disconnecting
(1,5), we find that the tree T contains the nodes 2, 3, 4, and 5, but 75 contains
node 1 alone. Since p € T5, the dual of node 1 falls by 15 ~ (—2,5,8,6) to the fuzzy
value Wy(pew) =~ (—4,5,8,10) and the dual of the other nodes remain the same as
before. Figure 8 shows the new dual fuzzy variables respect to the new basic tree
given in Figure 7.

].1/2 =(-3,1,5,5)
2

~

W= (-4,5.8,10)

W 3=(1,4.2,4)
1 > 3 —_— 4

11;4 =(14.24)

~

5 Ws =0.000)

N

Figure 8. The updated values of the dual fuzzy variables

8. FUzZzY NETWORK PRIMAL SIMPLEX ALGORITHM

The network fuzzy simplex algorithm maintains a feasible basic solution corre-
sponding to rooted spanning tree and successively transforms it into an improved
feasible basic solution until it becomes optimal. This algorithm may be stated as
follows:
begin

Find an initial basic feasible solution represented by a rooted spanning tree. Com-
pute the basic flows x and dual fuzzy variables w associated with the basic tree.
While some nonbasic arc violates the optimality condition do

begin
Select an entering arc (p, q) violating its optimality condition. Add arc (p,q) to the
tree and determine the leaving arc (u,v); perform a tree update and update the
solution z and w.

end
end

We use the example in Figure 2, to illustrate the network fuzzy simplex algorithm.
Figure 4 shows a basic feasible solution for the problem and Figure 5 shows the

21
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dual fuzzy variables corresponding to this basic feasible solution. By the values of
Zij — &;’s given in Figure 6, arc (1, 3) enters and (u,v) = (1,5) leaves the basic tree
(Figure 7). In the new basic feasible solution shown in the Figure 7, we updated the
dual fuzzy variables (Figure 8).

Now, we compute the Z;; — ¢;; for each nonbasic arc (4, j) in new rooted spanning
tree to see whether the new spanning tree satisfy the optimality conditions. Figure
9 shows these values.

2
4’, * A “
9 M et
i N2,
o - e
S E
,’ N £

\
AV
L4
(g'Lv'8)

Figure 9. The updated values of Z;; — ¢;;

In this example, since for each nonbasic arc (i, j), we have R(Z;; —é;;) > 0 then, the
current solution shown in Figure 7 is optimal. The fuzzy objective function value is

equal to Z ~ Z Cij Ti5. We have
(¢,§)€T
22619+ 5Ca3+ 8834 +4¢45 ~2(—3,-1,2,2) +5(—4,-3,3,1)
+8(0,0,0,0) +4(1,4,2,4) ~ (—22,-1,27,25),

and the its membership function is as follow

0, r < —49,
2 —49 <z < 22,
(2) = 1, -22<z<-1,
22 1<z <24,
0, T > 24.

9. CONCLUSIONS

In this paper, we considered minimum cost flow problems which involve fuzzy
numbers only in cost coefficients of objective function. Then, by use of a linear
22
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ranking function we gave a fuzzy simplex algorithm to solve the minimum fuzzy cost
flow problem. We described the network fuzzy simplex algorithm as a combinatorical
algorithm and used combinatorial arguments to show that the algorithm correctly
solves the MFCF problem. This development has the advantage of highlights the
inhernet combinatorial structure of the MFCF problem on the fuzzy simplex algo-
rithm. The network fuzzy simplex algorithm is indeed a adaptation of the fuzzy
simplex method for linear programming problems with fuzzy costs. Beacuse the
MFCF problem is highly structured fuzzy linear programming problem, when we
apply the fuzzy simplex method to it, the resulting computations become consid-
erably streamlined. In fact we need not explicitly maintain the matrix the fuzzy
linear program and can perform all the computations directly on the netwrok, and
it is a special implementation of the fuzzy simplex method that exploits the special
structure of MFCF problem.
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