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Abstract. The notions of (internal, external) cubic sets, P-(R-)order,
P-(R-)union and P-(R-)intersection are introduced, and related properties
are investigated. We show that the P-union and the P-intersection of
internal cubic sets are also internal cubic sets. We provide examples to
show that the P-union and the P-intersection of external cubic sets need not
be external cubic sets, and the R-union and the R-intersection of internal
(resp. external) cubic sets need not be internal (resp. external) cubic
sets. We provide conditions for the P-union (resp. P-intersection) of two
external cubic sets to be an internal cubic set. We give conditions for the
P-union (resp. R-union and R-intersection) of two external cubic sets to be
an external cubic set. We consider conditions for the R-intersection (resp.
P-intersection) of two cubic sets to be both an external cubic set and an
internal cubic set.
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1. Introduction

Fuzzy sets are initiated by Zadeh [6]. In [7], Zadeh made an extension of the
concept of a fuzzy set by an interval-valued fuzzy set, i.e., a fuzzy set with an
interval-valued membership function. In traditional fuzzy logic, to represent, e.g.,
the expert’s degree of certainty in different statements, numbers from the interval
[0, 1] are used. It is often difficult for an expert to exactly quantify his or her
certainty; therefore, instead of a real number, it is more adequate to represent this
degree of certainty by an interval or even by a fuzzy set. In the first case, we
get an interval-valued fuzzy set. In the second case, we get a second-order fuzzy
set. Interval-valued fuzzy sets have been actively used in real-life applications. For
example, Sambuc [2] in Medical diagnosis in thyroidian pathology, Kohout [1] also
in Medicine, in a system CLINAID, Gorzalczany [10] in Approximate reasoning,
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Turksen [3, 4] in Interval-valued logic, in preferences modelling [5], etc. These works
and others show the importance of these sets. Fuzzy sets deal with possibilistic
uncertainty, connected with imprecision of states, perceptions and preferences.

In this paper, using a fuzzy set and an interval-valued fuzzy set, we introduce a
new notion, called a (internal, external) cubic set, and investigate several properties.
We deal with P-union, P-intersection, R-union and R-intersection of cubic sets, and
investigate several related properties.

2. Preliminaries

A fuzzy set in a set X is defined to be a function λ : X → I where I = [0, 1].
Denote by IX the collection of all fuzzy sets in a set X. Define a relation ≤ on IX

as follows:
(∀λ, µ ∈ IX) (λ ≤ µ ⇐⇒ (∀x ∈ X)(λ(x) ≤ µ(x))).

The join (∨) and meet (∧) of λ and µ are defined by

(λ ∨ µ)(x) = max{λ(x), µ(x)},

(λ ∧ µ)(x) = min{λ(x), µ(x)},
respectively, for all x ∈ X. The complement of λ, denoted by λc, is defined by

(∀x ∈ X) (λc(x) = 1− λ(x)).

For a family {λi | i ∈ Λ} of fuzzy sets in X, we define the join (∨) and meet (∧)
operations as follows: ( ∨

i∈Λ

λi

)
(x) = sup{λi(x) | i ∈ Λ},

( ∧
i∈Λ

λi

)
(x) = inf{λi(x) | i ∈ Λ},

respectively, for all x ∈ X.
By an interval number we mean a closed subinterval ã = [a−, a+] of I, where

0 ≤ a− ≤ a+ ≤ 1. The interval number ã = [a−, a+] with a− = a+ is denoted by a.
Denote by [I] the set of all interval numbers. Let us define what is known as refined
minimum (briefly, rmin) of two elements in [I]. We also define the symbols “�”, “�”,
“=” in case of two elements in [I]. Consider two interval numbers ã1 :=

[
a−1 , a+

1

]
and ã2 :=

[
a−2 , a+

2

]
. Then

rmin {ã1, ã2} =
[
min

{
a−1 , a−2

}
,min

{
a+
1 , a+

2

}]
,

ã1 � ã2 if and only if a−1 ≥ a−2 and a+
1 ≥ a+

2 ,

and similarly we may have ã1 � ã2 and ã1 = ã2. To say ã1 � ã2 (resp. ã1 ≺ ã2) we
mean ã1 � ã2 and ã1 6= ã2 (resp. ã1 � ã2 and ã1 6= ã2). Let ãi ∈ [I] where i ∈ Λ.
We define

rinf
i∈Λ

ãi =
[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ãi =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.

For any ã ∈ [I], its complement, denoted by ãc, is defined be the interval number

ãc = [1− a+, 1− a−].
84
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Let X be a nonempty set. A function A : X → [I] is called an interval-valued
fuzzy set (briefly, an IVF set) in X. Let [I]X stand for the set of all IVF sets in
X. For every A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)] is called the degree of
membership of an element x to A, where A− : X → I and A+ : X → I are fuzzy
sets in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively.
For simplicity, we denote A = [A−, A+]. For every A,B ∈ [I]X , we define

A ⊆ B ⇔ A(x) � B(x) for all x ∈ X,

and
A = B ⇔ A(x) = B(x) for all x ∈ X.

The complement Ac of A ∈ [I]X is defined as follows: Ac(x) = A(x)c for all x ∈ X,
that is,

Ac(x) = [1−A+(x), 1−A−(x)] for all x ∈ X.

For a family {Ai | i ∈ Λ} of IVF sets in X where Λ is an index set, the union
G =

⋃
i∈Λ

Ai and the intersection F =
⋂

i∈Λ

Ai are defined as follows:

G(x) =

(⋃
i∈Λ

Ai

)
(x) = rsup

i∈Λ
Ai(x)

and

F (x) =

(⋂
i∈Λ

Ai

)
(x) = rinf

i∈Λ
Ai(x)

for all x ∈ X, respectively. For a point p ∈ X and for ã = [a−, a+] ∈ [I] with
a+ > 0, the IVF set which takes the value ã at p and 0 elsewhere in X is called an
interval-valued fuzzy point (briefly, an IVF point) and is denoted by ãp. The set of
all IVF points in X is denoted by IV FP (X). For any ã ∈ [I] and x ∈ X, the IVF
point ãx is said to belong to an IVF set A in X, denoted by ãx∈̃A, if A(x) � ã. It
can be easily shown that A = ∪{ãx | ãx∈̃A}.

3. Cubic sets

Definition 3.1. Let X be a nonempty set. By a cubic set in X we mean a structure

A = {〈x, A(x), λ(x)〉 | x ∈ X}
in which A is an IVF set in X and λ is a fuzzy set in X.

A cubic set A = {〈x, A(x), λ(x)〉 | x ∈ X} is simply denoted by A = 〈A, λ〉.
Denote by CX the collection of all cubic sets in X.

A cubic set A = 〈A, λ〉 in which A(x) = 0 and λ(x) = 1 (resp. A(x) = 1 and
λ(x) = 0) for all x ∈ X is denoted by 0̈ (resp. 1̈).

A cubic set B = 〈B,µ〉 in which B(x) = 0 and µ(x) = 0 (resp. B(x) = 1 and
µ(x) = 1) for all x ∈ X is denoted by 0̂ (resp. 1̂).

Definition 3.2. Let X be a nonempty set. A cubic set A = 〈A, λ〉 in X is said to
be an internal cubic set (briefly, ICS) if A−(x) ≤ λ(x) ≤ A+(x) for all x ∈ X.

Definition 3.3. Let X be a nonempty set. A cubic set A = 〈A, λ〉 in X is said to
be an external cubic set (briefly, ECS) if λ(x) 6∈ (A−(x), A+(x)) for all x ∈ X.
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Example 3.4. (1) Let X be a nonempty set. Let A be an IVF set in X. Then
A = {〈x, A(x), 1(x)〉 | x ∈ X}, B = {〈x,A(x), 0(x)〉 | x ∈ X} and

C =
{〈

x, A(x), λ(x)
〉
| x ∈ X

}
where λ(x) = A−(x)+A+(x)

2

are cubic sets in X.
(2) Let A = {〈x,A(x), λ(x) | x ∈ I} be a cubic set in I. If A(x) = [0.3, 0.7] and

λ(x) = 0.4 for all x ∈ I, then A is an ICS. If A(x) = [0.3, 0.7] and λ(x) = 0.8 for all
x ∈ I, then A is an ECS. If A(x) = [0.3, 0.7] and λ(x) = x for all x ∈ I, then A is
neither an ICS nor an ECS.

Theorem 3.5. Let A = 〈A, λ〉 be a cubic set in X which is not an ECS. Then there
exist x ∈ X such that λ(x) ∈ (A−(x), A+(x)).

Proof. Straightforward. �

Theorem 3.6. Let A = 〈A, λ〉 be a cubic set in X. If A is both an ICS and an
ECS, then

(∀x ∈ X) (λ(x) ∈ U(A) ∪ L(A))
where U(A) = {A+(x) | x ∈ X} and L(A) = {A−(x) | x ∈ X}.
Proof. Assume that A is both an ICS and an ECS. Using Definitions 3.2 and 3.3,
we have A−(x) ≤ λ(x) ≤ A+(x) and λ(x) 6∈ (A−(x), A+(x)) for all x ∈ X. Thus
λ(x) = A−(x) or A+(x) = λ(x), and so λ(x) ∈ U(A) ∪ L(A). �

Remark 3.7. Every intuitionistic fuzzy set A = {〈x, µ(x), γ(x)〉 | x ∈ X} in X is
considered as a cubic set in X.

Definition 3.8. Let A = 〈A, λ〉 and B = 〈B,µ〉 be cubic sets in X. Then we define
(a) (Equality) A = B ⇔ A = B and λ = µ.
(b) (P-order) A ⊆P B ⇔ A ⊆ B and λ ≤ µ.
(c) (R-order) A ⊆R B ⇔ A ⊆ B and λ ≥ µ.

Definition 3.9. For any Ai = {〈x,Ai(x), λi(x)〉 | x ∈ X} where i ∈ Λ, we define

(a)
⋃

P
i∈Λ

Ai =
{〈

x,

( ⋃
i∈Λ

Ai

)
(x),

( ∨
i∈Λ

λi

)
(x)
〉
| x ∈ X

}
(P-union)

(b)
⋂

P
i∈Λ

Ai =
{〈

x,

( ⋂
i∈Λ

Ai

)
(x),

( ∧
i∈Λ

λi

)
(x)
〉
| x ∈ X

}
(P-intersection)

(c)
⋃

R
i∈Λ

Ai =
{〈

x,

( ⋃
i∈Λ

Ai

)
(x),

( ∧
i∈Λ

λi

)
(x)
〉
| x ∈ X

}
(R-union)

(d)
⋂

R
i∈Λ

Ai =
{〈

x,

( ⋂
i∈Λ

Ai

)
(x),

( ∨
i∈Λ

λi

)
(x)
〉
| x ∈ X

}
(R-intersection)

The complement of A = 〈A, λ〉 is defined to be the cubic set

A c = {〈x,Ac(x), 1− λ(x)〉 | x ∈ X} .

Obviously, (A c)c = A , 0̂c = 1̂, 1̂c = 0̂, 0̈c = 1̈ and 1̈c = 0̈. For any

Ai = {〈x,Ai(x), λi(x)〉 | x ∈ X}, i ∈ Λ,

we have

(⋃
P

i∈Λ

Ai

)c

=
⋂

P
i∈Λ

(Ai)c and

(⋂
P

i∈Λ

Ai

)c

=
⋃

P
i∈Λ

(Ai)c. Also we have
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R

i∈Λ

Ai

)c

=
⋂

R
i∈Λ

(Ai)c and

(⋂
R

i∈Λ

Ai

)c

=
⋃

R
i∈Λ

(Ai)c.

Proposition 3.10. For any cubic sets A = 〈A, λ〉, B = 〈B,µ〉, C = 〈C, γ〉, and
D = 〈D, ρ〉, we have

(1) if A ⊆P B and B ⊆P C then A ⊆P C .
(2) if A ⊆P B then Bc ⊆P A c.
(3) if A ⊆P B and A ⊆P C then A ⊆P B ∩P C .
(4) if A ⊆P B and C ⊆P B then A ∪P C ⊆P B.
(5) if A ⊆P B and C ⊆P D then A ∪P C ⊆P B∪P D and A ∩P C ⊆P B∩P D
(6) if A ⊆R B and B ⊆R C then A ⊆R C .
(7) if A ⊆R B then Bc ⊆R A c.
(8) if A ⊆R B and A ⊆R C then A ⊆R B ∩R C .
(9) if A ⊆R B and C ⊆R B then A ∪R C ⊆R B.

(10) if A ⊆R B and C ⊆R D then A ∪RC ⊆R B∪RD and A ∩RC ⊆R B∩RD .

Proof. Straightforward. �

Theorem 3.11. Let A = 〈A, λ〉 be a cubic set in X. If A is an ICS (resp, ECS),
then A c is an ICS (resp, ECS).

Proof. Since A = 〈A, λ〉 is an ICS (resp. ECS) in X, we have A−(x) ≤ λ(x) ≤ A+(x)
(resp. λ(x) 6∈ (A−(x), A+(x)) for all x ∈ X. This implies that

1−A+(x) ≤ 1− λ(x) ≤ 1−A−(x)

(resp. 1− λ(x) 6∈ (1−A+(x), 1−A−(x)). Hence

A c = {〈x,Ac(x), 1− λ(x)〉 | x ∈ X}

is an ICS (resp. ECS) in X. �

Theorem 3.12. Let {Ai = 〈Ai, λi〉 | i ∈ Λ} be a family of ICSs in X. Then the
P-union and the P-intersection of {Ai = 〈Ai, λi〉 | i ∈ Λ} are ICSs in X.

Proof. Since Ai is an ICS in X, we have Ai
−(x) ≤ λi(x) ≤ Ai

+(x) for i ∈ Λ. This
implies that (⋃

i∈Λ

Ai

)−
(x) ≤

(∨
i∈Λ

λi

)
(x) ≤

(⋃
i∈Λ

Ai

)+

(x)

and (⋂
i∈Λ

Ai

)−
(x) ≤

(∧
i∈Λ

λi

)
(x) ≤

(⋂
i∈Λ

Ai

)+

(x).

Hence
⋃

P
i∈Λ

Ai and
⋂

P
i∈Λ

Ai are ICSs in X. �

The following example shows that the P-union and P-intersection of ECSs need
not be an ECS.
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Example 3.13. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in I = [0, 1] in which
A(x) = [0.3, 0.5], λ(x) = 0.8, B(x) = [0.7, 0.9] and µ(x) = 0.4 for all x ∈ I.

(1) We know that A ∪P B = {〈x,B(x), λ(x)〉 | x ∈ I} and λ(x) ∈ (B−(x), B+(x))
for all x ∈ I. Hence A ∪P B is not an ECS in I.

(2) We know that A ∩P B = {〈x, A(x), µ(x)〉 | x ∈ I} and µ(x) ∈ (A−(x), A+(x))
for all x ∈ I. Hence A ∩P B is not an ECS in I.

The following example shows that the R-union and R-intersection of ICSs need
not be an ICS.

Example 3.14. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ICSs in I = [0, 1] in which
A(x) = [0.3, 0.5], λ(x) = 0.4, B(x) = [0.7, 0.9] and µ(x) = 0.8 for all x ∈ I.

(1) We know that A ∪R B = {〈x, B(x), λ(x)〉 | x ∈ I} and λ(x) 6∈ [B−(x), B+(x)]
for all x ∈ I. Hence A ∪R B is not an ICS in I.

(2) We know that A ∩R B = {〈x,A(x), µ(x)〉 | x ∈ I} and µ(x) 6∈ [A−(x), A+(x)]
for all x ∈ I. Hence A ∩R B is not an ICS in I.

The following example shows that the R-union and R-intersection of ECSs need
not be an ECS.

Example 3.15. (1) Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in I = [0, 1] in which
A(x) = [0.2, 0.4], λ(x) = 0.7, B(x) = [0.6, 0.8] and µ(x) = 0.9 for all x ∈ I. We know
that A ∪R B = {〈x, B(x), λ(x)〉 | x ∈ I} and λ(x) ∈ (B−(x), B+(x)) for all x ∈ I.
Hence A ∪R B is not an ECS in I.

(2) Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in I = [0, 1] in which A(x) =
[0.2, 0.4], λ(x) = 0.1, B(x) = [0.6, 0.8] and µ(x) = 0.3 for all x ∈ I. Then A ∩R B =
{〈x,A(x), µ(x)〉 | x ∈ I} and µ(x) ∈ (A−(x), A+(x)) for all x ∈ I. Thus A ∩R B is
not an ECS in I.

We provide a condition for the R-union of two ICSs to be an ICS.

Theorem 3.16. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ICSs in X such that

max
{
A−(x), B−(x)

}
≤ (λ ∧ µ)(x)(3.1)

for all x ∈ X. Then the R-union of A and B is an ICS in X.

Proof. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ICSs in X which satisfy the condition
(3.1). Then A−(x) ≤ λ(x) ≤ A+(x) and B−(x) ≤ µ(x) ≤ B+(x), which implies that
(λ ∧ µ)(x) ≤ (A ∪B)+(x). It follows from the condition (3.1) that

(A ∪B)−(x) = max
{
A−(x), B−(x)

}
≤ (λ ∧ µ)(x) ≤ (A ∪B)+(x)

so that A ∪R B = {〈x, (A ∪B)(x), (λ ∧ µ)(x)〉 | x ∈ X} is an ICS in X. �

We provide a condition for the R-intersection of two ICSs to be an ICS.

Theorem 3.17. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ICSs in X satisfying the
following inequality

min
{
A+(x), B+(x)

}
≥ (λ ∨ µ)(x)(3.2)

for all x ∈ X. Then the R-intersection of A and B is an ICS in X.
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X A(x) λ(x)

a [0.2, 0.3] 0.1
b [0.5, 0.6] 0.7

X B(x) µ(x)

a [0.4, 0.5] 0.9
b [0.7, 0.9] 0.4

Table 1. Cubic sets A and B respectively

X A(x) λ(x)

a [0.3, 0.5] 0.7
b [0.2, 0.4] 0.65
c [0.35, 0.45] 0.75

X B(x) µ(x)

a [0.6, 0.8] 0.35
b [0.25, 0.55] 0.1
c [0.7, 0.85] 0.4

Table 2. Cubic sets A and B respectively

Proof. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ICSs in X which satisfy the condition
(3.2.) Then A−(x) ≤ λ(x) ≤ A+(x) and B−(x) ≤ µ(x) ≤ B+(x), and therefore
(A ∩B)−(x) ≤ (λ ∨ µ)(x). Using the condition (3.2,) we have

(A ∩B)−(x) ≤ (λ ∨ µ)(x) ≤ min
{
A+(x), B+(x)

}
= (A ∩B)+(x)

and so A ∩R B = {〈x, (A ∩B)(x), (λ ∨ µ)(x)〉 | x ∈ X} is an ICS in X. �

Given two cubic sets A = 〈A, λ〉 and B = 〈B,µ〉 in X, if we exchange µ for λ,
we denote the cubic sets by A ∗ = 〈A,µ〉 and B∗ = 〈B, λ〉, respectively.

For two ECSs A and B in X, two cubic sets A ∗ and B∗ may not be ICSs in X
as seen in the following example.

Example 3.18. (1) Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in I = [0, 1] in
which A(x) = [0.6, 0.7], λ(x) = 0.8, B(x) = [0.3, 0.4] and µ(x) = 0.2 for all x ∈ I.
Then we know that A ∗ = 〈A,µ〉 and B∗ = 〈B, λ〉 are not ICSs in X because
µ(0.5) = 0.2 6∈ [0.6, 0.7] = A(0.5) and λ(0.5) = 0.8 6∈ [0.3, 0.4] = B(0.5).

(2) Let X = {a, b} be a set. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in X
defined by Table 1. Then we know that A ∗ = 〈A,µ〉 and B∗ = 〈B, λ〉 are not ICSs
in X because µ(a) = 0.9 6∈ [0.2, 0.3] = A(a) and λ(a) = 0.1 6∈ [0.4, 0.5] = B(a).

The following example shows that the P-union of two ECSs in X need not be an
ICS in X.

Example 3.19. Let X = {a, b, c} be a set. Let A = 〈A, λ〉 and B = 〈B,µ〉 be
ECSs in X defined by Table 2. Then we know that A ∪P B = 〈A∪B, λ∨ µ〉 is not
an ICS in X because (λ ∨ µ)(b) = 0.65 6∈ [0.25, 0.55] = (A ∪B)(b).

We provide a condition for the P-union of two ECSs to be an ICS.

Theorem 3.20. For two ECSs A = 〈A, λ〉 and B = 〈B,µ〉 in X, if A ∗ = 〈A,µ〉
and B∗ = 〈B, λ〉 are ICSs in X, then the P-union A ∪P B of A = 〈A, λ〉 and
B = 〈B,µ〉 is an ICS in X.
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X A(x) λ(x)

a [0.2, 0.3] 0.5
b [0.3, 0.6] 0.7

X B(x) µ(x)

a [0.4, 0.6] 0.9
b [0.7, 0.9] 0.4

Table 3. Cubic sets A and B respectively

Proof. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in X such that A ∗ = 〈A,µ〉 and
B∗ = 〈B, λ〉 are ICSs in X. Then λ(x) 6∈ (A−(x), A+(x)), µ(x) 6∈ (B−(x), B+(x)),
B−(x) ≤ λ(x) ≤ B+(x) and A−(x) ≤ µ(x) ≤ A+(x) for all x ∈ X. Thus, for a given
x ∈ X, we can consider the following cases:

(i) λ(x) ≤ A−(x) ≤ µ(x) ≤ A+(x) and µ(x) ≤ B−(x) ≤ λ(x) ≤ B+(x).
(ii) A−(x) ≤ µ(x) ≤ A+(x) ≤ λ(x) and B−(x) ≤ λ(x) ≤ B+(x) ≤ µ(x).
(iii) λ(x) ≤ A−(x) ≤ µ(x) ≤ A+(x) and B−(x) ≤ λ(x) ≤ B+(x) ≤ µ(x).
(iv) A−(x) ≤ µ(x) ≤ A+(x) ≤ λ(x) and µ(x) ≤ B−(x) ≤ λ(x) ≤ B+(x).

We consider the first case only. For remaining cases, it is similar to the first case.
For the first case, we have µ(x) = A−(x) = B−(x) = λ(x). Since A ∗ = 〈A,µ〉 and
B∗ = 〈B, λ〉 are ICSs in X, we have µ(x) ≤ A+(x) and λ(x) ≤ B+(x). It follows
that

(A ∪B)−(x) = max
{
A−(x), B−(x)

}
= (λ ∨ µ)(x)

≤ max
{
A+(x), B+(x)

}
= (A ∪B)+(x).

Hence A ∪P B is an ICS in X. �

We provide a condition for the P-intersection of two ECSs to be an ICS.

Theorem 3.21. Let A and B be ECSs in X such that A ∗ and B∗ are ICSs. Then
the P-intersection of A and B is an ICS in X.

Proof. It is similar to the proof of Theorem 3.20. �

For two ECSs A and B in X, two cubic sets A ∗ and B∗ may not be ECSs in X
as shown by the following example.

Example 3.22. Let X = {a, b} be a set. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs
in X defined by Table 3. Then we know that A ∗ = 〈A,µ〉 and B∗ = 〈B, λ〉 are not
ECSs in X because µ(b) = 0.4 ∈ (0.3, 0.6) = A(b) and λ(a) = 0.5 ∈ (0.4, 0.6) = B(a).

We provide a condition for the P-union of two ECSs to be an ECS.

Theorem 3.23. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in X such that A ∗ =
〈A,µ〉 and B∗ = 〈B, λ〉 are ECSs in X. Then the P-union of A and B is an ECS
in X.

Proof. For any x ∈ X, we have λ(x) 6∈ (A−(x), A+(x)), µ(x) 6∈ (B−(x), B+(x)),
µ(x) 6∈ (A−(x), A+(x)) and λ(x) 6∈ (B−(x), B+(x)). Hence

(λ ∨ µ)(x) 6∈
(
max

{
A−(x), B−(x))

}
,max

{
A+(x), B+(x)

})
which means that (λ ∨ µ)(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)) . Hence A ∪P B is an
ECS in X. �
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Note that the P-intersection of two ECSs may not be an ECS (see Example
3.13(2)). We give a condition for the P-intersection of two ECSs to be an ECS.

Theorem 3.24. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in X such that

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
≥ (λ ∧ µ)(x)

> max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}(3.3)

for all x ∈ X. Then the P-intersection of A and B is an ECS in X.

Proof. For each x ∈ X, take

αx := min
{
max

{
A+(x), B−(x)

}
,max

{
A−(x), B+(x)

}}
and

βx := max
{
min

{
A+(x), B−(x)

}
,min

{
A−(x), B+(x)

}}
.

Then αx is one of A−(x), B−(x), A+(x) and B+(x). We consider αx = A−(x) or
αx = A+(x) only. For the remaining cases, it is similar to this case.

If αx = A−(x), then

B−(x) ≤ B+(x) ≤ A−(x) ≤ A+(x)

and so βx = B+(x). Thus

B−(x) = (A ∩B)−(x) ≤ (A ∩B)+(x) = B+(x) = βx < (λ ∧ µ)(x),

and hence (λ ∧ µ)(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)) .
If αx = A+(x) then B−(x) ≤ A+(x) ≤ B+(x) and so βx = max {A−(x), B−(x)} .

Assume that βx = A−(x). Then

B−(x) ≤ A−(x) < (λ ∧ µ)(x) ≤ A+(x) ≤ B+(x).(3.4)

From the inequality (3.4), we have

B−(x) ≤ A−(x) < (λ ∧ µ)(x) < A+(x) ≤ B+(x)

or
B−(x) ≤ A−(x) < (λ ∧ µ)(x) = A+(x) ≤ B+(x).

For the case B−(x) ≤ A−(x) < (λ ∧ µ)(x) < A+(x) ≤ B+(x), it is a contradiction
to the fact that A and B are ECSs in X. For the case

B−(x) ≤ A−(x) < (λ ∧ µ)(x) = A+(x) ≤ B+(x),

we have (λ ∧ µ)(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)) since (λ ∧ µ)(x) = A+(x) =
(A ∩B)+(x).

Assume that βx = B−(x). Then

A−(x) ≤ B−(x) < (λ ∧ µ)(x) ≤ A+(x) ≤ B+(x).(3.5)

From the inequality (3.5), we have

A−(x) ≤ B−(x) < (λ ∧ µ)(x) < A+(x) ≤ B+(x)

or
A−(x) ≤ B−(x) < (λ ∧ µ)(x) = A+(x) ≤ B+(x).
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X A(x) λ(x)

a [0.2, 0.6] 0.7
b [0.3, 0.7] 0.3
c [0.2, 0.6] 0.9

X B(x) µ(x)

a [0.3, 0.7] 0.3
b [0.2, 0.6] 0.7
c [0.4, 0.7] 0.4

Table 4. Cubic sets A and B respectively

For the case A−(x) ≤ B−(x) < (λ ∧ µ)(x) < A+(x) ≤ B+(x), it contradicts to the
fact that A and B are ECSs in X. For the case

A−(x) ≤ B−(x) < (λ ∧ µ)(x) = A+(x) ≤ B+(x),

we get (λ ∧ µ)(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)) since

(λ ∧ µ)(x) = A+(x) = (A ∩B)+(x).

Hence the P-intersection of A and B is an ECS in X. �

The following example shows that for two ECSs A = 〈A, λ〉 and B = 〈B,µ〉
which satisfy the condition

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
> (λ ∧ µ)(x)

= max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

for all x ∈ X, the P-intersection of A and B may not be an ECS in X.

Example 3.25. Let X = {a, b, c} be a set. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECS
in X defined by Table 4. Then we know that A = 〈A, λ〉 and B = 〈B,µ〉 satisfy
the following condition:

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
> (λ ∧ µ)(x)

= max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
.

But A ∩P B = 〈A ∩ B, λ ∧ µ〉 is not an ECS in X because (λ ∧ µ)(a) = 0.3 ∈
(0.2, 0.6) = ((A ∩B)−(a), (A ∩B)+(a)) .

Now, we provide a condition for the P-intersection of two cubic sets to be both
an ECS and an ICS.

Theorem 3.26. Let A = 〈A, λ〉 and B = 〈B,µ〉 be cubic sets in X such that

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
= (λ ∧ µ)(x)

= max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

(3.6)

for all x ∈ X. Then the P-intersection of A and B is both an ECS and an ICS in
X.

Proof. For each x ∈ X, take

αx := min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
and

βx := max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
.
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Then αx is one of A−(x), B−(x), A+(x) and B+(x). We consider αx = A−(x) or
αx = A+(x) only. For remaining cases, it is similar to this cases.

If αx = A−(x), then

B−(x) ≤ B+(x) ≤ A−(x) ≤ A+(x)

and so βx = B+(x). This implies that A−(x) = αx = (λ ∧ µ)(x) = βx = B+(x).
Thus

B−(x) ≤ B+(x) = (λ ∧ µ)(x) = A−(x) ≤ A+(x).

This implies that (λ ∧ µ)(x) = B+(x) = (A ∩B)+(x). Hence

(λ ∧ µ)(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x))

and (A ∩B)−(x) ≤ (λ ∧ µ)(x) ≤ (A ∩B)+(x).
If αx = A+(x), then B−(x) ≤ A+(x) ≤ B+(x) and so (λ ∧ µ)(x) = A+(x) =

(A ∩ B)+(x). Hence (λ ∧ µ)(x) 6∈ ((A ∩ B)−(x), (A ∩ B)+(x)) and (A ∩ B)−(x) ≤
(λ∧ µ)(x) ≤ (A∩B)+(x). Consequently, we know that the P-intersection of A and
B is both an ECS and an ICS in X. �

The following example shows that the P-union of two ECSs A and B may not
be an ECS.

Example 3.27. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in I defined by

A(x) =

{
[0.15, 0.25] if 0 ≤ x < 0.5 ,
[0.6, 0.7] if 0.5 ≤ x ≤ 1,

λ(x) =

{
0.5x + 0.5 if 0 ≤ x < 0.5 ,
0.3 if 0.5 ≤ x ≤ 1,

B(x) =

{
[0.8, 0.9] if 0 ≤ x < 0.5 ,
[0.1, 0.2] if 0.5 ≤ x ≤ 1,

µ(x) =

{
0.4 if 0 ≤ x < 0.5 ,
x if 0.5 ≤ x ≤ 1.

Then

(A ∪B)(x) =

{
[0.8, 0.9] if 0 ≤ x < 0.5 ,
[0.6, 0.7] if 0.5 ≤ x ≤ 1,

(λ ∨ µ)(x) =

{
0.5x + 0.5 if 0 ≤ x < 0.5 ,
x if 0.5 ≤ x ≤ 1.

But A ∪P B is not an ECS because

(λ ∨ µ)(0.65) = 0.65 ∈ (0.65, 0.7) =
(
(A ∪B)−(0.65), (A ∪B)+(0.65)

)
.

We provide a condition for the P-union of two ECSs to be an ECS.

Theorem 3.28. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in X such that

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
> (λ ∨ µ)(x)

≥ max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

(3.7)

for all x ∈ X. Then the P-union of A and B is an ECS in X.
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Proof. For each x ∈ X, take

αx := min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
and

βx := max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
.

Then αx is one of A−(x), B−(x), A+(x) and B+(x). We consider αx = A−(x) or
αx = A+(x) only. For remaining cases, it is similar to this cases.

If αx = A−(x), then

B−(x) ≤ B+(x) ≤ A−(x) ≤ A+(x)

and so βx = B+(x). Thus

(A ∪B)−(x) = A−(x) = αx > (λ ∨ µ)(x)

and hence (λ ∨ µ)(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)) .
If αx = A+(x) then B−(x) ≤ A+(x) ≤ B+(x) and so βx = max {A−(x), B−(x)} .

Assume that βx = A−(x). Then

B−(x) ≤ A−(x) ≤ (λ ∨ µ)(x) < A+(x) ≤ B+(x),(3.8)

and so
B−(x) ≤ A−(x) < (λ ∨ µ)(x) < A+(x) ≤ B+(x)

or
B−(x) ≤ A−(x) = (λ ∨ µ)(x) ≤ A+(x) ≤ B+(x).

For the first case, it contradicts to the fact that A and B are ECSs in X. The second
case implies that (λ ∨ µ)(x) 6∈ ((A ∪ B)−(x), (A ∪ B)+(x)) since (A ∪ B)−(x) =
A−(x) = (λ ∨ µ)(x).

Assume that βx = B−(x). Then

A−(x) ≤ B−(x) ≤ (λ ∨ µ)(x) ≤ A+(x) < B+(x),(3.9)

which implies that

A−(x) ≤ B−(x) < (λ ∨ µ)(x) < A+(x) ≤ B+(x)

or
A−(x) ≤ B−(x) = (λ ∨ µ)(x) < A+(x) ≤ B+(x).

For the case A−(x) ≤ B−(x) < (λ ∨ µ)(x) < A+(x) ≤ B+(x), it contradicts to the
fact that A and B are ECSs in X. For the case

A−(x) ≤ B−(x) = (λ ∨ µ)(x) ≤ A+(x) ≤ B+(x),

we have (λ ∨ µ)(x) 6∈ ((A ∪ B)−(x), (A ∪ B)+(x)) since (A ∪ B)−(x) = B−(x) =
(λ ∨ µ)(x). Hence the P-union of A and B is an ECS in X. �

We provide a condition for the R-union of two ECSs to be an ECS.

Theorem 3.29. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in X. If for each x ∈ X,

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
> (λ ∧ µ)(x)

≥ max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

(3.10)

then the R-union of A and B is an ECS in X.

94



Y. B. Jun et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 83–98

Proof. For each x ∈ X, take

αx := min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
and

βx := max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
.

Then αx is one of A−(x), B−(x), A+(x) and B+(x). We consider αx = B−(x) or
αx = B+(x) only. For remaining cases, it is similar to this cases.

If αx = B−(x), then

A−(x) ≤ A+(x) ≤ B−(x) ≤ B+(x)

and so βx = A+(x). Thus by inequality 3.10,

(A ∪B)−(x) = B−(x) = αx > (λ ∧ µ)(x)

and hence (λ ∧ µ)(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)) .
If αx = B+(x) then A−(x) ≤ B+(x) ≤ A+(x) and so βx = max{A−(x), B−(x)}.

Assume that βx = A−(x). Then

B−(x) ≤ A−(x) ≤ (λ ∧ µ)(x) < B+(x) ≤ A+(x).(3.11)

which implies that

B−(x) ≤ A−(x) < (λ ∧ µ)(x) < B+(x) ≤ A+(x)

or
B−(x) ≤ A−(x) = (λ ∧ µ)(x) ≤ B+(x) ≤ A+(x).

For the case B−(x) ≤ A−(x) < (λ ∧ µ)(x) < B+(x) ≤ A+(x), it contradicts to the
fact that A and B are ECSs in X. For the case

B−(x) ≤ A−(x) = (λ ∧ µ)(x) ≤ B+(x) ≤ A+(x),

we get (λ ∧ µ)(x) 6∈ ((A ∪ B)−(x), (A ∪ B)+(x)) since (A ∪ B)−(x) = A−(x) =
(λ ∧ µ)(x).

Assume that βx = B−(x). Then

A−(x) ≤ B−(x) ≤ (λ ∧ µ)(x) ≤ B+(x) < A+(x).(3.12)

Hence
A−(x) ≤ B−(x) < (λ ∧ µ)(x) < B+(x) ≤ A+(x)

or
A−(x) ≤ B−(x) = (λ ∧ µ)(x) < B+(x) ≤ A+(x).

For the case A−(x) ≤ B−(x) < (λ ∧ µ)(x) < B+(x) ≤ A+(x), it is a contradiction
because A and B are ECSs in X. For the case

A−(x) ≤ B−(x) = (λ ∧ µ)(x) ≤ B+(x) ≤ A+(x),

we obtain (λ ∧ µ)(x) 6∈ ((A ∪ B)−(x), (A ∪ B)+(x)) since (A ∪ B)−(x) = B−(x) =
(λ ∧ µ)(x). Hence the R-union of A and B is an ECS in X. �
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X A(x) λ(x)

a [0.1, 0.8] 0.9
b [0.3, 0.6] 0.6
c [0.4, 0.5] 0.5

X B(x) µ(x)

a [0.2, 0.7] 0.7
b [0.1, 0.7] 0.8
c [0.3, 0.8] 0.9

Table 5. Cubic sets A and B respectively

The following example shows that for two ECSs A = 〈A, λ〉 and B = 〈B,µ〉
which satisfy the condition

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
= (λ ∧ µ)(x)

> max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

for all x ∈ X, the R-union of A and B may not be an ECS in X.

Example 3.30. Let X = {a, b, c} be a set. Let A = 〈A, λ〉 and B = 〈B,µ〉 be
ECSs in X defined by Table 5. Then we know that A = 〈A, λ〉 and B = 〈B,µ〉
satisfy the following condition:

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
= (λ ∧ µ)(x)

> max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

But A ∪R B = 〈A ∪ B, λ ∧ µ〉 is not an ECS in X because (λ ∧ µ)(c) = 0.5 ∈
(0.4, 0.8) = ((A ∪B)−(c), (A ∪B)+(c)) .

Now, we provide a condition for the R-intersection of two ECSs to be ECS.

Theorem 3.31.
min

{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
≥ (λ ∨ µ)(x)

> max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

(3.13)

then the R-intersection of A and B is an ECS in X.

Proof. By similar way to Theorem 3.29, we can obtain the result. �

The following example shows that for two ECSs A = 〈A, λ〉 and B = 〈B,µ〉
which satisfy the condition

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
> (λ ∨ µ)(x)

= max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

for all x ∈ X, the R-intersection of A and B may not be an ECS in X.

Example 3.32. Let X = {a, b, c} be a set. Let A = 〈A, λ〉 and B = 〈B,µ〉 be
ECSs in X defined by Table 6. Then we know that A = 〈A, λ〉 and B = 〈B,µ〉
satisfy the condition

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
> (λ ∨ µ)(x)

= max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

But A ∩R B = 〈A ∩ B, λ ∨ µ〉 is not an ECS in X because (λ ∨ µ)(b) = 0.5 ∈
(0.4, 0.7) = ((A ∩B)−(b), (A ∩B)+(b)) .
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X A(x) λ(x)

a [0.2, 0.4] 0.1
b [0.5, 0.8] 0.5
c [0.6, 0.8] 0.4

X B(x) µ(x)

a [0.3, 0.6] 0.3
b [0.4, 0.7] 0.2
c [0.7, 0.9] 0.7

Table 6. Cubic sets A and B respectively

Now, we provide a condition for the R-intersection of two cubic sets to be both
an ECS and an ICS.

Theorem 3.33. Let A = 〈A, λ〉 and B = 〈B,µ〉 be cubic sets in X such that

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
= (λ ∨ µ)(x)

= max
{
min{A+(x), B−(x)},min{A−(x), B+(x)}

}
,

(3.14)

for all x ∈ X. Then the R-intersection of A and B is both an ECS and an ICS in
X.

Proof. By the similar way to Theorem 3.26, it is straightforward. �

We provide a condition for the R-union of two ICSs to be an ECS.

Theorem 3.34. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ICSs in X. If

(λ ∧ µ)(x) ≤ max{A−(x), B−(x)}
for all x ∈ X, then the R-union of A and B is an ECS in X.

Proof. Straightforward. �

We provide a condition for the R-intersection of two ICSs to be an ECS.

Theorem 3.35. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ICSs in X. If

(λ ∨ µ)(x) ≥ min{A+(x), B+(x)}
for all x ∈ X, then the R-intersection of A and B is an ECS in X.

Proof. Straightforward. �

We provide a condition for the R-union of two ECSs to be an ICS.

Theorem 3.36. Let A = 〈A, λ〉 and B = 〈B,µ〉 be ECSs in X such that

min
{
max{A+(x), B−(x)},max{A−(x), B+(x)}

}
≤ (λ ∧ µ)(x)

≤ max{A+(x), B+(x)}
(3.15)

for all x ∈ X. Then the R-union of A and B is an ICS in X.

Proof. Straightforward. �
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[2] R. Sambuc, Functions Φ-Flous, Application à l’aide au Diagnostic en Pathologie Thyroidienne,
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