Annals of Fuzzy Mathematics and Informatics Volume 4, No. 1, (July 2012), pp. 83-98 ISSN 2093-9310 http://www.afmi.or.kr

Cubic sets

YOUNG BAE JUN, CHANG SU KIM, KI OONG YANG

Received 23 October 2011; Accepted 30 November 2011

ABSTRACT. The notions of (internal, external) cubic sets, P-(R-)order, P-(R-)union and P-(R-)intersection are introduced, and related properties are investigated. We show that the P-union and the P-intersection of internal cubic sets are also internal cubic sets. We provide examples to show that the P-union and the P-intersection of external cubic sets need not be external cubic sets, and the R-union and the R-intersection of internal (resp. external) cubic sets need not be internal (resp. external) cubic sets. We provide conditions for the P-union (resp. P-intersection) of two external cubic sets to be an internal cubic set. We give conditions for the P-union (resp. R-union and R-intersection) of two external cubic sets to be an external cubic set. We consider conditions for the R-intersection (resp. P-intersection) of two cubic sets to be both an external cubic set and an internal cubic set.

2010 AMS Classification: 20M12, 08A72

Keywords: Cubic set, Internal (external) cubic set, P-(R-)order, P-(R-)union, P-(R-)intersection.

Corresponding Author: Chang Su Kim (cupncap@gmail.com)

1. INTRODUCTION

L'uzzy sets are initiated by Zadeh [6]. In [7], Zadeh made an extension of the concept of a fuzzy set by an interval-valued fuzzy set, i.e., a fuzzy set with an interval-valued membership function. In traditional fuzzy logic, to represent, e.g., the expert's degree of certainty in different statements, numbers from the interval [0, 1] are used. It is often difficult for an expert to exactly quantify his or her certainty; therefore, instead of a real number, it is more adequate to represent this degree of certainty by an interval or even by a fuzzy set. In the first case, we get an interval-valued fuzzy set. In the second case, we get a second-order fuzzy set. Interval-valued fuzzy sets have been actively used in real-life applications. For example, Sambuc [2] in Medical diagnosis in thyroidian pathology, Kohout [1] also in Medicine, in a system CLINAID, Gorzalczany [10] in Approximate reasoning,

Turksen [3, 4] in Interval-valued logic, in preferences modelling [5], etc. These works and others show the importance of these sets. Fuzzy sets deal with possibilistic uncertainty, connected with imprecision of states, perceptions and preferences.

In this paper, using a fuzzy set and an interval-valued fuzzy set, we introduce a new notion, called a (internal, external) cubic set, and investigate several properties. We deal with P-union, P-intersection, R-union and R-intersection of cubic sets, and investigate several related properties.

2. Preliminaries

A fuzzy set in a set X is defined to be a function $\lambda : X \to I$ where I = [0, 1]. Denote by I^X the collection of all fuzzy sets in a set X. Define a relation \leq on I^X as follows:

$$(\forall \lambda, \mu \in I^X) \ (\lambda \le \mu \iff (\forall x \in X)(\lambda(x) \le \mu(x))).$$

The join (\vee) and meet (\wedge) of λ and μ are defined by

$$(\lambda \lor \mu)(x) = \max{\{\lambda(x), \mu(x)\}},$$

$$(\lambda \wedge \mu)(x) = \min\{\lambda(x), \mu(x)\}\$$

respectively, for all $x \in X$. The complement of λ , denoted by λ^c , is defined by

$$(\forall x \in X) \ (\lambda^c(x) = 1 - \lambda(x)).$$

For a family $\{\lambda_i \mid i \in \Lambda\}$ of fuzzy sets in X, we define the join (\vee) and meet (\wedge) operations as follows:

$$\left(\bigvee_{i\in\Lambda}\lambda_i\right)(x) = \sup\{\lambda_i(x) \mid i\in\Lambda\},\\ \left(\bigwedge_{i\in\Lambda}\lambda_i\right)(x) = \inf\{\lambda_i(x) \mid i\in\Lambda\},$$

respectively, for all $x \in X$.

By an *interval number* we mean a closed subinterval $\tilde{a} = [a^-, a^+]$ of I, where $0 \leq a^- \leq a^+ \leq 1$. The interval number $\tilde{a} = [a^-, a^+]$ with $a^- = a^+$ is denoted by **a**. Denote by [I] the set of all interval numbers. Let us define what is known as *refined minimum* (briefly, rmin) of two elements in [I]. We also define the symbols " \succeq ", " \preceq ", "=" in case of two elements in [I]. Consider two interval numbers $\tilde{a}_1 := [a_1^-, a_1^+]$ and $\tilde{a}_2 := [a_2^-, a_2^+]$. Then

$$\min\{\tilde{a}_1, \tilde{a}_2\} = \left[\min\{a_1^-, a_2^-\}, \min\{a_1^+, a_2^+\}\right],\\ \tilde{a}_1 \succeq \tilde{a}_2 \text{ if and only if } a_1^- \ge a_2^- \text{ and } a_1^+ \ge a_2^+,$$

and similarly we may have $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 = \tilde{a}_2$. To say $\tilde{a}_1 \succ \tilde{a}_2$ (resp. $\tilde{a}_1 \prec \tilde{a}_2$) we mean $\tilde{a}_1 \succeq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$ (resp. $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$). Let $\tilde{a}_i \in [I]$ where $i \in \Lambda$. We define

$$\inf_{i \in \Lambda} \tilde{a}_i = \begin{bmatrix} \inf_{i \in \Lambda} a_i^-, \inf_{i \in \Lambda} a_i^+ \end{bmatrix} \text{ and } \operatorname{rsup}_{i \in \Lambda} \tilde{a}_i = \begin{bmatrix} \sup_{i \in \Lambda} a_i^-, \sup_{i \in \Lambda} a_i^+ \end{bmatrix}$$

For any $\tilde{a} \in [I]$, its *complement*, denoted by \tilde{a}^c , is defined be the interval number

$$\tilde{a}^c = [1 - a^+, 1 - a^-].$$

84

Let X be a nonempty set. A function $A: X \to [I]$ is called an *interval-valued* fuzzy set (briefly, an *IVF* set) in X. Let $[I]^X$ stand for the set of all IVF sets in X. For every $A \in [I]^X$ and $x \in X$, $A(x) = [A^-(x), A^+(x)]$ is called the *degree* of membership of an element x to A, where $A^-: X \to I$ and $A^+: X \to I$ are fuzzy sets in X which are called a *lower fuzzy set* and an *upper fuzzy set* in X, respectively. For simplicity, we denote $A = [A^-, A^+]$. For every $A, B \in [I]^X$, we define

$$A \subseteq B \Leftrightarrow A(x) \preceq B(x)$$
 for all $x \in X$,

and

$$A = B \Leftrightarrow A(x) = B(x)$$
 for all $x \in X$.

The complement A^c of $A \in [I]^X$ is defined as follows: $A^c(x) = A(x)^c$ for all $x \in X$, that is,

$$A^{c}(x) = [1 - A^{+}(x), 1 - A^{-}(x)]$$
 for all $x \in X$.

For a family $\{A_i \mid i \in \Lambda\}$ of IVF sets in X where Λ is an index set, the union $G = \bigcup_{i \in \Lambda} A_i$ and the intersection $F = \bigcap_{i \in \Lambda} A_i$ are defined as follows:

$$G(x) = \left(\bigcup_{i \in \Lambda} A_i\right)(x) = \operatorname{rsup}_{i \in \Lambda} A_i(x)$$

and

$$F(x) = \left(\bigcap_{i \in \Lambda} A_i\right)(x) = \inf_{i \in \Lambda} A_i(x)$$

for all $x \in X$, respectively. For a point $p \in X$ and for $\tilde{a} = [a^-, a^+] \in [I]$ with $a^+ > 0$, the IVF set which takes the value \tilde{a} at p and 0 elsewhere in X is called an *interval-valued fuzzy point* (briefly, an *IVF point*) and is denoted by \tilde{a}_p . The set of all IVF points in X is denoted by IVFP(X). For any $\tilde{a} \in [I]$ and $x \in X$, the IVF point \tilde{a}_x is said to belong to an IVF set A in X, denoted by $\tilde{a}_x \in A$, if $A(x) \succeq \tilde{a}$. It can be easily shown that $A = \bigcup{\{\tilde{a}_x \mid \tilde{a}_x \in A\}}$.

3. Cubic sets

Definition 3.1. Let X be a nonempty set. By a *cubic set* in X we mean a structure

$$\mathscr{A} = \{ \langle x, A(x), \lambda(x) \rangle \mid x \in X \}$$

in which A is an IVF set in X and λ is a fuzzy set in X.

A cubic set $\mathscr{A} = \{ \langle x, A(x), \lambda(x) \rangle \mid x \in X \}$ is simply denoted by $\mathscr{A} = \langle A, \lambda \rangle$. Denote by C^X the collection of all cubic sets in X.

A cubic set $\mathscr{A} = \langle A, \lambda \rangle$ in which $A(x) = \mathbf{0}$ and $\lambda(x) = 1$ (resp. $A(x) = \mathbf{1}$ and $\lambda(x) = 0$) for all $x \in X$ is denoted by $\ddot{0}$ (resp. $\ddot{1}$).

A cubic set $\mathscr{B} = \langle B, \mu \rangle$ in which $B(x) = \mathbf{0}$ and $\mu(x) = 0$ (resp. $B(x) = \mathbf{1}$ and $\mu(x) = 1$) for all $x \in X$ is denoted by $\hat{0}$ (resp. $\hat{1}$).

Definition 3.2. Let X be a nonempty set. A cubic set $\mathscr{A} = \langle A, \lambda \rangle$ in X is said to be an *internal cubic set* (briefly, ICS) if $A^-(x) \leq \lambda(x) \leq A^+(x)$ for all $x \in X$.

Definition 3.3. Let X be a nonempty set. A cubic set $\mathscr{A} = \langle A, \lambda \rangle$ in X is said to be an *external cubic set* (briefly, ECS) if $\lambda(x) \notin (A^{-}(x), A^{+}(x))$ for all $x \in X$.

Example 3.4. (1) Let X be a nonempty set. Let A be an IVF set in X. Then $\mathscr{A} = \{\langle x, A(x), 1(x) \rangle \mid x \in X\}, \mathscr{B} = \{\langle x, A(x), 0(x) \rangle \mid x \in X\}$ and

$$\mathscr{C} = \left\{ \left\langle x, A(x), \lambda(x) \right\rangle \mid x \in X \right\} \text{ where } \lambda(x) = \frac{A^{-}(x) + A^{+}(x)}{2}$$

are cubic sets in X.

(2) Let $\mathscr{A} = \{\langle x, A(x), \lambda(x) \mid x \in I\}$ be a cubic set in *I*. If A(x) = [0.3, 0.7] and $\lambda(x) = 0.4$ for all $x \in I$, then \mathscr{A} is an ICS. If A(x) = [0.3, 0.7] and $\lambda(x) = 0.8$ for all $x \in I$, then \mathscr{A} is an ECS. If A(x) = [0.3, 0.7] and $\lambda(x) = x$ for all $x \in I$, then \mathscr{A} is neither an ICS nor an ECS.

Theorem 3.5. Let $\mathscr{A} = \langle A, \lambda \rangle$ be a cubic set in X which is not an ECS. Then there exist $x \in X$ such that $\lambda(x) \in (A^{-}(x), A^{+}(x))$.

Proof. Straightforward.

Theorem 3.6. Let $\mathscr{A} = \langle A, \lambda \rangle$ be a cubic set in X. If \mathscr{A} is both an ICS and an ECS, then

$$(\forall x \in X) \ (\lambda(x) \in U(A) \cup L(A))$$

where $U(A) = \{A^+(x) \mid x \in X\}$ and $L(A) = \{A^-(x) \mid x \in X\}.$

Proof. Assume that \mathscr{A} is both an ICS and an ECS. Using Definitions 3.2 and 3.3, we have $A^{-}(x) \leq \lambda(x) \leq A^{+}(x)$ and $\lambda(x) \notin (A^{-}(x), A^{+}(x))$ for all $x \in X$. Thus $\lambda(x) = A^{-}(x)$ or $A^{+}(x) = \lambda(x)$, and so $\lambda(x) \in U(A) \cup L(A)$.

Remark 3.7. Every intuitionistic fuzzy set $A = \{\langle x, \mu(x), \gamma(x) \rangle \mid x \in X\}$ in X is considered as a cubic set in X.

Definition 3.8. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be cubic sets in X. Then we define

- (a) (Equality) $\mathscr{A} = \mathscr{B} \Leftrightarrow A = B$ and $\lambda = \mu$.
- (b) (P-order) $\mathscr{A} \subseteq_P \mathscr{B} \Leftrightarrow A \subseteq B$ and $\lambda \leq \mu$.
- (c) (R-order) $\mathscr{A} \subseteq_R \mathscr{B} \Leftrightarrow A \subseteq B$ and $\lambda \ge \mu$.

Definition 3.9. For any $\mathscr{A}_i = \{ \langle x, A_i(x), \lambda_i(x) \rangle \mid x \in X \}$ where $i \in \Lambda$, we define

(a)
$$\bigcup_{i \in \Lambda} \mathscr{A}_{i} = \left\{ \left\langle x, \left(\bigcup_{i \in \Lambda} A_{i}\right)(x), \left(\bigvee_{i \in \Lambda} \lambda_{i}\right)(x) \right\rangle \mid x \in X \right\}$$
(P-union)

(b)
$$\bigcap_{i \in \Lambda} \mathscr{A}_i = \left\{ \left\langle x, \left(\bigcap_{i \in \Lambda} A_i\right)(x), \left(\bigwedge_{i \in \Lambda} \lambda_i\right)(x) \right\rangle \mid x \in X \right\}$$
(P-intersection)

(c)
$$\bigcup_{i \in \Lambda} \mathscr{A}_{i} = \left\{ \left\langle x, \left(\bigcup_{i \in \Lambda} A_{i}\right)(x), \left(\bigwedge_{i \in \Lambda} \lambda_{i}\right)(x) \right\rangle \mid x \in X \right\}$$
(R-union)

(d)
$$\bigcap_{i \in \Lambda} \mathscr{A}_i = \left\{ \left\langle x, \left(\bigcap_{i \in \Lambda} A_i\right)(x), \left(\bigvee_{i \in \Lambda} \lambda_i\right)(x) \right\rangle \mid x \in X \right\}$$
(R-intersection)

The complement of $\mathscr{A} = \langle A, \lambda \rangle$ is defined to be the cubic set

$$\mathscr{A}^{c} = \{ \langle x, A^{c}(x), 1 - \lambda(x) \rangle \mid x \in X \}.$$

Obviously, $(\mathscr{A}^c)^c = \mathscr{A}, \, \hat{0}^c = \hat{1}, \, \hat{1}^c = \hat{0}, \, \ddot{0}^c = \ddot{1}$ and $\ddot{1}^c = \ddot{0}$. For any

$$\mathscr{A}_i = \{ \langle x, A_i(x), \lambda_i(x) \rangle \mid x \in X \}, \, i \in \Lambda,$$

we have
$$\left(\bigcup_{i\in\Lambda}\mathscr{A}_i\right)^c = \bigcap_{i\in\Lambda}(\mathscr{A}_i)^c$$
 and $\left(\bigcap_{i\in\Lambda}\mathscr{A}_i\right)^c = \bigcup_{i\in\Lambda}(\mathscr{A}_i)^c$. Also we have 86

$$\left(\bigcup_{i\in\Lambda}\mathscr{A}_i\right)^c = \bigcap_{i\in\Lambda}(\mathscr{A}_i)^c \quad \text{and} \quad \left(\bigcap_{i\in\Lambda}\mathscr{A}_i\right)^c = \bigcup_{i\in\Lambda}(\mathscr{A}_i)^c$$

Proposition 3.10. For any cubic sets $\mathscr{A} = \langle A, \lambda \rangle$, $\mathscr{B} = \langle B, \mu \rangle$, $\mathscr{C} = \langle C, \gamma \rangle$, and $\mathscr{D} = \langle D, \rho \rangle$, we have

- (1) if $\mathscr{A} \subseteq_P \mathscr{B}$ and $\mathscr{B} \subseteq_P \mathscr{C}$ then $\mathscr{A} \subseteq_P \mathscr{C}$.
- (2) if $\mathscr{A} \subseteq_P \mathscr{B}$ then $\mathscr{B}^c \subseteq_P \mathscr{A}^c$.
- (3) if $\mathscr{A} \subseteq_P \mathscr{B}$ and $\mathscr{A} \subseteq_P \mathscr{C}$ then $\mathscr{A} \subseteq_P \mathscr{B} \cap_P \mathscr{C}$.
- (4) if $\mathscr{A} \subseteq_P \mathscr{B}$ and $\mathscr{C} \subseteq_P \mathscr{B}$ then $\mathscr{A} \cup_P \mathscr{C} \subseteq_P \mathscr{B}$.
- (5) if $\mathscr{A} \subseteq_P \mathscr{B}$ and $\mathscr{C} \subseteq_P \mathscr{D}$ then $\mathscr{A} \cup_P \mathscr{C} \subseteq_P \mathscr{B} \cup_P \mathscr{D}$ and $\mathscr{A} \cap_P \mathscr{C} \subseteq_P \mathscr{B} \cap_P \mathscr{D}$
- (6) if $\mathscr{A} \subseteq_R \mathscr{B}$ and $\mathscr{B} \subseteq_R \mathscr{C}$ then $\mathscr{A} \subseteq_R \mathscr{C}$.
- (7) if $\mathscr{A} \subseteq_R \mathscr{B}$ then $\mathscr{B}^c \subseteq_R \mathscr{A}^c$.
- (8) if $\mathscr{A} \subseteq_R \mathscr{B}$ and $\mathscr{A} \subseteq_R \mathscr{C}$ then $\mathscr{A} \subseteq_R \mathscr{B} \cap_R \mathscr{C}$.
- (9) if $\mathscr{A} \subseteq_R \mathscr{B}$ and $\mathscr{C} \subseteq_R \mathscr{B}$ then $\mathscr{A} \cup_R \mathscr{C} \subseteq_R \mathscr{B}$.
- (10) if $\mathscr{A} \subseteq_R \mathscr{B}$ and $\mathscr{C} \subseteq_R \mathscr{D}$ then $\mathscr{A} \cup_R \mathscr{C} \subseteq_R \mathscr{B} \cup_R \mathscr{D}$ and $\mathscr{A} \cap_R \mathscr{C} \subseteq_R \mathscr{B} \cap_R \mathscr{D}$.

Proof. Straightforward.

Theorem 3.11. Let $\mathscr{A} = \langle A, \lambda \rangle$ be a cubic set in X. If \mathscr{A} is an ICS (resp. ECS), then \mathscr{A}^c is an ICS (resp. ECS).

Proof. Since $\mathscr{A} = \langle A, \lambda \rangle$ is an ICS (resp. ECS) in X, we have $A^-(x) \leq \lambda(x) \leq A^+(x)$ (resp. $\lambda(x) \notin (A^-(x), A^+(x))$ for all $x \in X$. This implies that

$$1 - A^{+}(x) \le 1 - \lambda(x) \le 1 - A^{-}(x)$$

(resp. $1 - \lambda(x) \notin (1 - A^+(x), 1 - A^-(x))$). Hence

$$\mathscr{A}^{c} = \{ \langle x, A^{c}(x), 1 - \lambda(x) \rangle \mid x \in X \}$$

is an ICS (resp. ECS) in X.

Theorem 3.12. Let $\{\mathscr{A}_i = \langle A_i, \lambda_i \rangle \mid i \in \Lambda\}$ be a family of ICSs in X. Then the *P*-union and the *P*-intersection of $\{\mathscr{A}_i = \langle A_i, \lambda_i \rangle \mid i \in \Lambda\}$ are ICSs in X.

Proof. Since \mathscr{A}_i is an ICS in X, we have $A_i^{-}(x) \leq \lambda_i(x) \leq A_i^{+}(x)$ for $i \in \Lambda$. This implies that

$$\left(\bigcup_{i\in\Lambda}A_i\right)^{-}(x) \leq \left(\bigvee_{i\in\Lambda}\lambda_i\right)(x) \leq \left(\bigcup_{i\in\Lambda}A_i\right)^{+}(x)$$

and

$$\left(\bigcap_{i\in\Lambda}A_i\right)^-(x)\leq\left(\bigwedge_{i\in\Lambda}\lambda_i\right)(x)\leq\left(\bigcap_{i\in\Lambda}A_i\right)^+(x).$$

Hence $\bigcup_{i \in \Lambda} \mathscr{A}_i$ and $\bigcap_{i \in \Lambda} \mathscr{A}_i$ are ICSs in X.

The following example shows that the P-union and P-intersection of ECSs need not be an ECS.

Example 3.13. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in I = [0, 1] in which $A(x) = [0.3, 0.5], \lambda(x) = 0.8, B(x) = [0.7, 0.9]$ and $\mu(x) = 0.4$ for all $x \in I$.

(1) We know that $\mathscr{A} \cup_P \mathscr{B} = \{ \langle x, B(x), \lambda(x) \rangle \mid x \in I \}$ and $\lambda(x) \in (B^-(x), B^+(x))$ for all $x \in I$. Hence $\mathscr{A} \cup_P \mathscr{B}$ is not an ECS in I.

(2) We know that $\mathscr{A} \cap_P \mathscr{B} = \{ \langle x, A(x), \mu(x) \rangle \mid x \in I \}$ and $\mu(x) \in (A^-(x), A^+(x))$ for all $x \in I$. Hence $\mathscr{A} \cap_P \mathscr{B}$ is not an ECS in I.

The following example shows that the R-union and R-intersection of ICSs need not be an ICS.

Example 3.14. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ICSs in I = [0, 1] in which $A(x) = [0.3, 0.5], \lambda(x) = 0.4, B(x) = [0.7, 0.9]$ and $\mu(x) = 0.8$ for all $x \in I$.

(1) We know that $\mathscr{A} \cup_R \mathscr{B} = \{ \langle x, B(x), \lambda(x) \rangle \mid x \in I \}$ and $\lambda(x) \notin [B^-(x), B^+(x)]$ for all $x \in I$. Hence $\mathscr{A} \cup_R \mathscr{B}$ is not an ICS in I.

(2) We know that $\mathscr{A} \cap_R \mathscr{B} = \{ \langle x, A(x), \mu(x) \rangle \mid x \in I \}$ and $\mu(x) \notin [A^-(x), A^+(x)]$ for all $x \in I$. Hence $\mathscr{A} \cap_R \mathscr{B}$ is not an ICS in I.

The following example shows that the R-union and R-intersection of ECSs need not be an ECS.

Example 3.15. (1) Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in I = [0, 1] in which $A(x) = [0.2, 0.4], \lambda(x) = 0.7, B(x) = [0.6, 0.8]$ and $\mu(x) = 0.9$ for all $x \in I$. We know that $\mathscr{A} \cup_R \mathscr{B} = \{\langle x, B(x), \lambda(x) \rangle \mid x \in I\}$ and $\lambda(x) \in (B^-(x), B^+(x))$ for all $x \in I$. Hence $\mathscr{A} \cup_R \mathscr{B}$ is not an ECS in I.

(2) Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in I = [0, 1] in which $A(x) = [0.2, 0.4], \lambda(x) = 0.1, B(x) = [0.6, 0.8]$ and $\mu(x) = 0.3$ for all $x \in I$. Then $\mathscr{A} \cap_R \mathscr{B} = \{\langle x, A(x), \mu(x) \rangle \mid x \in I\}$ and $\mu(x) \in (A^-(x), A^+(x))$ for all $x \in I$. Thus $\mathscr{A} \cap_R \mathscr{B}$ is not an ECS in I.

We provide a condition for the R-union of two ICSs to be an ICS.

Theorem 3.16. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ICSs in X such that

(3.1)
$$\max\left\{A^{-}(x), B^{-}(x)\right\} \le (\lambda \land \mu)(x)$$

for all $x \in X$. Then the R-union of \mathscr{A} and \mathscr{B} is an ICS in X.

Proof. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ICSs in X which satisfy the condition (3.1). Then $A^-(x) \leq \lambda(x) \leq A^+(x)$ and $B^-(x) \leq \mu(x) \leq B^+(x)$, which implies that $(\lambda \wedge \mu)(x) \leq (A \cup B)^+(x)$. It follows from the condition (3.1) that

$$(A \cup B)^{-}(x) = \max\{A^{-}(x), B^{-}(x)\} \le (\lambda \land \mu)(x) \le (A \cup B)^{+}(x)$$

so that $\mathscr{A} \cup_R \mathscr{B} = \{ \langle x, (A \cup B)(x), (\lambda \land \mu)(x) \rangle \mid x \in X \}$ is an ICS in X.

We provide a condition for the R-intersection of two ICSs to be an ICS.

Theorem 3.17. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ICSs in X satisfying the following inequality

(3.2)
$$\min\{A^+(x), B^+(x)\} \ge (\lambda \lor \mu)(x)$$

for all $x \in X$. Then the *R*-intersection of \mathscr{A} and \mathscr{B} is an ICS in X.

Y. B. Jun et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 83-98

X	A(x)	$\lambda(x)$	X	B(x)	$\mu(x)$
a	[0.2, 0.3]	0.1		[0.4, 0.5]	
b	[0.5, 0.6]	0.7	b	[0.7, 0.9]	0.4

TABLE 1. Cubic sets \mathscr{A} and \mathscr{B} respectively

$X \mid$	A(x)	$\lambda(x)$	$X \mid$	B(x)	$\mu(x)$
a	[0.3, 0.5]	0.7	a	[0.6, 0.8]	0.35
b	[0.2, 0.4]	0.65	b	[0.25, 0.55]	0.1
c	[0.35, 0.45]	0.75	c	[0.7, 0.85]	0.4

TABLE 2. Cubic sets \mathscr{A} and \mathscr{B} respectively

Proof. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ICSs in X which satisfy the condition (3.2.) Then $A^-(x) \leq \lambda(x) \leq A^+(x)$ and $B^-(x) \leq \mu(x) \leq B^+(x)$, and therefore $(A \cap B)^-(x) \leq (\lambda \lor \mu)(x)$. Using the condition (3.2.) we have

$$(A \cap B)^{-}(x) \le (\lambda \lor \mu)(x) \le \min\{A^{+}(x), B^{+}(x)\} = (A \cap B)^{+}(x)$$

and so $\mathscr{A} \cap_R \mathscr{B} = \{ \langle x, (A \cap B)(x), (\lambda \lor \mu)(x) \rangle \mid x \in X \}$ is an ICS in X.

Given two cubic sets $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ in X, if we exchange μ for λ , we denote the cubic sets by $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$, respectively.

For two ECSs \mathscr{A} and \mathscr{B} in X, two cubic sets \mathscr{A}^* and \mathscr{B}^* may not be ICSs in X as seen in the following example.

Example 3.18. (1) Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in I = [0, 1] in which $A(x) = [0.6, 0.7], \lambda(x) = 0.8, B(x) = [0.3, 0.4]$ and $\mu(x) = 0.2$ for all $x \in I$. Then we know that $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$ are not ICSs in X because $\mu(0.5) = 0.2 \notin [0.6, 0.7] = A(0.5)$ and $\lambda(0.5) = 0.8 \notin [0.3, 0.4] = B(0.5)$.

(2) Let $X = \{a, b\}$ be a set. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X defined by Table 1. Then we know that $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$ are not ICSs in X because $\mu(a) = 0.9 \notin [0.2, 0.3] = A(a)$ and $\lambda(a) = 0.1 \notin [0.4, 0.5] = B(a)$.

The following example shows that the P-union of two ECSs in X need not be an ICS in X.

Example 3.19. Let $X = \{a, b, c\}$ be a set. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X defined by Table 2. Then we know that $\mathscr{A} \cup_P \mathscr{B} = \langle A \cup B, \lambda \lor \mu \rangle$ is not an ICS in X because $(\lambda \lor \mu)(b) = 0.65 \notin [0.25, 0.55] = (A \cup B)(b)$.

We provide a condition for the P-union of two ECSs to be an ICS.

Theorem 3.20. For two ECSs $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ in X, if $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$ are ICSs in X, then the P-union $\mathscr{A} \cup_P \mathscr{B}$ of $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ is an ICS in X.

Y. B. Jun et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 83-98

X	A(x)	$\lambda(x)$	$X \parallel$	B(x)	$\mu(x)$
	[0.2, 0.3]		a	[0.4, 0.6]	0.9
b	[0.3, 0.6]	0.7	b	[0.7, 0.9]	0.4

TABLE 3. Cubic sets \mathscr{A} and \mathscr{B} respectively

Proof. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X such that $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$ are ICSs in X. Then $\lambda(x) \notin (A^-(x), A^+(x)), \ \mu(x) \notin (B^-(x), B^+(x)), B^-(x) \leq \lambda(x) \leq B^+(x)$ and $A^-(x) \leq \mu(x) \leq A^+(x)$ for all $x \in X$. Thus, for a given $x \in X$, we can consider the following cases:

(i) $\lambda(x) \le A^-(x) \le \mu(x) \le A^+(x)$ and $\mu(x) \le B^-(x) \le \lambda(x) \le B^+(x)$. (ii) $A^-(x) \le \mu(x) \le A^+(x) \le \lambda(x)$ and $B^-(x) \le \lambda(x) \le B^+(x) \le \mu(x)$. (iii) $\lambda(x) \le A^-(x) \le \mu(x) \le A^+(x)$ and $B^-(x) \le \lambda(x) \le B^+(x) \le \mu(x)$.

(iii)
$$A(x) \leq H^{-}(x) \leq \mu(x) \leq H^{-}(x)$$
 and $\mu(x) \leq h^{-}(x) \leq \mu(x)$.
(iv) $A^{-}(x) \leq \mu(x) \leq A^{+}(x) \leq \lambda(x)$ and $\mu(x) \leq B^{-}(x) \leq \lambda(x) \leq B^{+}(x)$.

We consider the first case only. For remaining cases, it is similar to the first case. For the first case, we have $\mu(x) = A^{-}(x) = B^{-}(x) = \lambda(x)$. Since $\mathscr{A}^{*} = \langle A, \mu \rangle$ and

For the first case, we have
$$\mu(x) = A^-(x) = B^-(x) = \lambda(x)$$
. Since $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$ are ICSs in X, we have $\mu(x) \leq A^+(x)$ and $\lambda(x) \leq B^+(x)$. It follows that

$$(A \cup B)^{-}(x) = \max \{A^{-}(x), B^{-}(x)\} = (\lambda \lor \mu)(x)$$

$$\leq \max \{A^{+}(x), B^{+}(x)\} = (A \cup B)^{+}(x).$$

Hence $\mathscr{A} \cup_P \mathscr{B}$ is an ICS in X.

We provide a condition for the P-intersection of two ECSs to be an ICS.

Theorem 3.21. Let \mathscr{A} and \mathscr{B} be ECSs in X such that \mathscr{A}^* and \mathscr{B}^* are ICSs. Then the P-intersection of \mathscr{A} and \mathscr{B} is an ICS in X.

Proof. It is similar to the proof of Theorem 3.20.

For two ECSs \mathscr{A} and \mathscr{B} in X, two cubic sets \mathscr{A}^* and \mathscr{B}^* may not be ECSs in X as shown by the following example.

Example 3.22. Let $X = \{a, b\}$ be a set. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X defined by Table 3. Then we know that $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$ are not ECSs in X because $\mu(b) = 0.4 \in (0.3, 0.6) = A(b)$ and $\lambda(a) = 0.5 \in (0.4, 0.6) = B(a)$.

We provide a condition for the P-union of two ECSs to be an ECS.

Theorem 3.23. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X such that $\mathscr{A}^* = \langle A, \mu \rangle$ and $\mathscr{B}^* = \langle B, \lambda \rangle$ are ECSs in X. Then the P-union of \mathscr{A} and \mathscr{B} is an ECS in X.

Proof. For any $x \in X$, we have $\lambda(x) \notin (A^-(x), A^+(x)), \ \mu(x) \notin (B^-(x), B^+(x)), \ \mu(x) \notin (A^-(x), A^+(x))$ and $\lambda(x) \notin (B^-(x), B^+(x))$. Hence

 $(\lambda \lor \mu)(x) \not\in \left(\max\left\{A^{-}(x), B^{-}(x)\right)\right\}, \max\left\{A^{+}(x), B^{+}(x)\right\}\right)$

which means that $(\lambda \lor \mu)(x) \notin ((A \cup B)^{-}(x), (A \cup B)^{+}(x))$. Hence $\mathscr{A} \cup_{P} \mathscr{B}$ is an ECS in X.

Note that the P-intersection of two ECSs may not be an ECS (see Example 3.13(2)). We give a condition for the P-intersection of two ECSs to be an ECS.

Theorem 3.24. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X such that

(3.3)
$$\min\left\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\right\} \ge (\lambda \land \mu)(x)$$

$$> \max\left\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\right\}$$

for all $x \in X$. Then the P-intersection of \mathscr{A} and \mathscr{B} is an ECS in X.

Proof. For each $x \in X$, take

$$\alpha_x := \min\left\{\max\left\{A^+(x), B^-(x)\right\}, \max\left\{A^-(x), B^+(x)\right\}\right\}$$

and

$$\beta_x := \max\left\{\min\left\{A^+(x), B^-(x)\right\}, \min\left\{A^-(x), B^+(x)\right\}\right\}.$$

Then α_x is one of $A^-(x)$, $B^-(x)$, $A^+(x)$ and $B^+(x)$. We consider $\alpha_x = A^-(x)$ or $\alpha_x = A^+(x)$ only. For the remaining cases, it is similar to this case. If $\alpha_x = A^-(x)$, then

 $B^{-}(x) \le B^{+}(x) \le A^{-}(x) \le A^{+}(x)$

and so $\beta_x = B^+(x)$. Thus

$$B^{-}(x) = (A \cap B)^{-}(x) \le (A \cap B)^{+}(x) = B^{+}(x) = \beta_{x} < (\lambda \land \mu)(x),$$

and hence $(\lambda \wedge \mu)(x) \notin ((A \cap B)^-(x), (A \cap B)^+(x))$.

If $\alpha_x = A^+(x)$ then $B^-(x) \le A^+(x) \le B^+(x)$ and so $\beta_x = \max \{A^-(x), B^-(x)\}$. Assume that $\beta_x = A^-(x)$. Then

(3.4)
$$B^{-}(x) \le A^{-}(x) < (\lambda \land \mu)(x) \le A^{+}(x) \le B^{+}(x).$$

From the inequality (3.4), we have

$$B^{-}(x) \le A^{-}(x) < (\lambda \land \mu)(x) < A^{+}(x) \le B^{+}(x)$$

or

$$B^{-}(x) \le A^{-}(x) < (\lambda \land \mu)(x) = A^{+}(x) \le B^{+}(x).$$

For the case $B^-(x) \leq A^-(x) < (\lambda \wedge \mu)(x) < A^+(x) \leq B^+(x)$, it is a contradiction to the fact that \mathscr{A} and \mathscr{B} are ECSs in X. For the case

$$B^{-}(x) \le A^{-}(x) < (\lambda \land \mu)(x) = A^{+}(x) \le B^{+}(x),$$

we have $(\lambda \wedge \mu)(x) \notin ((A \cap B)^-(x), (A \cap B)^+(x))$ since $(\lambda \wedge \mu)(x) = A^+(x) = (A \cap B)^+(x)$.

Assume that $\beta_x = B^-(x)$. Then

(3.5)
$$A^{-}(x) \le B^{-}(x) < (\lambda \land \mu)(x) \le A^{+}(x) \le B^{+}(x).$$

From the inequality (3.5), we have

$$A^{-}(x) \le B^{-}(x) < (\lambda \land \mu)(x) < A^{+}(x) \le B^{+}(x)$$

or

$$A^{-}(x) \le B^{-}(x) < (\lambda \land \mu)(x) = A^{+}(x) \le B^{+}(x).$$

91

X	A(x)	$\lambda(x)$		X	B(x)	$\mu(x)$
a	[0.2, 0.6]	0.7	-	a	[0.3, 0.7]	0.3
b	[0.3, 0.7]	0.3		b	[0.2, 0.6]	0.7
c	[0.2, 0.6]	0.9	-	c	[0.4, 0.7]	0.4

TABLE 4. Cubic sets \mathscr{A} and \mathscr{B} respectively

For the case $A^{-}(x) \leq B^{-}(x) < (\lambda \wedge \mu)(x) < A^{+}(x) \leq B^{+}(x)$, it contradicts to the fact that \mathscr{A} and \mathscr{B} are ECSs in X. For the case

$$A^{-}(x) \le B^{-}(x) < (\lambda \land \mu)(x) = A^{+}(x) \le B^{+}(x),$$

we get $(\lambda \wedge \mu)(x) \notin ((A \cap B)^{-}(x), (A \cap B)^{+}(x))$ since

$$(\lambda \wedge \mu)(x) = A^+(x) = (A \cap B)^+(x).$$

Hence the P-intersection of \mathscr{A} and \mathscr{B} is an ECS in X.

The following example shows that for two ECSs $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ which satisfy the condition

$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} > (\lambda \land \mu)(x)$$
$$= \max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},$$

for all $x \in X$, the P-intersection of \mathscr{A} and \mathscr{B} may not be an ECS in X.

Example 3.25. Let $X = \{a, b, c\}$ be a set. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECS in X defined by Table 4. Then we know that $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ satisfy the following condition:

$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} > (\lambda \land \mu)(x)$$
$$= \max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\}.$$

But $\mathscr{A} \cap_P \mathscr{B} = \langle A \cap B, \lambda \wedge \mu \rangle$ is not an ECS in X because $(\lambda \wedge \mu)(a) = 0.3 \in (0.2, 0.6) = ((A \cap B)^-(a), (A \cap B)^+(a))$.

Now, we provide a condition for the P-intersection of two cubic sets to be both an ECS and an ICS.

Theorem 3.26. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be cubic sets in X such that

(3.6)
$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} = (\lambda \land \mu)(x)$$

$$= \max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},\$$

for all $x \in X$. Then the P-intersection of \mathscr{A} and \mathscr{B} is both an ECS and an ICS in X.

Proof. For each $x \in X$, take

$$\alpha_x := \min\left\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\right\}$$

and

$$\beta_x := \max\left\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\right\}$$
92

Then α_x is one of $A^-(x)$, $B^-(x)$, $A^+(x)$ and $B^+(x)$. We consider $\alpha_x = A^-(x)$ or $\alpha_x = A^+(x)$ only. For remaining cases, it is similar to this cases. If $\alpha_x = A^-(x)$, then

$$B^{-}(x) \le B^{+}(x) \le A^{-}(x) \le A^{+}(x)$$

and so $\beta_x = B^+(x)$. This implies that $A^-(x) = \alpha_x = (\lambda \wedge \mu)(x) = \beta_x = B^+(x)$. Thus

$$B^{-}(x) \le B^{+}(x) = (\lambda \land \mu)(x) = A^{-}(x) \le A^{+}(x).$$

This implies that $(\lambda \wedge \mu)(x) = B^+(x) = (A \cap B)^+(x)$. Hence

$$(\lambda \wedge \mu)(x) \notin ((A \cap B)^{-}(x), (A \cap B)^{+}(x))$$

and $(A \cap B)^-(x) \le (\lambda \land \mu)(x) \le (A \cap B)^+(x)$.

If $\alpha_x = A^+(x)$, then $B^-(x) \leq A^+(x) \leq B^+(x)$ and so $(\lambda \wedge \mu)(x) = A^+(x) = (A \cap B)^+(x)$. Hence $(\lambda \wedge \mu)(x) \notin ((A \cap B)^-(x), (A \cap B)^+(x))$ and $(A \cap B)^-(x) \leq (\lambda \wedge \mu)(x) \leq (A \cap B)^+(x)$. Consequently, we know that the P-intersection of \mathscr{A} and \mathscr{B} is both an ECS and an ICS in X.

The following example shows that the P-union of two ECSs \mathscr{A} and \mathscr{B} may not be an ECS.

Example 3.27. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in *I* defined by

$$\begin{split} A(x) &= \begin{cases} [0.15, 0.25] & \text{if } 0 \le x < 0.5 \ , \\ [0.6, 0.7] & \text{if } 0.5 \le x \le 1, \end{cases} \lambda(x) = \begin{cases} 0.5x + 0.5 & \text{if } 0 \le x < 0.5 \ , \\ 0.3 & \text{if } 0.5 \le x \le 1, \end{cases} \\ B(x) &= \begin{cases} [0.8, 0.9] & \text{if } 0 \le x < 0.5 \ , \\ [0.1, 0.2] & \text{if } 0.5 \le x \le 1, \end{cases} \mu(x) = \begin{cases} 0.4 & \text{if } 0 \le x < 0.5 \ , \\ x & \text{if } 0.5 \le x \le 1. \end{cases} \end{split}$$

Then

$$(A \cup B)(x) = \begin{cases} [0.8, 0.9] & \text{if } 0 \le x < 0.5 \ , \\ [0.6, 0.7] & \text{if } 0.5 \le x \le 1, \end{cases}$$
$$(\lambda \lor \mu)(x) = \begin{cases} 0.5x + 0.5 & \text{if } 0 \le x < 0.5 \ , \\ x & \text{if } 0.5 \le x \le 1. \end{cases}$$

But $\mathscr{A} \cup_P \mathscr{B}$ is not an ECS because

$$(\lambda \lor \mu)(0.65) = 0.65 \in (0.65, 0.7) = ((A \cup B)^{-}(0.65), (A \cup B)^{+}(0.65)).$$

We provide a condition for the P-union of two ECSs to be an ECS.

Theorem 3.28. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X such that

(3.7)
$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} > (\lambda \lor \mu)(x) \\ \ge \max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},$$

for all $x \in X$. Then the P-union of \mathscr{A} and \mathscr{B} is an ECS in X.

Proof. For each $x \in X$, take

 $\alpha_x := \min\left\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\right\}$

and

 $\beta_x := \max\left\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\right\}.$

Then α_x is one of $A^-(x)$, $B^-(x)$, $A^+(x)$ and $B^+(x)$. We consider $\alpha_x = A^-(x)$ or $\alpha_x = A^+(x)$ only. For remaining cases, it is similar to this cases.

If $\alpha_x = A^-(x)$, then

$$B^{-}(x) \le B^{+}(x) \le A^{-}(x) \le A^{+}(x)$$

and so $\beta_x = B^+(x)$. Thus

$$(A\cup B)^-(x)=A^-(x)=\alpha_x>(\lambda\vee\mu)(x)$$

and hence $(\lambda \lor \mu)(x) \not\in ((A \cup B)^-(x), (A \cup B)^+(x))$.

If $\alpha_x = A^+(x)$ then $B^-(x) \le A^+(x) \le B^+(x)$ and so $\beta_x = \max \{A^-(x), B^-(x)\}$. Assume that $\beta_x = A^-(x)$. Then

(3.8)
$$B^{-}(x) \le A^{-}(x) \le (\lambda \lor \mu)(x) < A^{+}(x) \le B^{+}(x),$$

and so

$$B^{-}(x) \le A^{-}(x) < (\lambda \lor \mu)(x) < A^{+}(x) \le B^{+}(x)$$

or

$$B^{-}(x) \le A^{-}(x) = (\lambda \lor \mu)(x) \le A^{+}(x) \le B^{+}(x).$$

For the first case, it contradicts to the fact that \mathscr{A} and \mathscr{B} are ECSs in X. The second case implies that $(\lambda \lor \mu)(x) \notin ((A \cup B)^-(x), (A \cup B)^+(x))$ since $(A \cup B)^-(x) = A^-(x) = (\lambda \lor \mu)(x)$.

Assume that $\beta_x = B^-(x)$. Then

(3.9)
$$A^{-}(x) \le B^{-}(x) \le (\lambda \lor \mu)(x) \le A^{+}(x) < B^{+}(x),$$

which implies that

$$A^{-}(x) \le B^{-}(x) < (\lambda \lor \mu)(x) < A^{+}(x) \le B^{+}(x)$$

or

$$A^{-}(x) \le B^{-}(x) = (\lambda \lor \mu)(x) < A^{+}(x) \le B^{+}(x).$$

For the case $A^-(x) \leq B^-(x) < (\lambda \lor \mu)(x) < A^+(x) \leq B^+(x)$, it contradicts to the fact that \mathscr{A} and \mathscr{B} are ECSs in X. For the case

$$A^{-}(x) \le B^{-}(x) = (\lambda \lor \mu)(x) \le A^{+}(x) \le B^{+}(x),$$

we have $(\lambda \lor \mu)(x) \notin ((A \cup B)^-(x), (A \cup B)^+(x))$ since $(A \cup B)^-(x) = B^-(x) = (\lambda \lor \mu)(x)$. Hence the P-union of \mathscr{A} and \mathscr{B} is an ECS in X. \Box

We provide a condition for the R-union of two ECSs to be an ECS.

Theorem 3.29. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X. If for each $x \in X$,

(3.10)
$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} > (\lambda \land \mu)(x)$$
$$\geq \max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},$$

then the R-union of \mathscr{A} and \mathscr{B} is an ECS in X.

Proof. For each $x \in X$, take

$$\alpha_x := \min\left\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\right\}$$

and

$$\beta_x := \max\left\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\right\}.$$

Then α_x is one of $A^-(x)$, $B^-(x)$, $A^+(x)$ and $B^+(x)$. We consider $\alpha_x = B^-(x)$ or $\alpha_x = B^+(x)$ only. For remaining cases, it is similar to this cases.

If $\alpha_x = B^-(x)$, then

$$A^{-}(x) \le A^{+}(x) \le B^{-}(x) \le B^{+}(x)$$

and so $\beta_x = A^+(x)$. Thus by inequality 3.10,

$$(A \cup B)^{-}(x) = B^{-}(x) = \alpha_x > (\lambda \land \mu)(x)$$

and hence $(\lambda \wedge \mu)(x) \notin ((A \cup B)^-(x), (A \cup B)^+(x))$.

If $\alpha_x = B^+(x)$ then $A^-(x) \leq B^+(x) \leq A^+(x)$ and so $\beta_x = \max\{A^-(x), B^-(x)\}$. Assume that $\beta_x = A^-(x)$. Then

(3.11)
$$B^{-}(x) \le A^{-}(x) \le (\lambda \land \mu)(x) < B^{+}(x) \le A^{+}(x).$$

which implies that

$$B^{-}(x) \le A^{-}(x) < (\lambda \land \mu)(x) < B^{+}(x) \le A^{+}(x)$$

or

$$B^{-}(x) \le A^{-}(x) = (\lambda \land \mu)(x) \le B^{+}(x) \le A^{+}(x).$$

For the case $B^{-}(x) \leq A^{-}(x) < (\lambda \wedge \mu)(x) < B^{+}(x) \leq A^{+}(x)$, it contradicts to the fact that \mathscr{A} and \mathscr{B} are ECSs in X. For the case

$$B^{-}(x) \le A^{-}(x) = (\lambda \land \mu)(x) \le B^{+}(x) \le A^{+}(x),$$

we get $(\lambda \wedge \mu)(x) \notin ((A \cup B)^-(x), (A \cup B)^+(x))$ since $(A \cup B)^-(x) = A^-(x) = (\lambda \wedge \mu)(x)$.

Assume that $\beta_x = B^-(x)$. Then

(3.12)
$$A^{-}(x) \le B^{-}(x) \le (\lambda \land \mu)(x) \le B^{+}(x) < A^{+}(x).$$

Hence

$$A^{-}(x) \le B^{-}(x) < (\lambda \land \mu)(x) < B^{+}(x) \le A^{+}(x)$$

or

$$A^{-}(x) \le B^{-}(x) = (\lambda \land \mu)(x) < B^{+}(x) \le A^{+}(x).$$

For the case $A^{-}(x) \leq B^{-}(x) < (\lambda \wedge \mu)(x) < B^{+}(x) \leq A^{+}(x)$, it is a contradiction because \mathscr{A} and \mathscr{B} are ECSs in X. For the case

$$A^{-}(x) \le B^{-}(x) = (\lambda \land \mu)(x) \le B^{+}(x) \le A^{+}(x),$$

we obtain $(\lambda \wedge \mu)(x) \notin ((A \cup B)^-(x), (A \cup B)^+(x))$ since $(A \cup B)^-(x) = B^-(x) = (\lambda \wedge \mu)(x)$. Hence the R-union of \mathscr{A} and \mathscr{B} is an ECS in X. \Box

Y. B. Jun et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 83-98

X	A(x)	$\lambda(x)$		$X \parallel$	B(x)	$\mu(x)$
a	[0.1, 0.8]	0.9	-	a	[0.2, 0.7]	0.7
b	[0.3, 0.6]	0.6			[0.1, 0.7]	
c	[0.4, 0.5]	0.5	-	c	[0.3, 0.8]	0.9

TABLE 5. Cubic sets \mathscr{A} and \mathscr{B} respectively

The following example shows that for two ECSs $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ which satisfy the condition

 $\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} = (\lambda \land \mu)(x)$ > $\max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},$

for all $x \in X$, the R-union of \mathscr{A} and \mathscr{B} may not be an ECS in X.

Example 3.30. Let $X = \{a, b, c\}$ be a set. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X defined by Table 5. Then we know that $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ satisfy the following condition:

 $\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} = (\lambda \land \mu)(x)$ > $\max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},$

But $\mathscr{A} \cup_R \mathscr{B} = \langle A \cup B, \lambda \wedge \mu \rangle$ is not an ECS in X because $(\lambda \wedge \mu)(c) = 0.5 \in (0.4, 0.8) = ((A \cup B)^-(c), (A \cup B)^+(c))$.

Now, we provide a condition for the R-intersection of two ECSs to be ECS.

Theorem 3.31.

(3.13)
$$\min \left\{ \max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\} \right\} \ge (\lambda \lor \mu)(x)$$
$$> \max \left\{ \min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\} \right\},$$

then the R-intersection of \mathscr{A} and \mathscr{B} is an ECS in X.

Proof. By similar way to Theorem 3.29, we can obtain the result.

The following example shows that for two ECSs $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ which satisfy the condition

$$\min\left\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\right\} > (\lambda \lor \mu)(x)$$
$$= \max\left\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\right\},$$

for all $x \in X$, the R-intersection of \mathscr{A} and \mathscr{B} may not be an ECS in X.

Example 3.32. Let $X = \{a, b, c\}$ be a set. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X defined by Table 6. Then we know that $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ satisfy the condition

$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} > (\lambda \lor \mu)(x)$$
$$= \max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},$$

But $\mathscr{A} \cap_R \mathscr{B} = \langle A \cap B, \lambda \lor \mu \rangle$ is not an ECS in X because $(\lambda \lor \mu)(b) = 0.5 \in (0.4, 0.7) = ((A \cap B)^-(b), (A \cap B)^+(b))$.

X	A(x)	$\lambda(x)$	X	B(x)	$\mu(x)$
a	[0.2, 0.4]	0.1	a	[0.3, 0.6]	0.3
b	[0.5, 0.8]	0.5	b	[0.4, 0.7]	0.2
c	[0.6, 0.8]	0.4	c	[0.7, 0.9]	0.7

TABLE 6. Cubic sets \mathscr{A} and \mathscr{B} respectively

Now, we provide a condition for the R-intersection of two cubic sets to be both an ECS and an ICS.

Theorem 3.33. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be cubic sets in X such that $\min \{ \max\{A^+(x) \mid B^-(x) \}, \max\{A^-(x), B^+(x)\} \} = (\lambda \lor \mu)(x)$

(3.14)
$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} = (X \lor \mu)$$
$$= \max\{\min\{A^+(x), B^-(x)\}, \min\{A^-(x), B^+(x)\}\},$$

for all $x \in X$. Then the *R*-intersection of \mathscr{A} and \mathscr{B} is both an ECS and an ICS in X.

Proof. By the similar way to Theorem 3.26, it is straightforward.

We provide a condition for the R-union of two ICSs to be an ECS.

Theorem 3.34. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ICSs in X. If $(\lambda \wedge \mu)(x) \leq \max\{A^{-}(x), B^{-}(x)\}$

for all $x \in X$, then the R-union of \mathscr{A} and \mathscr{B} is an ECS in X.

Proof. Straightforward.

We provide a condition for the R-intersection of two ICSs to be an ECS.

Theorem 3.35. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ICSs in X. If

 $(\lambda \lor \mu)(x) \ge \min\{A^+(x), B^+(x)\}$

for all $x \in X$, then the *R*-intersection of \mathscr{A} and \mathscr{B} is an ECS in X.

Proof. Straightforward.

We provide a condition for the R-union of two ECSs to be an ICS.

Theorem 3.36. Let $\mathscr{A} = \langle A, \lambda \rangle$ and $\mathscr{B} = \langle B, \mu \rangle$ be ECSs in X such that

(3.15)
$$\min\{\max\{A^+(x), B^-(x)\}, \max\{A^-(x), B^+(x)\}\} \le (\lambda \land \mu)(x)$$
$$\le \max\{A^+(x), B^+(x)\}$$

for all $x \in X$. Then the R-union of \mathscr{A} and \mathscr{B} is an ICS in X.

Proof. Straightforward.

Acknowledgements. The first author, Y. B. Jun, is an Executive Research Worker of Educational Research Institute Teachers College in Gyeongsang National University.

References

- L. J. Kohout, W. Bandler, Fuzzy interval inference utilizing the checklist paradigm and BKrelational products, in: R.B. Kearfort et al. (Eds.), Applications of Interval Computations, Kluwer, Dordrecht, 1996, pp. 291–335.
- [2] R. Sambuc, Functions Φ-Flous, Application à l'aide au Diagnostic en Pathologie Thyroidienne, Thèse de Doctorat en Médecine, Marseille, 1975.
- [3] I. B. Turksen, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20 (1986) 191-210.
- [4] I. B. Turksen, Interval-valued fuzzy sets and compensatory AND, Fuzzy Sets and Systems 51 (1992) 295–307.
- [5] I. B. Turksen, Interval-valued strict preference with Zadeh triples, Fuzzy Sets and Systems 78 (1996) 183–195.
- [6] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.
- [7] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci. 8 (1975) 199–249.

YOUNG BAE JUN (skywine@gmail.com)

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

<u>CHANG SU KIM</u> (cupncap@gmail.com)

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

<u>KI OONG YANG</u> (hanbisu@hanmail.net)

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea