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ABSTRACT. The notions of (internal, external) cubic sets, P-(R-)order,
P-(R-)union and P-(R-)intersection are introduced, and related properties
are investigated. We show that the P-union and the P-intersection of
internal cubic sets are also internal cubic sets. We provide examples to
show that the P-union and the P-intersection of external cubic sets need not
be external cubic sets, and the R-union and the R-intersection of internal
(resp. external) cubic sets need not be internal (resp. external) cubic
sets. We provide conditions for the P-union (resp. P-intersection) of two
external cubic sets to be an internal cubic set. We give conditions for the
P-union (resp. R-union and R-intersection) of two external cubic sets to be
an external cubic set. We consider conditions for the R-intersection (resp.
P-intersection) of two cubic sets to be both an external cubic set and an
internal cubic set.
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1. INTRODUCTION

Fuzzy sets are initiated by Zadeh [6]. In [7], Zadeh made an extension of the
concept of a fuzzy set by an interval-valued fuzzy set, i.e., a fuzzy set with an
interval-valued membership function. In traditional fuzzy logic, to represent, e.g.,
the expert’s degree of certainty in different statements, numbers from the interval
[0,1] are used. It is often difficult for an expert to exactly quantify his or her
certainty; therefore, instead of a real number, it is more adequate to represent this
degree of certainty by an interval or even by a fuzzy set. In the first case, we
get an interval-valued fuzzy set. In the second case, we get a second-order fuzzy
set. Interval-valued fuzzy sets have been actively used in real-life applications. For
example, Sambuc [2] in Medical diagnosis in thyroidian pathology, Kohout [1] also
in Medicine, in a system CLINAID, Gorzalczany [10] in Approximate reasoning,
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Turksen [3, 4] in Interval-valued logic, in preferences modelling [5], etc. These works
and others show the importance of these sets. Fuzzy sets deal with possibilistic
uncertainty, connected with imprecision of states, perceptions and preferences.

In this paper, using a fuzzy set and an interval-valued fuzzy set, we introduce a
new notion, called a (internal, external) cubic set, and investigate several properties.
We deal with P-union, P-intersection, R-union and R-intersection of cubic sets, and
investigate several related properties.

2. PRELIMINARIES

A fuzzy set in a set X is defined to be a function A : X — I where I = [0, 1].
Denote by IX the collection of all fuzzy sets in a set X. Define a relation < on IX
as follows:

(VA pueI*)YN<p <= (Vo e X)(\(z) < p(x))).
The join (V) and meet (A) of X and p are defined by

AV p)(x) = max{A(x), p(z)},

(AA p)(x) = min{A(z), p(x)},
respectively, for all x € X. The complement of A\, denoted by \¢, is defined by

(Vz € X) (A°(z) =1 — A(x)).

For a family {\; | ¢ € A} of fuzzy sets in X, we define the join (V) and meet (A)
operations as follows:

(V A) (@) =sup{ri(a) | € A},

iEA

( A )\i)(x) = inf{\(z) | i € A},
€A
respectively, for all x € X.
By an interval number we mean a closed subinterval @ = [a™,a™] of I, where
0 <a~ <a* <1. The interval number @ = [a~,a™] with e~ = a™ is denoted by a.
Denote by [I] the set of all interval numbers. Let us define what is known as refined
minimum (briefly, rmin) of two elements in [I]. We also define the symbols “>7, “<”

=" in case of two elements in [I]. Consider two interval numbers a1 := [ay,a{ |
and ag 1= [aQ_,a;'] . Then

rmin{ay, as} = [min {al_, az_} ,min {af, a;}] ,

@y = ay if and only if a] > a;, and af > aj,
and similarly we may have a1 < ag and a; = ay. To say a1 > ag (resp. a3 < az) we

mean aj = dg and a; # ag (resp. a; = az and a; # as). Let a; € [I] where i € A.
We define

infa, = |inf o, inf aF d a; = - +.
rinf a; |:11.IEIA a; , inf a; } an rzsg/]i) a; |:§161113 a; 73161/1\) a; }
For any a € [I], its complement, denoted by a°, is defined be the interval number
a“=[1-a",1—a"].
84



Y. B. Jun et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 83-98

Let X be a nonempty set. A function A : X — [I] is called an interval-valued
fuzzy set (briefly, an IVF set) in X. Let [I]*X stand for the set of all IVF sets in
X. For every A € [I]¥ and x € X, A(z) = [A~(z), AT ()] is called the degree of
membership of an element x to A, where A~ : X — [ and AT : X — I are fuzzy
sets in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively.
For simplicity, we denote A = [A~, A*]. For every A, B € [I]*X, we define

ACB & A(z) X B(z) forall z € X,

and
A=B & A(x) = B(z) for all z € X.
The complement A¢ of A € [I]¥X is defined as follows: A°(x) = A(x)¢ for all z € X,
that is,
A(z) =[1 — At (z),1 — A (x)] for all x € X.
For a family {A; | « € A} of IVF sets in X where A is an index set, the union

G = |J A; and the intersection F = (] A; are defined as follows:
i€EA ieA

G(z) = | {J Ai | () = rsup 4y (x)
ieA =

and

F(z) = <DA Ai> () = rinf A; ()
for all z € X, respectively. For a point p € X and for a = [a~,a™] € [I] with
a’ > 0, the IVF set which takes the value @ at p and 0 elsewhere in X is called an
interval-valued fuzzy point (briefly, an IVF point) and is denoted by a,. The set of
all IVF points in X is denoted by I[VFP(X). For any a € [I] and = € X, the IVF
point @, is said to belong to an IVF set A in X, denoted by a,€A, if A(z) = a. It
can be easily shown that A = U{a, | @a,€A}.

3. CUBIC SETS

Definition 3.1. Let X be a nonempty set. By a cubic setin X we mean a structure
o ={(z,A(z),\(z)) | z € X}
in which A is an IVF set in X and A is a fuzzy set in X.

A cubic set & = {(z, A(z),\(z)) | x € X} is simply denoted by &/ = (A4, \).
Denote by CX the collection of all cubic sets in X.

A cubic set & = (A, \) in which A(x) = 0 and A(z) = 1 (resp. A(z) =1 and
A(z) = 0) for all x € X is denoted by 0 (resp. 1).

A cubic set # = (B, p) in which B(z) = 0 and p(x) = 0 (resp. B(z) =1 and
p(z) =1) for all z € X is denoted by 0 (resp. 1).

Definition 3.2. Let X be a nonempty set. A cubic set & = (A4, \) in X is said to
be an internal cubic set (briefly, ICS) if A~ (z) < A(x) < AT (z) for all z € X.

Definition 3.3. Let X be a nonempty set. A cubic set &7 = (A, \) in X is said to
be an external cubic set (briefly, ECS) if A(z) & (A~ (z), AT (x)) for all x € X.
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Example 3.4. (1) Let X be a nonempty set. Let A be an IVF set in X. Then
o ={(z, A(z),1(x)) |z € X}, B ={(z,A(x),0(x)) | z € X} and

€ = {<$,A(I),/\($)> |z € X} where \(x) = %A*(r)

are cubic sets in X.

(2) Let & = {(z, A(z),A(z) | = € I} be a cubic set in I. If A(x) = [0.3,0.7] and
Az) =04 for all z € I, then & is an ICS. If A(xz) = [0.3,0.7] and A(z) = 0.8 for all
x € I, then &7 is an ECS. If A(x) = [0.3,0.7] and A(z) = z for all x € I, then & is
neither an ICS nor an ECS.

Theorem 3.5. Let o7 = (A, \) be a cubic set in X which is not an ECS. Then there
erist v € X such that \(z) € (A~ (z), AT (x)).
Proof. Straightforward. g

Theorem 3.6. Let o = (A, \) be a cubic set in X. If &/ is both an ICS and an
ECS, then
(Vz e X) (M(z) e U(A) U L(A))

where U(A) = {A*(z) |z € X} and L(A) ={A (z) |z € X}.
Proof. Assume that <7 is both an ICS and an ECS. Using Definitions 3.2 and 3.3,
we have A~ (z) < A(z) < AT (z) and A(z) ¢ (A (z), AT (x)) for all z € X. Thus
AMz) = A= () or At (z) = X(z), and so A(z) € U(A) U L(A). O
Remark 3.7. Every intuitionistic fuzzy set A = {{x, u(x),y(z)) | z € X} in X is
considered as a cubic set in X.
Definition 3.8. Let &/ = (A, \) and & = (B, p) be cubic sets in X. Then we define

(a) (Equality) & = # < A= B and A = p.

(b) (P-order) & Cp B < AC B and A < p.

(¢) (R-order) o Cr B < AC Band A > M

Definition 3.9. For any < = {(z, 4;( x € X} where i € A, we define

) |
() (g eex) e
0 Al (na)or(Ar) @) irex)  pmeeion
oo (g (po)firen) e
(@) Qﬁ {< ( ) ( )(x)>|xex} (Reintersection)

The complement of & = ( A) is defined to be the cubic set
={(z,A%(2),1 = AMx)) | = € X}.
Obviously, (7€) = o, OC =1,1¢=0,0°=1 and 1° = 0. For any
oty = {(x, A;(x), \i(x)) |z € X}, i €A,

i€A ieA i€A ieA
86
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<UR‘Z{1'> =Ng(«)° and (ﬂR"Q{Z) = Ug(#)".
iEA ieA ieA ieA

Proposition 3.10. For any cubic sets o/ = (A, \), B = (B,u), € = (C,v), and
92 = (D, p), we have

quQ{ gpﬁ andﬂgp‘g then,ef'gp €.

Zf&Zf Qp%thenﬁc gp af°.

if f Cp B and o Cp € then o Cp BNpE.

if f Cp B and € Cp B then of Up € Cp AB.

ifd Cp B and € Cp D then S Up€ Cp BUp D and S NpE€ Cp BNp D
if o Cr B and B Cr € then o/ CrE.

Zfﬂ QR%then Be QR .

if f Cr B and o/ CrE then of Cr BNRE.

if o/ Cpr B and € Cr P then o/ Urp € Cr A.

lf,,Q{ QR B and € QR 9 thendUR‘f QR %UR.@ anddﬂR‘ﬁ QR %ﬁR.@.

o

O © 0~ O3 U W N
NN AN A AN NSNS

—~

Proof. Straightforward. O

Theorem 3.11. Let o7 = (A, \) be a cubic set in X. If & is an ICS (resp, ECS),
then <7 is an ICS (resp, ECS).

Proof. Since @/ = (A, \) is an ICS (resp. ECS) in X, we have A~ (z) < \(z) < AT (x)
(resp. A(z) & (A~ (z), AT (x)) for all x € X. This implies that

1-AT(@)<1-Az)<1- A (2)
(resp. 1 —A(z) & (1 — AT (x),1 — A= (x)). Hence
¢ ={{x,A°(z),1 — A(z)) |z € X}
is an ICS (resp. ECS) in X. O

Theorem 3.12. Let {< = (A;, ;) | i € A} be a family of ICSs in X. Then the
P-union and the P-intersection of {< = (A;, \i) | i € A} are ICSs in X.

Proof. Since .7 is an ICS in X, we have A; ™ () < \i(x) < A;7(z) for i € A. This

implies that
+
(U Ai) (2)
€A

(U Ai> (2) < (\/ &) (2) <
1€A i€A
and
- +
(ﬂ Ai> (z) < (/\ )\Z-) (z) < (ﬂ A,-) (z).
i€A i€ i€A
Hence |Jp and () p are ICSs in X. O

i€EA iEA

The following example shows that the P-union and P-intersection of ECSs need
not be an ECS.
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Example 3.13. Let & = (A,)\) and B = (B,u) be ECSs in I = [0,1] in which
A(z) =[0.3,0.5], A(z) = 0.8, B(x) =[0.7,0.9] and p(z) = 0.4 for all z € I.

(1) We know that &/ Up B = {(z, B(z),\(z)) | x € I} and \(z) € (B~ (z), B (z))
for all x € I. Hence &/ Up % is not an ECS in I.

(2) We know that &7 Np B = {(z, A(x), u(x)) | € I} and p(z) € (A~ (z), At (2))
for all z € I. Hence & Np 4 is not an ECS in I.

The following example shows that the R-union and R-intersection of ICSs need
not be an ICS.

Example 3.14. Let & = (A, \) and B = (B, ) be ICSs in I = [0,1] in which
A(z) =[0.3,0.5], A(z) = 0.4, B(x) =[0.7,0.9] and p(z) = 0.8 for all z € I.

(1) We know that & Ug # = {(x, B(z),\(z)) | x € I} and \(z) & [B~ (z), Bt (z)]
for all x € I. Hence o« U % is not an ICS in 1.

(2) We know that &/ Ng B = {(x, A(z),u(z)) |z € I} and p(z) € [A~(z), At ()]
for all z € I. Hence &/ Nr 4 is not an ICS in 1.

The following example shows that the R-union and R-intersection of ECSs need
not be an ECS.

Example 3.15. (1) Let &/ = (A, \) and & = (B, u) be ECSs in I = [0, 1] in which
A(z) =[0.2,0.4], M(z) = 0.7, B(z) = [0.6,0.8] and ,u(x) = 0.9 for all x € I. We know
that o Up £ = {(z, B(z), (x)>|x€]}and)\()€( ~(z),BT(x)) for all z € I.
Hence &/ Ur & is not an ECS in 1.

(2) Let & = (A, \) and B = (B,u) be ECSs in I = [0,1] in which A(z) =
[0.2,0.4], A(xz) = 0.1, B(z) = [0.6,0.8] and p(z) = 0.3 for all z € I. Then &/ N B =
{{x, A(z),u(z)) | x € I} and p(x) € (A~ (z), AT (x)) for all z € I. Thus & Nr B is
not an ECS in [.

We provide a condition for the R-union of two ICSs to be an ICS.
Theorem 3.16. Let o7 = (A, ) and # = (B, u) be ICSs in X such that
(3.1) max {A~(2), B~ (1)} < (A 1) (@)
for all x € X. Then the R-union of &/ and A is an ICS in X.

Proof. Let o/ = (A, \) and B8 = (B, ) be ICSs in X which satisfy the condition
(3.1). Then A~ (z) < Mz) < AT (x) and B~ (z) < p(z) < BT (x), which implies that
(AAp)(z) < (AU B)T(z). It follows from the condition (3.1) that

(AUB)~(2) = max{A~(2), B~ ()} < (A A p)(z) < (AUB)"(z)
so that & Ur B = {{z, (AU B)(z), AA p)(x)) | z € X} is an ICS in X. O
We provide a condition for the R-intersection of two ICSs to be an ICS.

Theorem 3.17. Let & = (A, ) and # = (B,u) be ICSs in X satisfying the
following inequality

(3.2) min { A" (z), BT (z)} > (A V p)(z)

for all x € X. Then the R-intersection of &/ and % is an ICS in X.
88
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X || A=) | M=) X || Bz) | p=)
a || 02,03 ] 01 a || 04,05 ] 09
b |[ [0.5,0.6] | 0.7 b | [0.7,00] | 04

TABLE 1. Cubic sets &/ and % respectively

X | Alz) | A=) X | B(z) | p(x)
a ] [03,05] | 07 a ] [06,08 | 0.35
02,04 | 0.65 b || [0.25,055] | 0.1
[0.35,0.45] | 0.75 c [0.7,0.85] 0.4

TABLE 2. Cubic sets 7 and £ respectively

Proof. Let o« = (A, \) and B = (B, ) be ICSs in X which satisfy the condition
(3.2.) Then A= (z) < Mxz) < AT (x) and B~ (z) < p(x) < Bt (z), and therefore
(AN B) (x) < (AV p)(x). Using the condition (3.2,) we have

(ANB) (z) < AV p)(z) <min{A*(z),B"(2)} = (AN B)*(z)
and so & Ngp B = {(z,(ANB)(x),( AV p)(z)) | v € X} is an ICS in X. O

Given two cubic sets &7 = (A, ) and B = (B, p) in X, if we exchange p for A,
we denote the cubic sets by &7* = (A, u) and B* = (B, \), respectively.

For two ECSs &7 and % in X, two cubic sets &/* and £* may not be ICSs in X
as seen in the following example.

Example 3.18. (1) Let &7 = (A, \) and B = (B,u) be ECSs in I = [0,1] in
which A(z) = [0.6,0.7], AM(z) = 0.8, B(z) = [0.3,0.4] and u(x) = 0.2 for all z € I.
Then we know that &* = (A,u) and #* = (B, \) are not ICSs in X because
1(0.5) = 0.2 ¢ [0.6,0.7] = A(0.5) and A(0.5) = 0.8 ¢ [0.3,0.4] = B(0.5).

(2) Let X = {a,b} be a set. Let & = (A, \) and # = (B, u) be ECSs in X
defined by Table 1. Then we know that &/* = (A, p) and #* = (B, \) are not ICSs
in X because p(a) =0.9 € [0.2,0.3] = A(a) and A(a) = 0.1 € [0.4,0.5] = B(a).

The following example shows that the P-union of two ECSs in X need not be an
ICS in X.

Example 3.19. Let X = {a,b,c} be a set. Let &/ = (A, \) and & = (B, pu) be
ECSs in X defined by Table 2. Then we know that &/ Up B = (AU B, AV p) is not
an ICS in X because (A V p)(b) = 0.65 ¢ [0.25,0.55] = (AU B)(b).

We provide a condition for the P-union of two ECSs to be an ICS.

Theorem 3.20. For two ECSs of = (A, \) and B = (B, p) in X, if o* = (A, )
and B* = (B, ) are ICSs in X, then the P-union &/ Up B of o/ = (A, \) and
PB = (B,u) is an ICS in X.
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X || Al | M=) X || Bz) | p=)
a ] 02,03 05 a || [04,06]] 09
b |[ 0.3,0.6] | 0.7 b | [0.7,00] | 04

TABLE 3. Cubic sets &/ and % respectively

Proof. Let o = (A,\) and & = (B, u) be ECSs in X such that &/* = (4, u) and
#* = (B, \) are ICSs in X. Then \(z) ¢ (A~ (x), AT (2)), u(z) € (B~ (x), BT (z)),
B~ (x) < Mz) < BT (z) and A~ (z) < pu(z) < AT (z) for all x € X. Thus, for a given
x € X, we can consider the following cases:
() M) < A~ (2) < () < A* () and p(z) <

(i) 4~(z) < ple) < A*(2) < A(x) and B~(2)
(i) Az) < A~ () < p(x) < A*(z) and B~ (2)
(iv) A~ () < plr) < A*(2) < A(z) and p(z) <
We consider the first case only. For remaining cases, it i snnllar to the first case.
For the first case, we have u(z) = A= (z) = B~ (x) = A(z). Since &/* = (4, 1) and
P#* = (B, ) are ICSs in X, we have p(z) < AT (z) and A\(z) < BT (x). It follows
that

5

8

PGP
. EEEE
CINIAIAIA

B~
<
<
B

(z

H)—-

(AUB) (z) =max {A™(z),B™ (2)} = (A V p)(z)
< max {AT(z), BT (2)} = (AUB)*(z).
Hence &/ Up £ is an ICS in X. O
We provide a condition for the P-intersection of two ECSs to be an ICS.

Theorem 3.21. Let &/ and B be ECSs in X such that &/* and B* are ICSs. Then
the P-intersection of o7 and 2 is an I1CS in X.

Proof. 1t is similar to the proof of Theorem 3.20. O

For two ECSs & and £ in X, two cubic sets &/* and £* may not be ECSs in X
as shown by the following example.

Example 3.22. Let X = {a, b} be a set. Let & = (4, ) and & = (B, u) be ECSs
in X defined by Table 3. Then we know that «7* = (A, u) and B* = (B, \) are not
ECSs in X because u(b) = 0.4 € (0.3,0.6) = A(b) and A(a) = 0.5 € (0.4,0.6) = B(a).

We provide a condition for the P-union of two ECSs to be an ECS.

Theorem 3.23. Let o = (A, \) and B = (B, u) be ECSs in X such that &/* =
(A, u) and $B* = (B, \) are ECSs in X. Then the P-union of o/ and A is an ECS
m X.

Proof. For any x € X, we have \(z) € (A~ (z), A" (2)), u(z) € (B~ (z), BT (x)),
u(@) & (A~ (x), A" (2)) and A(z) & (B~ (), B¥ (x)). Hence
AV p)(z) & (max {A™ (z), B~ (x))} ,max {A*(z), B*(z)})
which means that (AV p)(z) € (AU B)™(z),(AU B)™(z)). Hence & Up £ is an
ECS in X. 0
90
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Note that the P-intersection of two ECSs may not be an ECS (see Example
3.13(2)). We give a condition for the P-intersection of two ECSs to be an ECS.

Theorem 3.24. Let o7 = (A, \) and B = (B, u) be ECSs in X such that
min {max{A" (z), B~ (z)},max{A (z), B*(z)}} > (A A p)(2)
> max {min{A*(z), B~ (z)}, min{A~ (), B* (z)}}

for all x € X. Then the P-intersection of o/ and B is an ECS in X.

(3.3)

Proof. For each x € X, take
o = min {max {A"(z), B~ ()} ,max {A (z), B ()} }

and
B := max {min {A*(x), B*(x)} ,min {A* (z), B+(ac)}} .

Then « is one of A=(z), B~ (x), AT (z) and BT (z). We consider o, = A~ (x) or
a; = AT (x) only. For the remaining cases, it is similar to this case.
If o, = A= (), then

B (z) < BY(z) < A (2) < AT (x)
and so 8, = BT (z). Thus
B~ (x) = (AN B)~(z) < (ANB)"(z) = B (x) = Bz < (A A p)(2),
and hence (A A p)(z) € (AN B)~(x), (AN B)*(z)).
If ap = AT (z) then B~ (x) < AT (x) < B*(z) and so 3, = max {A~ (z), B~ (z)}.
Assume that 8, = A~ (z). Then
(3.4) B (x) < A7 (z) < (A A p)(x) < AT(z) < BT ().
From the inequality (3.4), we have
B™(z) < A™(z) < A A p)(z) < AT(2) < B¥(2)
B (x) < A~ () < (A p)(x) = A*(x) < B*(a).

For the case B~ (z) < A~ (z) < (A A p)(x) < AT (z) < Bt (z), it is a contradiction
to the fact that & and % are ECSs in X. For the case

B~ (x) < A (x) < (A A p)(@) = A*(z) < B* (a),

we have (A A p)(z) € (ANB)~ (z),(AN B)*(z)) since (A A p)(z) = AT (x) =
(AN B)*(z).
Assume that 8, = B~ (x). Then

(3.5) A~ (x) < B (z) < A A p)(x) < At (2) < BT ().
From the inequality (3.5), we have
A~ (2) < B (2) < A A p)(@) < A* (@) < BH(a)

A7 (xz) < B (z) < (A /\9/;)(1‘) = AT (x) < Bt (2).
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X || Al | M=) X || Bz) | p=)
a ] 02,06 07 a ] 03,07 ] 03
0.3,0.7 0.3 b 0.2,0.6 0.7
0.2,0.6] | 0.9 ¢ | 04,07 04

TABLE 4. Cubic sets o/ and &£ respectively

For the case A~ (z) < B~ (z) < (A A p)(z) < At (z) < BT (x), it contradicts to the
fact that & and # are ECSs in X. For the case

A7 () £ B™(2) < A A p)(z) = AT (2) < B (2),
we get (AA p)(z) € (AN B)~(x), (AN B)*(z)) since
(A Ap)(x) = A*(z) = (AN B)*(2).
Hence the P-intersection of o7 and £ is an ECS in X. O

The following example shows that for two ECSs & = (A, \) and & = (B, u)
which satisfy the condition

min{max{A*(z), B~ (z)}, max{A~( }} (A A p)(
= max{min{A* (z), B~ ()}, min{A ), BY(2)}},
for all x € X, the P-intersection of ./ and % may not be an ECS in X.

Example 3.25. Let X = {a,b,c} be aset. Let & = (A, \) and & = (B, u) be ECS
in X defined by Table 4. Then we know that &/ = (A, \) and B = (B, p) satisfy
the following condition:

min{max{A*(z), B~ (z)}, max{A~( }} (A A p)(
= max{min{A*(z), B~ (z)}, min{A ), B (x)}}.

But & Np Z = (AN B,A A p) is not an ECS in X because (A A p)(a) = 0.3 €
(0.2,0.6) = (AN B)~ (a),(AN B)*(a)).

Now, we provide a condition for the P-intersection of two cubic sets to be both
an ECS and an ICS.

Theorem 3.26. Let o = (A, \) and B = (B, u) be cubic sets in X such that
min{max{A*(z), B~ (z)}, max{A~( }} (A A p)(
= maX{min{A"'(x), B~ ()}, min{A ), B }},

for all x € X. Then the P-intersection of &/ and A is both an ECS and an ICS in
X.

Proof. For each z € X, take
o, = min {max{A" (), B~ (z)}, max{A~ (z), B" (z)}}

(3.6)

and

By = max {min{A* (x), B—g(;)}, min{A~ (z), B*(z)}} .
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Then «, is one of A~ (z), B~ (x), AT(z) and B*(z). We consider o, = A~ (z) or
a, = AT (x) only. For remaining cases, it is similar to this cases.
If a, = A= (z), then

B (x) < BY(z) < A (z) < AT ()
and so 3, = Bt (z). This implies that A~ (z) = a, = (A A p)(z) = B, = BT (2).
Thus
B(2) < BY(x) = A p)(x) = A~() < A¥(2).
This implies that (A A u)(z) = BT (x) = (AN B)™(x). Hence
(AAp)(x) € (ANB)(x),(ANB)"(z))

and (AN B)™(z) < AAp)(z) < (AN B)T ().

If o, = AT (x), then B~ (z) < A*(z) < BT (x) and so (A A p)(z) = At (z) =
(AN B)T(x). Hence (A A p)(z) & (AN B)~(z),(AN B)T(x)) and (AN B) (z) <

(AAp)(z) < (AN B)™(z). Consequently, we know that the P-intersection of & and
2 is both an ECS and an ICS in X. O

The following example shows that the P-union of two ECSs &/ and £ may not
be an ECS.

Example 3.27. Let & = (A, \) and & = (B, 1) be ECSs in I defined by

. . i < . . . i < .
A(x){[015,025] if0<a <05, A(%){05%05 it0<z<05),

06,07 if05<z<1, 0.3 if05<x<1,

Bz) = (0.8,0.9] if0<z<0.5, (z) = 04 if0<z<05,
©100.1,0.2] if05<x<1, )z f0s5<z<1.

Then
0.8,09] if0<z<05
(AUB)@) = VB0 O S 0<05,
[0.6,0.7] if05<z<1,
0.5z +0.5 if0<z<05,
AV ) (z) = =
( w(z) {x if0.5 <z <1.

But &/ Up £ is not an ECS because
(AV 1£)(0.65) = 0.65 € (0.65,0.7) = ((AU B)~(0.65), (AU B)*(0.65)) .
We provide a condition for the P-union of two ECSs to be an ECS.
Theorem 3.28. Let o7 = (A, \) and B = (B, u) be ECSs in X such that
min{max{A*(z), B~ (z)}, max{A~ (), B" (2)}} > (A V p)(x)
> max{min{A" (z), B~ (2)}, min{A" (), B" ()} },

for all x € X. Then the P-union of &/ and % is an ECS in X.
93

(3.7)
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Proof. For each x € X, take
o = min {max{A*(z), B~ (z)}, max{A~ (z), BT ()} }
and
B, := max {min{A" (z), B~ ()}, min{A™ (z), BT (z)} } .
Then « is one of A=(z), B~ (x), AT (z) and BT (z). We consider o, = A~ (x) or
az = AT (x) only. For remaining cases, it is similar to this cases.
If o, = A= (), then
B (x) < BY(z) <A (z) < AT ()
and so 8, = BT (z). Thus
(AUB)~(2) = A~(2) = 2w > (AV 1) (a)
and hence (AV p)(z) € (AU B)™(x), (AU B)*(z)).
If a, = AT (z) then B~ (z) < AT (xz) < BT (x) and so 8, = max{A~ (z), B~ (x)}.
Assume that 8, = A~ (z). Then
(3.8) B(2) < A~(2) < (\V p)(x) < A* (2) < B*(2),
and so
B~ (z) £ A7 (z) < (A V p)(z) < AT (2) < B ()
or
B () < A (2) = (\V p)(x) < A* (x) < B*(a).
For the first case, it contradicts to the fact that .7 and % are ECSs in X. The second
case implies that (A V u)(z) € ((AU B)™(z),(AU B)*(z)) since (AU B)™(z) =
A~ () = (AV 1) (),
Assume that 8, = B~ (z). Then
(3.9) A7 (x) < B (z) < (\V p)(x) < At (2) < BT (),
which implies that
A7 () < B™(2) < (AV p)(2) < A*(z) < B (z)
or
A7 (z) < B (z) = (A\V p)(z) < AT(z) < BT ().
For the case A= (z) < B~ (z) < (AV p)(z) < At (z) < BT (x), it contradicts to the
fact that o and # are ECSs in X. For the case
A (@) < B~ (2) = (\V p)(x) < A*(2) < B*(2),

we have (A V p)(z) € (AU B)™(x),(AU B)*(z)) since (AU B)™(z) = B~ (x)
(AV p)(z). Hence the P-union of & and £ is an ECS in X.

o

We provide a condition for the R-union of two ECSs to be an ECS.
Theorem 3.29. Let o7 = (A, \) and B = (B, u) be ECSs in X. If for each x € X,

min{max{A*(z), B~ (z)}, max{A~ (), B (2)}} > (A A p) (=)
> max{min{A™ (z), B~ (z)}, min{A~ (z), B" ()} },

then the R-union of o and A is an ECS in X.

94

(3.10)



Y. B. Jun et al./Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 83-98

Proof. For each xz € X, take

o = min {max{A*(z), B~ (2)}, max{A~(z), BT ()} }
and

B, := max {min{A" (z), B~ ()}, min{A™(z), BT (z)} } .

Then «, is one of A~ (x), B~ (z), A*(z) and B*(z). We consider o, = B~ (z) or
oy = BT (z) only. For remaining cases, it is similar to this cases.
If o, = B~ (), then

A~ (z) < At (z) < B (z) < BT ()
and so 8, = A'(z). Thus by inequality 3.10,
(AUB) (r) = B~(2) = a0 > (A A 0)(2)

and hence (A A p)(z) € (AU B) ™ (x), (AU B)*(z)).
If o, = B*(z) then A= (z) < BT (z) < AT (x) and so 8, = max{A~(z), B~ (z)}.
Assume that 8, = A~ (z). Then

(3.11) B () < A (2) < (AAp)(z) < Bt (z) < A ().
which implies that
B~ () < A (z) < (AAp)(x) < B (z) < AT (x)
B~ (z) < A™(z) = (A Ap)(z) < BT (2) < AT ().

For the case B~ (z) < A~ (z) < (A A p)(z) < BT (x) < AT (x), it contradicts to the
fact that & and 4 are ECSs in X. For the case

B~ (2) < A (x) = (A A p)(z) < BT (x) < A* (a),

we get (A A p)(z) € (AU B)™(z), (AU B)*T(x)) since (AU B)™(z) = A~ (z) =

(AN p)(z).
Assume that 5, = B~ (x). Then

(3.12) A7 (z) < B () < (AAp)(z) < Bt (z) < AT ().
Hence
A (@) < B~ (2) < (M p)(a) < BH@) < A*(@)
A7 (z) < B (z) = (A Ap)(z) < Bt (z) < AT ().
For the case A= (z) < B (x) < (AA p)(z) < BT (xz) < AT (x), it is a contradiction
because &/ and Z are ECSs in X. For the case
A (@) < B~ (x) = (M p)(x) < BH(2) < A*(a),

we obtain (A A p)(z) € (AU B)™(z),(AU B)*T(z)) since (AU B)™(z) = B~ (z)
(A A p)(z). Hence the R-union of & and £ is an ECS in X.
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X || Al | M=) X || Bz) | p=)
a ] [0.1,08 ] 09 a ] 02,07 07
0.3,0.6 0.6 b 0.1,0.7 0.8
0.4,0.5 0.5 c 0.3,0.8 0.9

TABLE 5. Cubic sets o/ and &£ respectively

The following example shows that for two ECSs & = (A, \) and & = (B, u)
which satisfy the condition

min{max{A*(z), B~ (z)}, max{A~( }} (A A p)(
> max{min{A"'(m), B_(aj)},min{A ),B }},
for all z € X, the R-union of &/ and % may not be an ECS in X.

Example 3.30. Let X = {a,b,c} be a set. Let &/ = (A, \) and & = (B, pu) be
ECSs in X defined by Table 5. Then we know that & = (A, \) and B = (B, u)
satisfy the following condition:

min{max{A*(z), B~ (z)}, max{A~( }} (A A p)(
> max{min{A" (z), Bf(x)},min{A ), BY(2)}},
But & Up # = (AU B, A A ) is not an ECS in X because (A A p)(c) = 0.5 €
(0.4,0.8) = (AU B) (¢), (AU B)™(c)) .
Now, we provide a condition for the R-intersection of two ECSs to be ECS.
Theorem 3.31.
min {max{A" (z), B~ (z)},max{A (z), B*(z)}} > (A V p)(z)
> max {min{A*(z), B~ (z)}, min{A~ (z), B*(2)}},
then the R-intersection of &/ and 2% is an ECS in X.

(3.13)

Proof. By similar way to Theorem 3.29, we can obtain the result. O

The following example shows that for two ECSs & = (A, \) and B = (B, u)
which satisfy the condition

min {max{A" (z), B~ ()}, max{A~( }} AV u)(
= max {min{A" (z), B~ (z)}, min{A ),BY(x)}},
for all x € X, the R-intersection of &/ and % may not be an ECS in X.

Example 3.32. Let X = {a,b,c} be a set. Let &/ = (A, \) and # = (B, pu) be
ECSs in X defined by Table 6. Then we know that & = (A, \) and & = (B, u)
satisfy the condition

min{max{A*(z), B~ (z)}, max{A~( }} AV p)(

= max{min{A™ (z), B~ (z)}, min{A ), BT (z)}},
But & Ng # = (AN B,AV p) is not an ECS in X because (A V u)(b) = 0.5 €
(0.4,0.7) = (AN B)~(b), (AN B)" (b)) .
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X || A=) | M=) X || Bz) | p=)
a || [0.2,04]] 01 a ] 03,06 ] 03
05,08 | 05 b | 04,07 02
0.6,0.8 0.4 c 0.7,0.9 0.7

TABLE 6. Cubic sets o/ and Z respectively

Now, we provide a condition for the R-intersection of two cubic sets to be both
an ECS and an ICS.

Theorem 3.33. Let & = (A, \) and B = (B,u) be cubic sets in X such that
min {max{A" (z), B~ (z)}, max{A™( }} AV u)(
= max {min{A" (z), B~ ()}, min{A ), Bt (x)}},

for all x € X. Then the R-intersection of &/ and A is both an ECS and an ICS in
X.

(3.14)

Proof. By the similar way to Theorem 3.26, it is straightforward. 0
We provide a condition for the R-union of two ICSs to be an ECS.
Theorem 3.34. Let &/ = (A, \) and # = (B, u) be ICSs in X. If
(AA 1) (@) < max{A~ (z), B~ (2)}
for all x € X, then the R-union of </ and % is an ECS in X.
Proof. Straightforward. O
We provide a condition for the R-intersection of two ICSs to be an ECS.
Theorem 3.35. Let &7 = (A, \) and # = (B, u) be ICSs in X. If
(AV 1)(@) = min{A* (z), B* (2)}
for all x € X, then the R-intersection of &/ and % is an ECS in X.
Proof. Straightforward. O
We provide a condition for the R-union of two ECSs to be an ICS.
Theorem 3.36. Let & = (A, \) and # = (B,u) be ECSs in X such that
min{max{A™*(z), B~ (z)}, max{A~( (2)}} < (A A p)(
< max{A*(2), B* ()}
for all x € X. Then the R-union of &/ and A is an ICS in X.
Proof. Straightforward. O

(3.15)
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