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1. Introduction

The first published description of the bicyclic semigroup was given by Evgenii
Lyapin in 1953 [7]. A description of the subsemigroups of the bicyclic monoid was
given in 2005 [2]. In this paper, we use this description to study left I-orders in the
bicyclic monoid. Many definitions of semigroups of quotients have been proposed
and studied. The first, that was specifically tailored to the structure of semigroups
was introduced by Fountain and Petrich in [3], but was restricted to completely 0-
simple semigroups of left quotients. This definition has been extended to the class
of all semigroups [6]. The idea is that a subsemigroup S of a semigroup Q is a left
order in Q or Q is a semigroup of left quotients of S if every element of Q can be
written as a]b where a, b ∈ S and a] is the inverse of a in a subgroup of Q and
if, in addition, every square-cancellable element (an element a of a semigroup S is
square-cancellable if aH∗ a2) lies in a subgroup of Q. Semigroups of right quotients
and right orders are defined dually. If S is both a left order and a right order
in a semigroup Q, then S is an order in Q and Q is a semigroup of quotients of
S. This definition and its dual were used in [6] to characterize semigroups which
have bisimple inverse ω-semigroups of left quotients. On the other hand, Clifford
[1] showed that from any right cancellative monoid S with (LC) we can construct a
bisimple inverse monoid Q such that Q = S−1S; that is, every element of Q can be
written as a−1b where a, b ∈ S and a−1 is the inverse of a in Q in the sense of inverse
semigroup theory. By saying that a semigroup S has the (LC) condition we mean
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that for any a, b ∈ S there is an element c ∈ S such that Sa ∩ Sb = Sc. The author
and Gould in [5] have extended Clifford’s work to a left ample semigroup with (LC)
where they introduced the following definition of left I-orders in inverse semigroups:
Let Q be an inverse semigroup. A subsemigroup S of Q is a left I-order in Q or Q
is a semigroup of left I-quotients of S, if every element of Q can be written as a−1b
where a, b ∈ S. The notions of right I-order and semigroup of right I-quotients are
defined dually. If S is both a left I-order and a right I-order in Q, we say that S is
an I-order in Q and Q is a semigroup of I-quotients of S. It is clear that, if S a left
order in an inverse semigroup Q, then it is certainly a left I-order in Q; however, the
converse is not true (see for example [5] Example 2.2). A left I-order in an inverse
semigroup Q is straight if every element of Q can be written as a−1b where a, b ∈ S
and aR b in Q; we also say that Q is a straight left I-quotients of S. If S is straight
in Q, we have the advantage of controlling the product in Q. In [4] the author has
given the necessary and sufficient conditions for a semigroup S to have a bisimple
inverse ω-semigroup left I-quotients, modulo left I-order in the bicyclic semigroup
B, which is the most straightforward example of the bisimple inverse ω-semigroup.
In fact, it is a semigroups with many remarkable properties. Left I-orders in the
bicyclic semigroup are interesting in their own right. By describtions left I-order in
B, we obtain:

Theorem 1.1. Let S be a subsemigroup of B. If S is a left I-order in B, then it is
straight.

In the preliminaries after introducing the necessary notation, we give some pre-
vious results giving the description of subsemigroups of B. We use the classification
of subsemigroups of B in [2] to investigate which of them are left I-orders in B. Sub-
semigroups of B fall into three classes upper, lower and two-sided. In Sections 3, 4
and 5 we give the necessary and sufficient conditions for upper, lower and two-sided
subsemigroups of B to be left I-orders in B, respectively. In each case, such left
I-orders are straight and this proves Theorem 1.1.

2. Preliminaries

Throughout this paper we shall follow the terminology and notation of [1]. The
symbol N will denote the set consisting of the natural numbers and N0 = N ∪ {0}.
Let R,L,H and D = R ◦ L = L ◦ R be the usual Green’s relations. A semigroup
S is called simple if S does not contain proper two-sided ideals and bisimple if it
consists of a single D-class. The bicyclic semigroup B(a, b) is defined by the monoid
generated by two elements a and b subject only to the condition that ba = 1. It
follows that the elements can all be written in the standard form aibj where i, j ≥ 0.
We can write out the elements of B in array.

1 b b2 b3 b4 . . .
a ab ab2 ab3 ab4 . . .
a2 a2b a2b2 a2b3 a2b4 . . .
a3 a3b a3b2 a3b3 a3b4 . . .
a4 a4b a4b2 a4b3 a4b4 . . .
...

...
...

...
...

. . .
64
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The multiplication on B is defined as follows:

akblambn =

{
ak+m−lbn l ≤ m,

akbl−m+n l > m.

We can put the two cases together as follows:

akblambn = ak−l+tbn−m+t where t = max{l, m}.
The monoid B is thus isomorphic to the monoid N0 × N0 with multiplication

(k, l)(m,n) = (k − l + t, n−m + t) where t = max{l, m}.
It is easy to see that B is an inverse semigroup: the element aibj has inverse ajbi.
The idempotents of B are of the form

en = anbn (n = 0, 1, 2, ...) which satisfy 1 = e0 ≥ e1 ≥ e2 ≥ ....

Green’s relations L,R and H are given by

aibj L akbl if and only if j = l,

aibj R akbl if and only if i = k,

and
aibj H akbl if and only if i = k and j = l.

In the array, the rows are the R-classes of B, the columns are the L-classes and
the H-classes are points. There is only one D-class; that is, B is a bisimple monoid
(hence simple).

Following [2], we start by introducing some basic subsets of B,

D = {aibi : i ≥ 0} ............................................the diagonal .
Lp = {aibj : 0 ≤ j ≤ p, i ≥ 0} for p ≥ 0 .............the left strip (determined by p).

For 0 ≤ q ≤ p we define the triangle

Tq,p = {aibj : q ≤ i ≤ j < p}.
For i,m ≥ 0 and d > 0 we define the rows

Λi = {aibj : j ≥ 0}, Λi,m,d = {aibj : d|j − i, j ≥ m}
and in general for I ⊆ {0, . . . , m− 1},

ΛI,m,d =
⋃

i∈I

Λi,m,d = {aibj : i ∈ I, d|j − i, j ≥ m}.

For p ≥ 0, d > 0, r ∈ [d] = {0, . . . , d− 1} and P ⊆ [d] we define the squares

Σp = {aibj : i, j ≥ p}, Σp,d,r = {ap+r+udbp+r+vd : u, v ≥ 0},
Σp,d,P =

⋃

r∈P

Σp,d,r = {ap+r+udbp+r+vd : r ∈ P, u, v ≥ 0}.

It is worth pointing out that in [2] it was shown that a subsemigroup of B is inverse
if and only if it has the form FD ∪Σp,d,P where FD is a finite subset of the diagonal
(which may be empty). The function̂ : B −→ B defined by aibj → âibj = ajbi

is an anti-isomorphism. Geometrically it is the reflection with respect to the main
diagonal.
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Figure 1. The subsets Λ{1,4,7},7,3, Λ̂{1,4,7},7,3,Σ8,3,{0,4} and T3,7

Proposition 2.1 ([2]). Let S be a subsemigroup of the bicyclic monoid. Then one
of the following conditions holds:

1. S is a subset of the diagonal, S ⊆ D.
2. S is a union of a subset of a triangle, a subset of the diagonal above the

triangle, a square below the triangle and some lines belonging to a strip determined
by the square and the triangle, or the reflection of this union with respect to the
diagonal. Formally there exist q, p ∈ N0 with q ≤ p, d ∈ N, I ⊆ {q, ..., p − 1} with
q ∈ I, P ⊆ {0, ..., d − 1} with 0 ∈ P, FD ⊆ D ∩ Lq, F ⊆ Tq,p such that S is of one
of the following forms:

(i) S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P ;
(ii) S = FD ∪ F̂ ∪ Λ̂I,p,d ∪ Σp,d,P .

3. There exist d ∈ N, I ⊆ N0, FD ⊆ D∩Lmin(I) and sets Si ⊆ Λi,i,d (i ∈ I) such
that S is of one of the following forms:

(i) S = FD ∪⋃
i∈I Si;

(ii) S = FD ∪⋃
i∈I Ŝi;

where each Si has the form
Si = Fi ∪ Λi,mi,d

for some mi ∈ N0 and some finite set Fi, and

I = I0 ∪ {r + ud : r ∈ R, u ∈ N0, r + ud ≥ N}
for some (possibly empty) R ⊆ {0, ..., d − 1}, some N ∈ N0 and some finite set
I0 ⊆ {0, ..., N − 1}.

We call diagonal subsemigroups those defined by 1., two-sided subsemigroups
those defined by 2., upper subsemigroups those defined by 3.(i) and lower subsemi-
groups those defined by 3.(ii).

We begin with the following example which plays a significant role in studying
left I-orders in B.

Example 2.2. Let R1 = {a0bj : j ≥ 0} be the R-class of the identity element 1 of
B and q = ambn ∈ B. Then q = ambn = (a0bm)−1(a0bn), so that R1 is a straight
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left I-order in B. In fact, it is a special case of Clifford’s result, mentioned in the
Itroduction.

Remark 2.3. Any subsemigroup of B that contains R1 is a straight left I-order in
B.

Lemma 2.4. Let S be a left I-order in B. Then for any L-class Lk of B, S∩Lk 6= ∅.

Proof. Let k ∈ N0. Then

akbk = (aibj)−1(ambn)
= ajbiambn

= aj−i+tbn−m+t

where t = max{i,m}, for some aibj , ambn ∈ S. Hence k = j − i + t = n−m + t, so
that either k = j or k = n. Thus S ∩ Lk 6= ∅. ¤

We conclude this section by the following lemma which plays a significant role in
the next sections.

Lemma 2.5. Let S be a left I-order in B and let d ∈ N. If for all aibj ∈ S we have
d|i− j, then d = 1.

Proof. Let akbl ∈ B. Then there exist aibj , ambn ∈ S with

akbl = (aibj)−1(ambn)
= ajbiambn

= aj−i+tbn−m+t

where t = max{i,m}. Now

k − l = (j − i + t)− (n−m + t)
= (j − i) + (m− n) ≡ 0 (mod d).

It follows that d = 1. ¤

3. Upper subsemigroups

In this section we give necessary and sufficient conditions for an upper subsemi-
group S of B to be a left I-order in B. The upper subsemigroups of B are those
having all elements on or above the diagonal; that is, all elements satisfy: aibj , j ≥ i.
Throughout this section S is an upper subsemigroup of B having the form (3).(i)
in Proposition 2.1. We have already met one of them, which is the R-class of the
identity. By Lemma 2.4, we deduce that any left I-order upper subsemigroup is a
monoid.

The next example is of a subsemigroup bigger than R-class of the identity. In
fact, it is the largest upper subsemigroup of B.

Example 3.1. The upper subsemigroup B+ = {aibj : j ≥ i} of B is a straight left
I-order in B, by Remark 2.3 as R1 ⊆ B+. In fact, we can write any element aibj of
B as follows

aibj = (aibi+j)(ajbi+j)−1

where aibi+j , ajbi+j ∈ B+, that is, B+ is a right I-order in B. Hence B+ is an I-order
in B. It is worth pointing out that B+ is a full subsemigroup of B in the sense that
E(B) = E(B+).
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Remark 3.2. Let S be an upper subsemigroup of B. If i /∈ I, then S does not
contain any element of form aibj for all j > i, and only contains aibi if aibi ∈ FD.

Lemma 3.3. Let S be an upper subsemigroup of B. If S is a left I-order in B, then
d = 1 and 0 ∈ I.

Proof. Since S an upper subsemigroup, it follows that for all aibj ∈ S we have that
d|j − i for some d ∈ N. By Lemma 2.5, it is clear that d = 1. It is therefore remains
to show that 0 ∈ I. By Lemma 2.4, we have that 1 ∈ S. Let a0bh ∈ B for some
h ∈ N. Hence

a0bh = (aibj)−1(ambn)
= aj−i+tbn−m+t

where t = max{i,m}, for some aibj , ambn ∈ S. For 0 = j − i + t we must have that
t = i and j = 0. As i ≤ j, it follows that i = j = 0 and so a0bh = ambn ∈ S. ¤

The following corollary is obvious.

Corollary 3.4. Let S be an upper subsemigroup of B. If S is a left I-order in B,
then R1 ⊆ S.

By Lemma 2.4, S ∩ L1 6= ∅. As FD = D ∩ Lmin(I), the following corollary is
clear.

Corollary 3.5. Let S be an upper subsemigroup of B. If S is a left I-order in B,
then FD = {1} or FD = ∅.

We now come to the main result of this section which is the first result of the
paper.

Proposition 3.6. For an upper subsemigroup S of B, the following are equivalent:
(i) S is a left I-order in B;
(ii) R1 ⊆ S.

Moreover, writing S as S = FD∪
⋃

i∈I Si, we have R1 ⊆ S if and only if 0 ∈ I, d = 1
and FD ∪ F0 = {1, ..., a0bm0−1}.
Proof. The equivalence of (i) and (ii) follows from Example 2.2 and Corollary 3.4.
The remaining statement follows from inspection of the description of S as in 3(i)
of Proposition 2.1. ¤
Corollary 3.7. Let S be an upper subsemigroup of B. If S is a left I-order in B,
then it is straight.

4. Lower subsemigroups

In this section we give necessary and sufficient conditions for the lower subsemi-
groups of B to be left I-orders in B. Throughout this section S is a lower subsemi-
group of B having the form (3).(ii) in Proposition 2.1. We begin with:

Example 4.1. The lower subsemigroup T = {aibj : i ≥ j, i ≥ m} of B is a straight
left I-order in B. Since for any element q = akbh in B we have

q = akbh = akbk+h+mak+h+mbh = (ak+h+mbk)−1(ak+h+mbh)

and it is clear that ak+h+mbk and ak+h+mbh are in T .
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Remark 4.2. Let S be a lower subsemigroup of B. If j /∈ I, then S contains no
element aibj with i > j.

Lemma 4.3. Let S be a lower subsemigroup of B. If S is a left I-order in B, then
d = 1 and 0 ∈ I.

Proof. Since S a lower subsemigroup, it follows that for all aibj ∈ S we have that
d|j − i for some d ∈ N. By Lemma 2.5, it is clear that d = 1. Let ahb0 ∈ B where
h ∈ N. Then

ahb0 = (aibj)−1(ambn) = aj−i+tbn−m+t

where t = max{m, i}, so that 0 = n−m+t. Hence we deduce that n = 0 and t = m.
We also have that h = j − i + m so that m = h + (i − j) ≥ h so that amb0 ∈ S.
Hence 0 ∈ I. ¤

Since FD ⊆ D ∩ Lmin(I), the following corollary is clear.

Corollary 4.4. Let S be a lower subsemigroup of B. If S is a left I-order in B,
then FD = {1} or FD = ∅.

Suppose that a lower subsemigroup S is a left I-order in B. From Lemma 4.3, we
have that d = 1 and 0 ∈ I. We claim that I = N0. By Corollary 4.4, FD = {1}
or FD = ∅, so that as S intersects every L-class of B, by Lemma 2.4, we have that
I = N0. We have one half of the following proposition.

Proposition 4.5. A lower subsemigroup S is a left I-order in B if and only if d = 1
and I = N0.

Proof. Suppose that d = 1 and I = N0. Then

Λ̂i,mi,1 = {ajbi : j = t + i, j ≥ mi} = {at+ibi : t + i ≥ mi}.
For any ahbk ∈ B we have

ahbk = (ah+k+tbh)−1(ah+k+tbk)

where t = max{mh,mk} for i ∈ N0. It is clear that ah+k+tbh, ah+k+tbk ∈ S. ¤
The following corollary is clear from the proof of Proposition 4.5.

Corollary 4.6. Let S be a lower subsemigroup of B. If S is a left I-order in B,
then it is straight.

5. Two-sided subsemigroups

In this section we give necessary and sufficient conditions for the two-sided sub-
semigroups of B to be left I-orders in B. The two-sided subsemigroups of B have
the forms (2).(i) and (2).(ii) in Proposition 2.1. Throughout this section we shall
assume that a two-sided subsemigroup S of B is proper, in the sense S 6= B.

We divide this section into two parts. We study the first form in the first part,
and the second form in the second part.

We begin with the two-sided subsemigroups which have the form (2).(i) in Propo-
sition 2.1.

Let ambn ∈ F ⊆ S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P . Then, d|(n − m). For, as
0 ∈ P , apbp+d ∈ S and we have that apbp+dambn = apbn−m+p+d ∈ Σp,d,P , so that
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d|(m− n− d), that is, m− n = (t + 1)d for some t ∈ N0. Hence for any aibj ∈ S we
have that d|i− j. By Lemma 2.5, the first part of the following lemma is clear.

Lemma 5.1. If a two-sided subsemigroup S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P of B is a
left I-order in B, then d = 1 and q = 0. Consequently, R1 ⊆ S.

Proof. Let a0bh ∈ B where h ∈ N. Then,

a0bh = (aibj)−1(ambn) = aj−i+tbn−m+t

where t = max{m, i}, so that 0 = j − i + t. Hence we deduce that j = 0. If
aibj ∈ Σp,d,P , then as Σp,d,P is an inverse subsemigoup of B we have that a0bh ∈ S.
In the case where aibj /∈ Σp,d,P we must have that aibj ∈ FD ∪ F ∪ ΛI,p,d. Hence
j ≥ i so that i = j = 0. It follows that a0bh = ambn ∈ S. Hence q = 0. ¤

Since FD ⊆ {1} we have that FD = {1} or FD = ∅. In either case, S ∩L1 = {1}.
Then the following corollaries are clear.

Corollary 5.2. If a two-sided subsemigroup S = FD ∪ F ∪ΛI,p,d ∪Σp,d,P of B is a
left I-order in B, then FD = {1} or FD = ∅.

Corollary 5.3. A two-sided subsemigroup S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P of B is a
left I-order in B iff R1 ⊆ S.

Corollary 5.4. If S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P is a left I-order in B, then it is
straight.

Now, we start studying the second form which has the form (2).(ii) in Proposi-
tion 2.1.

Let ambn ∈ F̂ ⊆ S = FD∪ F̂ ∪ Λ̂I,p,d∪Σp,d,P . Then, d|n−m. For, since apbp+d ∈
Σp,d,P , it follows that ambnapbp+d = am−n+pbp+d ∈ Σp,d,P . Hence d|(m − n − d),
that is, m − n − d = td for some t ∈ N0 and so m − n = (t + 1)d. Hence for any
aibj ∈ S we have that d|i− j. By Lemma 2.5, the first part of the following lemma
is clear.

Lemma 5.5. If a two-sided subsemigroup S = FD ∪ F̂ ∪ Λ̂I,p,d ∪ Σp,d,P of B is a
left I-order in B, then d = 1 and q = 0.

Proof. Suppose that q 6= 0, let a0bk ∈ B where k ∈ N. Then

a0bk = (aibj)−1(ambn) = aj−i+tbn−m+t

where t = max{m, i}, so that 0 = j − i + t. Hence we can deduce that j = 0. If
i = 0, then a0bk = ambn so that a0bk ∈ S a contradiction and so i > 0. Hence
aib0 ∈ S, but aib0 ∈ Λ̂0,p,1 ∪ F̂ as F̂ ⊂ T0,p a contradiction again. Therefore q = 0
as required. ¤

Remark 5.6. In the case where q = 0 it is easy to see that apb0 ∈ S. If m /∈ I, then
aubm /∈ F̂ for any 0 ≤ u < p. For, if aubm ∈ F̂ , then apb0aubm = ap+ubm ∈ Λ̂I,p,d a
contradiction.

Proposition 5.7. The subsemigroup S = FD ∪ F̂ ∪ Λ̂I,p,d ∪ Σp,d,P of B is a left
I-order in B if and only if d = 1 and I = {0, ..., p− 1}.
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Proof. (=⇒) Suppose that S is a left I-order in B. Then any element q = ambn ∈ B
can be written as (aibj)−1(akbl) for some aibj , akbl ∈ S. By Lemma 5.5, d = 1 and
0 ∈ I. It is remains to show that I = {0, ..., p− 1}.

Let 0 < m < p. Then

ambm = (aibj)−1(akbl)
= aj−i+tbl−k+t

where t = max{i, k}, for some aibj , akbl ∈ S. Then m = j or m = l; so that
aubm ∈ S for some u. If m /∈ I, so u < p, then apb0aubm = ap+ubm ∈ S, in
contradiction to Remark 5.6.

(⇐=) Suppose that d = 1 and I = {0, ..., p− 1}. Then for any ambn ∈ B we have

ambn = (ap+m+nbm)−1(ap+m+nbn).

It is clear that ap+m+nbm, ap+m+nbn ∈ S. ¤

Corollary 5.8. If S = FD ∪ F̂ ∪ Λ̂I,p,d ∪ Σp,d,P is a left I-order in B, then it is
straight.

From Corollaries 5.4 and 5.8, we have the main result of this section.

Corollary 5.9. Let S be a two-sided subsemigroup of B. If S is a left I-order in B,
then it is straight.
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