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1. Introduction

The concept of rough sets was introduced by Pawlak [14]. Since then a large
amount of papers devoted to development and fruitful applications of the rough set
theory ([2], [5], [8]) have appeared. Subsequently, various algebraic and topological
aspects and several applications have been discussed by Pawlak ( [15], [16], [17]).
Bonikowaski [4], Iwinski [9], and Pomykala and Pomykala [18] studied algebraic
properties of rough sets. Bismas and Nanda [2] described the notion of rough sub-
groups, but their notion depends on the upper approximations and does not depend
on the lower approximations. Kuroki [10] introduced the notion of a rough ideal
in a semigroup. Kuroki and Wang [11] gave also some properties of the lower and
upper approximations with respect to the normal subgroups. Nanda and Majumdar
[13] and Bismas [3] studied fuzzy rough sets. Dubois and Prade [7] investigated the
problem of fuzzification of a rough set. They defined fuzzy rough sets in a little
different way. They used a fuzzy partition instead of a crisp partition into disjoint
equivalence classes of the universe for their definitions. Davvaz [5] introduced the
notion of rough subring (ideal) with respect to an ideal of a ring and studied notion
of fuzzy rough ideal and fuzzy rough subring. In this paper, we studied basic notions
of the rough subgroup, rough subring, rough subfield theory. We also concerned a
relationship between rough sets and groups as well as rings and fields. We intro-
duced the notion of rough subgroup, rough subring and rough subfield with respect
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to a relation defined on an integral domain, and give some properties of the rough
set in algebraic structures.

2. Preliminaries

Throughout this work, D is an integral domain, and S is a subset of the cartesian
product D ×D given by

S = {(a, b) : a, b ∈ D, b 6= 0}.
Two elements (a, b) and (c, d) in S are equivalent, denoted by (a, b)R(c, d), if and

only if ad = bc.
The relation R between elements of the set S as just described is an equivalence

class of (a, b) in S under the relation R.
F is a set of all equivalence classes [(a, b)]R for (a, b) ∈ S , that is

F = {[(a, b)]R : (a, b) ∈ S}

Lemma 2.1 ([8]). For [(a, b)]R and [(c, d)]R in F, the equations

[(a, b)]R + [(c, d)]R = [(ad + bc, bd)]R
and

[(a, b)]R[(a, b)]R = [(ac, bd)]R
give well-defined operations of addition and multiplication on F.

Theorem 2.2 ([8]). Any integral domain D can be enlarged to (or embedded in) a
field F such that every element of F can be expressed as a quotient of two elements
of D. (Such a field F is a field of quotients of D.)

3. The lower and upper approximations on a fuzzy field

The concept of fuzzy subgroup of a given group was introduced by Rosenfeld in
[19]. Since then many researchers have been studying for extending the concepts of
abstract algebra to the broader framework of the fuzzy setting (e.g. [1], [6], [12]).
In 1986, Nanda [12] defined and studied fuzzy subfields of a field.

Definition 3.1. Let X be a nonempty subset of S. Then, the sets

AR(X) =
⋃
{[(a, b)]R ∈ F : [(a, b)]R ⊆ X}

and
AR(X) =

⋃
{[(a, b)]R ∈ F : [(a, b)]R ∩X 6= ∅}

called the lower and upper approximations of X. For a nonempty subset X of S,

AR(X) = (AR(X), AR(X))

is called a rough set with respect to R.

Example 3.2. Z5 is an integral domain, and S is a subset of the cartesian product
Z5 × Z5 given by

S = {(a, b) : a, b ∈ Z5, b 6= 0}.
Two elements (a, b) and (c, d) in Z5 × Z5 are equivalent, denoted by (a, b)R(c, d), if
and only if ad = bc. Then,
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F = {[(0, 1)]R, [(0, 2)]R, [(0, 3)]R, [(0, 4)]R, [(1, 1)]R, [(1, 2)]R, [(1, 3)]R,
[(1, 4)]R, [(2, 1)]R, [(2, 2)]R, [(2, 3)]R, [(2, 4)]R, [(3, 1)]R, [(3, 2)]R,
[(3, 3)]R, [(3, 4)]R, [(4, 1)]R, [(4, 2)]R, [(4, 3)]R, [(4, 4)]R}.

Let X = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2)} be a subset of S. Thus,

AR(X) = {(0, 1), (0, 2), (0, 3), (0, 4)}
and

AR(X) = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 4), (3, 1), (4, 3)}

Definition 3.3. Let AR(X) = (AR(X), AR(X)) be a rough set of X in S. A
nonempty subset X of a group S is called an AR− rough subgroup of S if the
upper approximation AR(X) of X is a subgroup of S. Similarly, a nonempty subset
X of a group S is called an AR− rough subgroup of S if the lower approximation
AR(X) of X is a subgroup of S.

Let S be a subset of D ×D given by

S = {(a, b) : a, b ∈ D, a 6= 0, b 6= 0, (a, b) = (1, 1) if a = b}.
S is a group with respect to the binary operation (a, b)(c, d) = (ac, bd) for all
(a, b), (c, d) ∈ S.

Proposition 3.4. Let R be an equivalence relation on a group S. If X is a subgroup
of S, then it is an AR− rough subgroup of S.

Proof. It is easily shown that X is an AR− rough subsemigroup of S. Now, we can
show that each element of AR(X) has an inverse. Let (a, b) be an element of AR(X).
Then (a1, b1) ∈ [(a, b)]R ∩ X for some (a1, b1) ∈ S, that is, (a1, b1) ∈ [(a, b)]R and
(a1, b1) ∈ X. Since X is a subgroup of S, (b1, a1) ∈ X. On the other hand, since
(a1, b1) ∈ [(a, b)]R for some (a1, b1) ∈ S, a1b = b1a. Since b1a = a1b, (b1, a1) ∈
[(b, a)]R. Hence (b1, a1) ∈ [(b, a)]R ∩ X, and so (b, a) ∈ AR(X). These imply that
AR(X) is a subgroup of S. �

Proposition 3.5. Let R be an equivalence relation on a group S. If X is a subgroup
of S, then it is an AR− rough subgroup of S.

Proof. It is easily shown that X is an AR− rough subsemigroup of S. Now, we can
show that each element of AR(X) has an inverse. Let (a, b) be an element of AR(X).
Then (a1, b1) ∈ [(a, b)]R ⊆ X for some (a1, b1) ∈ S and then (b1, a1) ∈ [(b, a)]R.
Since X is a subgroup of S, (b1, a1) ∈ X. Thus (b1, a1) ∈ [(b, a)]R ⊆ X. Hence
(b, a) ∈ AR(X). Therefore AR(X) is a subgroup of S. �

Let S be a subset of D ×D given by

S = {(a, b) : a, b ∈ D, b 6= 0, (a, b) = (0, 1) if a = 0}.
S is a group with respect to binary operation (a, b) + (c, d) = (ad + bc, bd) for all
(a, b), (c, d) ∈ S.

Proposition 3.6. Let R be an equivalence relation on a group S. If X is a subgroup
of S, then it is an AR− rough subgroup of S.
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Proof. It is easily shown that X is an AR− rough subsemigroup of S. Now, we
can show that each element of AR(X) has an inverse. Let (a, b) be an element of
AR(X). Then (a1, b1) ∈ [(a, b)]R∩X for some (a1, b1) ∈ S, that is, (a1, b1) ∈ [(a, b)]R
and (a1, b1) ∈ X. Since X is a subgroup of S, (−a1, b1) ∈ X. On the other hand,
since (a1, b1) ∈ [(a, b)]R for some (a1, b1) ∈ S, a1b = b1a. Since -a1b = b1(−a),
(−a1, b1) ∈ [(−a, b)]R. Thus (−a1, b1) ∈ [(−a, b)]R ∩ X, and so (−a, b) ∈ AR(X).
These imply that AR(X) is a subgroup of S. �

Proposition 3.7. Let R be an equivalence relation on a group S. If X is a subgroup
of S, then it is an AR− rough subgroup of S.

Proof. It is easily shown that X is an AR− rough subsemigroup of S. Now, we can
show that each element of AR(X) has an inverse. Let (a, b) be an element of AR(X).
Then (a1, b1) ∈ [(a, b)]R ⊆ X for some (a1, b1) ∈ S and then (−a1, b1) ∈ [(−a, b)]R.
Since X is a subgroup of S, (−a1, b1) ∈ X. Thus (−a1, b1) ∈ [(−a, b)]R ⊆ X. Hence
(−a, b) ∈ AR(X). Therefore AR(X) is a subgroup of S. �

Definition 3.8. Let AR(X) = (AR(X), AR(X)) be a rough set of X in S. A
nonempty subset X of a ring S is called an AR− rough subring of S if the up-
per approximation AR(X) of X is a subring of S. Similarly, a nonempty subset X of
a group S is called an AR− rough subring of S if the lower approximation AR(X)
of X is a subring of S.

Let S be a subset of D ×D given by

S = {(a, b) : a, b ∈ D, b 6= 0, (a, b) = (0, 1) if a = 0}.

S is a ring with respect to binary operations (a, b) + (c, d) = (ad + bc, bd) and
(a, b)(c, d) = (ac, bd) for all (a, b), (c, d) ∈ S.

Proposition 3.9. Let R be an equivalence relation on a ring S. If X is a subring
of S, then X is an AR− rough subring of S.

Proof. Let (a, b) and (c, d) be any elements of AR(X). Then there exist elements
(a1, b1) and (c1, d1) in S such that (a1, b1) ∈ [(a, b)]R∩X and (c1, d1) ∈ [(c, d)]R∩X.
Thus (a1, b1) ∈ [(a, b)]R, (a1, b1) ∈ X and (c1, d1) ∈ [(c, d)]R, (c1, d1) ∈ X. Since
X is a subring of S, (a1d1 − b1c1, b1d1) ∈ X. Hence (a1d1 − b1c1, b1d1) ∈ [(ad −
bc, bd)]R = [(a, b)− (c, d)]R. Therefore (a1d1− b1c1, b1d1) ∈ [(a, b)− (c, d)]R ∩X, and
so (a, b)− (c, d) ∈ AR(X).

Let (a, b) and (c, d) be any elements of AR(X). Then there exist elements (a1, b1)
and (c1, d1) in S such that (a1, b1) ∈ [(a, b)]R ∩X and (c1, d1) ∈ [(c, d)]R ∩X. Thus
(a1, b1) ∈ [(a, b)]R, (a1, b1) ∈ X and (c1, d1) ∈ [(c, d)]R, (c1, d1) ∈ X. Since X is a
subring of S, (a1, b1)(c1, d1) = (a1c1, b1d1) ∈ X. And (a1c1, b1d1) ∈ [(ac, bd)]R =
[(a, b)(c, d)]R. Hence (a1c1, b1d1) ∈ [(a, b)(c, d)]R ∩ X and so (a, b)(c, d) ∈ AR(X).
Therefore AR(X) is a subring of S. �

Proposition 3.10. Let R be an equivalence relation on a ring S. If X is a subring
of S, then X is an AR− rough subring of S.
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Proof. Let (a, b) and (c, d) be any elements of AR(X). Then [(a, b)]R ⊆ X and
[(c, d)]R ⊆ X. Hence [(a, b)]R− [(c, d)]R = [(ad− bc, bd)]R ⊆ X and so (ad− bc, bd) =
(a, b)− (c, d) ∈ AR(X).

Let (a, b) and (c, d) be any elements of AR(X). Then there exist elements (a1, b1)
and (c1, d1) in S such that (a1, b1) ∈ [(a, b)]R ⊆ X and (c1, d1) ∈ [(c, d)]R ⊆ X.
Thus (a1b1, c1d1) ∈ [(ac, bd)]R. Since X is a subring of S, (a1b1, c1d1) ∈ X. Hence
(a1b1, c1d1) ∈ [(ac, bd)]R ⊆ X. Then (a, b)(c, d) = (ac, bd) ∈ AR(X). Therefore
AR(X) is a subring of S. �

Definition 3.11. Let AR(X) = (AR(X), AR(X)) be a rough set of X in S. A
nonempty subset X of a field S is called an AR− rough subfield of S if the upper
approximation AR(X) of X is a subfield of S. Similarly, a nonempty subset X of a
field S is called an AR− rough subfield of S if the lower approximation AR(X) of
X is a subfield of S.

Let S be the subset of D ×D given by

S = {(a, b) : a, b ∈ D, b 6= 0, (a, b) = (0, 1) if a = 0 ∧ (xa, xb) = (a, b)}.

S is a field with respect to binary operations (a, b) + (c, d) = (ad + bc, bd) and
(a, b)(c, d) = (ac, bd) for all (a, b), (c, d) ∈ S.

Proposition 3.12. Let R be an equivalence relation on a field S. If X is a subfield
of S, then X is an AR− rough subfield of S.

Proof. It can be easily seen that AR(X) is a commutative ring with unity. Let
(a, b) be any element of AR(X). Then there exists element (a1, b1) in S such that
(a1, b1) ∈ [(a, b)]R ∩ X. Thus (a1, b1) ∈ [(a, b)]R and (a1, b1) ∈ X. Since X is a
subfield of S, (b1, a1) ∈ X. And (b1, a1) ∈ [(b, a)]R. Hence (b1, a1) ∈ ([(b, a)]R ∩X,
and so (b, a) ∈ AR(X). Therefore AR(X) is a subfield of S. �

Proposition 3.13. Let R be an equivalence relation on a field S. If X is a subfield
of S, then X is an AR− rough subfield of S.

Proof. It can be easily seen that AR(X) is a commutative ring with unity. Let
(a, b) be any element of AR(X). Then there exists element (a1, b1) in S such that
(a1, b1) ∈ [(a, b)]R ⊆ X. Thus (a1, b1) ∈ [(a, b)]R and (a1, b1) ∈ X. Since X is a
subfield of S, (b1, a1) ∈ X. And (b1, a1) ∈ [(b, a)]R. Hence (b1, a1) ∈ ([(b, a)]R ⊆ X,
and so (b, a) ∈ AR(X). Therefore AR(X) is a subfield of S. �

Definition 3.14. Let µ be a fuzzy field of F. For each t ∈ [0, 1], the set

µt = {([(x, y)]R, [(a, b)]R) : µ([(x, y)]R[(a, b)]−1
R ) ≥ t for

a 6= 0 and µ([(x, y)]R − [(a, b)]R) ≥ t)}

is called a t−level relation of µ.

Proposition 3.15. Let µ be a fuzzy field of a field F, and t ∈ [0, 1]. Then µt is a
congruence relation on F.
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Proof. For any element [(x, y)]R of F,

µ([(x, y)]R[(x, y)]−1
R ) = µ([(x, y)]R[(y, x)])

= µ([1, 1])
≥ t,

and so ([(x, y)]R, [(x, y)]R) ∈ µt. For any element [(x, y)]R of F,

µ([(x, y)]R − [(x, y)]R) = µ([(x, y)]R + [(−x, y)])
= µ([0, 1])
≥ t,

and so ([(x, y)]R, [(x, y)]R) ∈ µt.
If ([(x, y)]R, [(a, b)]R) ∈ µt, then µ([(x, y)]R, [(a, b)]−1

R ) ≥ t. Since µ is a fuzzy field of
F,

µ([(a, b)]R[(x, y)]−1
R ) = µ(([(a, b)]R[(x, y)]−1

R )−1)

= µ([(x, y)]R[(a, b)]−1
R )

≥ t,

which yields ([(a, b)]R, [(x, y)]R) ∈ µt. If ([(x, y)]R, [(a, b)]R) ∈ µt, then
µ([(x, y)]R, [(a, b)]−1

R ) ≥ t. Since µ is a fuzzy field of F,

µ([(a, b)]R − [(x, y)]R) = µ(([(a, b)]R − [(x, y)]R)−1)
= µ([(x, y)]R − [(a, b)]R)
≥ t,

which yields ([(a, b)]R, [(x, y)]R) ∈ µt.
If ([(x, y)]R, [(a, b)]R) ∈ µt and ([(a, b)]R, [(z, w)]R) ∈ µt, then since µ is a fuzzy field
of F,

µ([(x, y)]R[(z, w)]−1
R ) = µ([(x, y)]R[1, 1]R[(z, w)]−1

R )

= µ([(x, y)]R[(a, b)]R[(a, b)]−1
R [(z, w)]−1

R )

= µ(([(x, y)]R[(a, b)]−1
R )([(a, b)]R[(z, w)]−1

R ))

≥ min{µ([(x, y)]R[(a, b)]−1
R ), µ([(a, b)]R[(z, w)]−1

R )}
≥ min{t, t}
= t,

and so ([(x, y)]R, [(z, w)]R) ∈ µt.
If ([(x, y)]R, [(a, b)]R) ∈ µt and ([(a, b)]R, [(z, w)]R) ∈ µt, then since µ is a fuzzy field
of F,

µ([(x, y)]R − [(z, w)]R) = µ([(x, y)]R + [0, 1]R − [(z, w)]R)
= µ([(x, y)]R + [(a, b)]R − [(a, b)]R − [(z, w)]R)
= µ(([(x, y)]R − [(a, b)]R) + ([(a, b)]R − [(z, w)]R))
≥ min{µ([(x, y)]R − [(a, b)]R), µ([(a, b)]R − [(z, w)]R)}
≥ min{t, t}
= t,
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and so ([(x, y)]R, [(z, w)]R) ∈ µt. Therefore µt is an equivalence relation on F. We
can show that µt is a congruence relation on F . Let ([(x, y)]R, [(a, b)]R) ∈ µt and
[(z, w)]R be any element of F. Then, since µ([(x, y)]R[(a, b)]−1

R ) ≥ t,

µ(([(x, y)]R[(z, w)]R)([(a, b)]R[(z, w)]R)−1)

= µ(([(x, y)]R[(z, w)]R)([(z, w)]−1
R [(a, b)]−1

R ))

= µ([(x, y)]R([(z, w)]R[(z, w)]−1
R )[(a, b)]−1

R )

= µ([(x, y)]R[1, 1]R[(a, b)]−1
R )

= µ([(x, y)]R[(a, b)]−1
R )

≥ t,

and so ([(x, y)]R[(z, w)]R, [(a, b)]R[(z, w)]R) ∈ µt. Similarly

([(z, w)]R[(x, y)]R, [(z, w)]R[(a, b)]R) ∈ µt.

Let ([(x, y)]R, [(a, b)]R), ([(z, w)]R, [m,n]R) ∈ µt. Then, µ([(x, y)]R, [(a, b)]R) ≥ t and
µ([(z, w)]R + [(m,n)]−1

R ) ≥ t,

µ(([(x, y)]R + [(z, w)]R) + ([(a, b)]R + [(m,n)]R)−1)
= µ(([(x, y)]R + [(z, w)]R) + ([(−a, b)]R − [(m,n)]R))
= µ(([(x, y)]R − [(a, b)]R) + ([(z, w)]R − [(m,n)]R))
≥ min{µ([(x, y)]R − [(a, b)]R), µ([(z, w)]R − [(m,n)]R)}
≥ min{t, t}
= t,

and so ([(x, y)]R + [(z, w)]R, [(a, b)]R + [(m,n)]R) ∈ µt. Similarly

([(z, w)]R + [(x, y)]R, [(m,n)]R + [(a, b)]R) ∈ µt.

Therefore, µt is a congruence relation on F. This completes the proof. �

Let µ be a fuzzy field of a field F, µt be a t−level congruence relation of µ on
F , and X be a nonempty subset of F. The congruence class of µt containing the
element [(x, y)]R of F will be denoted by [(x, y)]µR. Then the sets

µt(X) = {[(x, y)]R ∈ F : [(x, y)]µR ⊆ X}
and

µt(X) = {[(x, y)]R ∈ F : [(x, y)]µR ∩X 6= ∅}
are called, respectively, the lower and upper approximations of the sets X with
respect to µt.

Proposition 3.16. Let µ be a fuzzy field of a field F, and t ∈ [0, 1]. If X is a subfield
of F, then µt(X) is a subfield of F.

Proof. Let X be a subfield of F, and [(x, y)]R, [(a, b)]R be any elements of µt(X).
Then there exist elements [(x1, y1)]R and [(a1, b1)]R in F such that

[(x1, y1)]R ∈ [(x, y)]µR ∩X

and
[(a1, b1)]R ∈ [(a, b)]µR ∩X.
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Thus, [(x1, y1)]R ∈ [(x, y)]µR, [(x1, y1)]R ∈ X, [(a1, b1)]R ∈ [(a, b)]µR and [(a1, b1)]R ∈
X. Since µt is a congruence relation on F,

[(x1, y1)]R − [(a1, b1)]R ∈ ([(x, y)]µR − [(a, b)]µR) = ([(x, y)]R − [(a, b)]R)µ.

Since X is a subfield of F, [(x1, y1)]R−[(a1, b1)]R ∈ X. Thus, [(x1, y1)]R−[(a1, b1)]R ∈
([(x, y)]R − [(a, b)]R)µ ∩ X, and so ([(x, y)]R − [(a, b)]R) ∈ µt(X). If [(x, y)]R and
[(a, b)]R are any elements of µt(X), then there exist elements [(x1, y1)]R and [(a1, b1)]R
in F such that

[(x1, y1)]R ∈ [(x, y)]µR ∩X

and

[(a1, b1)]R ∈ [(a, b)]µR ∩X.

Thus, [(x1, y1)]R ∈ [(x, y)]µR, [(x1, y1)]R ∈ X, [(a1, b1)]R ∈ [(a, b)]µR and [(a1, b1)]R ∈
X. Since µt is a congruence relation on F,

[(x1, y1)]R[(b1, a1)]R ∈ ([(x, y)]µR[(b, a)]µR) = ([(x, y)]R[(b, a)]R)µ.

Since X is a subfield of F, [(x1, y1)]R[(b1, a1)]R ∈ X. Thus, [(x1, y1)]R[(b1, a1)]R ∈
([(x, y)]R[(b, a)]R)µ ∩X, and so [(x, y)]R[(b, a)]R ∈ µt(X). �

Proposition 3.17. Let µ be a fuzzy field of a field F, and t ∈ [0, 1]. If X is a subfield
of F, then µt(X) is a subfield of F.

Proof. Let X be a subfield of F, and [(x, y)]R and [(a, b)]R be any elements of µt(X).
Then

[(x, y)]µR ⊆ X

and

[(a, b)]µR ⊆ X.

Since µt is a congruence relation on F,

([(x, y)]µR − [(a, b)]µR) = ([(x, y)]R − [(a, b)]R)µ ⊆ X

and so ([(x, y)]R − [(a, b)]R) ∈ µt(X). If [(x, y)]R and [(a, b)]R are any elements of
µt(X), then

[(x, y)]µR ⊆ X

and

[(a, b)]µR ⊆ X.

Since µt is a congruence relation on F,

([(x, y)]µR[(b, a)]µR) = ([(x, y)]R[(b, a)]R)µ ⊆ X.

and so [(x, y)]R[(b, a)]R ∈ µt(X). �
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