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ABSTRACT. In this paper, we introduce the concepts of T-syntopogenous
spaces and investigate some of their properties, where T stands for any
continuous triangular norm. Their definitions subsumes that of fuzzy syn-
topogenous spaces due to A. K. Katsaras ( Fuzzy Sets and Systems 36
(1990)), as our Min-syntopogenous spaces. In particular, we study the con-
tinuity of functions between T-syntopogenous spaces and the I-topological
space associated with a T-syntopogenous space. Moreover, we describe the
T-syntopogenous structures as fuzzy relations in (ordinary) power sets.
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1. INTRODUCTION

Katsaras and Petalas [5, 6, 7] introduced the fuzzy syntopogenous structures and
studied the unified theory of Chang I-topologies [2] and Lowen Fuzzy uniformities
[10]. In this manuscript, we introduce, for each continuous triangular norm 7', a new
structure of T-syntopogenous spaces that conforms well with Lowen I-topological
spaces [9]. Our concept of T-syntopogenous structure generalizes, to arbitrary con-
tinuous triangular norm T, the fuzzy syntopogenous structure of A. K. Katsaras [7],
now becoming the special case corresponding to 7' = Min. Also we deduce the no-
tion of syntopogenous maps and here we show that the class of all T-syntopogenous
spaces together with syntopogenous maps as arrows forms a concrete category. The
basic idea is to introduce a degree of divergence between fuzzy subsets, which is a
real number in the unit interval I = [0, 1].

We proceed as follows: In Section 2, we state and supply some basic ideas and
lemmas on the T-residuated implication and on the a-cuts of fuzzy subsets, which
will be needed in the sequel. In the third section, we introduce our definition of
T-topogenous order, and hence T-syntopogenous structure on a set, also we define
the I-topology associated with a T-syntopogenous structure. We deduce the notions
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of image and inverse image of T-topogenous orders. Moreover, we give the examples
of T-topogenous orders and T-syntopogenous spaces together with the I-topology
generated by them. In Section 4, we deduce the notion of syntopogenous maps
(syntopogenously continuous functions) and we define a functor from category of
T-syntopogenous spaces into category of I-topological spaces. The fifth section
characterizes both T-topogenous orders and syntopogenous maps, uniquely, in terms
of fuzzy binary relations in power sets.

2. PRELIMINARIES

A triangular norm T (cf. [12]) is a binary operation on the unit interval T = [0, 1]
that is associative, symmetric, monotone in each argument and has neutral element
1. The basic two (continuous) triangular norms are their simplest, namely Min (also
denoted by A ) and product.

The triangular conorm of a triangular norm 7" is the binary operation 7™ on the
unit interval I given by : aT*F =1—[(1 — a)T(1 — B)], o, f € I. A continuous
triangular norm 7 is uniformly continuous, that is for every € > 0 there is 6 = 07
such that for every («, 3) € I x I, we have

(21)  (aTB)—e<(a=O)T(B—0) <aTB < (a+O)T(3+6) < (aTB) +e.
For a continuous triangular norm 7, the following binary operation on I
F(o,y) =sup{ecI:aTe<~}, a, yel,

is called the residuation implication of 7' [11]. For this implication, we shall use the
following properties, V a, €,y € I:
By continuity of T,

(2.2) aT Z(a,e)=ale.
By the definition of .#, we have :
(2.3) a<eiff Z(a,e)=1, and aTy<eiff a < _Z(v,¢).

A fuzzy set A in a universe set X, introduced by Zadeh in [13], is a function
A: X — I =10,1]. The height of a fuzzy set A € IX is the following real number :

hgt A = sup{A(x) : z € X}.

We shall often need to consider a subset H C X as a fuzzy subset of X, said to be
a crisp fuzzy subset of X, which we shall denote by the symbol 15. We do this by
identifying 1y with its characteristic function. We also denote the constant fuzzy
set of X with value a € I by a.

Given a fuzzy set A € I and a real number o € I; = [0, 1], the strong a-cut of
A is the following subset of X :

A ={z € X :A(z) > a},
and for a real number « € I, the weak a-cut of A is the subset of X:

Aar ={r € X : X\z) > a}.
26
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It is directly verified that every A € I*X has the following formulations

(2.4) A=\lerly. )=\ [eT,,.].

acl acl

(2.5) A=A leviy.] = A [aT"1,,.].

acl acl

Given two fuzzy sets p, A € IX, we denote by uT\ the fuzzy subset of X given
by : (WT'AN)(z) = p(x)TA(x), € X. Hence for all ¢ > 0 and the above § = 67, we
find that for all u, \, v, p € IX:

[ —=vI[VIA=pll <6 = [[uTA—vTp|| <,
where || — || denotes the L..-distance on IX, given by
I — vl = sup{lu(z) — v(2)| : & € X}, pyv € 1%,

that is, the function 7" : IX x I*X — IX is also uniformly continuous with respect to
the Loo-distance on IX.

Lemma 2.1 ([4]). For every p, A € IX and € € I, we have

(i) (UTA)er = Uf)T—yZe (o= N Aye);
(11 (:LLT%)ﬁ* = UGT’yZe (,LLQ*),'
(i) hgt A\ T1g) <e = X*NH=0;

)

)
(iv) hgt f(p) = hgt p and f(uTA) < f(u)Tf(N);
(v) For all o € [0,¢], let yoe = inf{0 € I : 0Te > a}. Then vq,Te = a and
consequently, (WT€)a = s -

Lemma 2.2. For every u, A € IX and o, € € I, we have

(i) (uTN) = UGT'yZe (:“0 N )\v)}-

() (L=a)T"A) | =Ao-sear-

Proof. (i) Let u, A € I’ and € € I. Then for every z € X, we get the equivalences:
x € (TN p(x)TA(z) > €
iff 36, € I such that p(z) > 6 and A\(x) > v with 0Ty > ¢
iff 36,y eI suchthat 2 € pu N\ with 07 > e

iff x¢€ U (,ueﬁ)ﬂ).
0T~>e

This proves (i).
27
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(ii) Let A € IX and «, € € I. Then

((k:a)T*A)(H)* —{reX: (1-a)T"Az)>1—¢}
={reX:1-[aT(1l-N(z)]>1—¢}
={zeX:al(l-N(z) <¢e}
={reX:(1-N(z)< Z(a,6)}, by (2.3)
={zeX:Nz)>1- _F(a,€)}
= A-s (@)

Rendering (ii). O

Lemma 2.3 ([1]). Suppose v, a, o/, € € I are such that o < v and eTo/ < eTa.
Then 7 (v,eTa) < €T 7 (v, a).

3. T-SYNTOPOGENOUS SPACES

T-topogenous orders and T-syntopogenous spaces are introduced in this section,
and some of their properties are given. We generate an I-topological space from
a T-syntopogenous space. We introduce the discrete and indiscrete T-topogenous
orders, as special examples. Also, the image and inverse image of T-topogenous
orders are define.

Definition 3.1. A T-topogenous order on a set X is a function ¢ : IX x IX — I,
that satisfies, for any p, A, v € I* and « € I, the following:

(TT1) ¢(1L,@) = aand ((2,0) =1 —q;
(TT2) ¢(uV A v)=C{(p,v) AC(Av) and ((u, A A V) = C(p, A) A C(p, v);
(TT3) If (1, A) > 1— (0 T ) for some 6, B € Iy =]0, 1], there is C' C X such that
ualc) Z 1—-6 and C(]‘C?)‘) Z 1 _ﬁ>
p, A) < 1 —hgt[pT'(1— N)];
aTp, A) = (1 —a)T*((p, A) = C(p, (L=a)T*N).
The real number {(u, A) can be interpreted as the degree of farness (divergence)
of the fuzzy sets p and (1 — ).

Definition 3.2 ([7])). A T-topogenous order ¢ on a set X is said to be :
(i) perfect if ¢ (Vyey 5 A) = Ajes Cligs V), g, A€ 1%

(ii) biperfect if it is perfect and ¢ (u, /\jeJ /\j) = /\jeJ Clps Aj),  my Aj € I,
(iii) symmetrical if (s, A) = (L — A\, L—p), p, A€ ™.

Definition 3.3. For T-topogenous orders {, n on X, we define the T-composition
of ¢ and n by:

(Corn)(p, A) = sup [n(p, 1c)T¢(Le, M), A € I
cCxX
Definition 3.4. (i) A T-syntopogenous structure on a set X is a family &2 of

T-topogenous orders on X satisfying the following conditions
28
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(TS1) & is directed in the sense that, given ¢, n € & there is £ € & such that
£>CVn
(TS2) for every ¢ € & and € € Iy, there is {, € & such that
(CeorCe) +e>C.

(ii) A T-syntopogenous structure & is called perfect (resp. biperfect, resp. sym-
metrical) if every member of & is perfect (resp. biperfect, resp. symmetrical). The
pair (X, &) is said to be a T-syntopogenous space.

First, we see how a T-syntopogenous structure can generate an I-topology. Take
a T-syntopogenous space (X, Z), and for any u € I and € X, we define a map
°: X - IX by:
(3.1) 1o (z) = sup ((1z, p).

ez

The following lemma and two propositions lead to the proof of Theorem 3.8,
below, which states that the mapping pu — u° is a fuzzy interior operator.

Given a real number 0 < v < 1, we denote by n(y) the unique positive integer n
satisfying n(vy) <1< (n+ 1)y.

Lemma 3.5 (El-Rayes and Morsi [3]). For every p € I* and 0 < v < 1,

=

)
\/ [T 1| < it

We use this lemma to establish :

Proposition 3.6. If ¢ : IX x IX — [ satisfies (TT2), then the following are
equivalent statements:

(i) ((@Tw,A) = (1—a)T*¢(u,A) = C(p,(L—=a)T*N), Va1, p, X € I¥;
(i) C(ks A) = Nges [0T*C(Lpgy_gpes V]
= Nper BT, 1ns ] Vo, e TIX;
(111) C(:uv )\) = /\97661 [OT*ﬂT*C(lu(l_s)* ) 1>‘/3*:| ) v 12 A S IX

Proof. (i) = (ii) : Suppose that (i) holds. Then for all u, A € I,

CluN) < ¢ ((;@)Tlml_g)* : A) , Y@el, by (24)and (TT2)
=07T"¢ (1 A, Voel, by(i)

H(1—6)*"

hence, C(1, ) < Agey [0T*C(Lpp_pye» Al
For the converse inequality, since

n(v) n(v)
<V [n71m] < V 71,
v, v,

=2

29
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we have

n(y)
N ¢V [T, ] A
7=0

n(7)

= A\ [@—nT"¢(1,,,.,N)], by (TT2) and (i)
j=0

> N [OT°C(Lu_pe: M)
oel

Hence, we get the conclusion, which proves the first equality of (ii).
For the second equality, we have as above, by (2.5),

¢ A) < N [BTC (1 10,.)] -
Bel

For the converse inequality, putting A = 1 — v, for some v € I X, we have

Clps A) = C(p, 1 —v)

n(v)
>¢ (w1 |V (AaT1em)| |, by (TT2)
7=0
n(v)
= w [(1—17)T*(1—1(w))}
§=0
n(v)
= N\ [0 =T 1 x—vim)], by (TT2) and (i)
§=0
n(v)
= /\ [(1 *j’y)T*g(,u,1(%_@(1_].7)*)} , clear
§=0
> N [BT7¢(11a,.)] -
BeI

Hence, we get the conclusion, which proves the second equality of (ii).
(if)=-(iii): Direct.
(iii)=-(i): Suppose (iii) holds. Then for all u, A € IX and all a € I,
TN = N 0T8T ¢ ari o 1)) by (i)
0,8el

= /\ {HT*ﬂT*C (1“(7(170)@)* , 1>\ﬁ*)} , by Lemma 2.1 (v)

BeI
6el—a,l]

/\ (1= a)T*eT*BT* (L, e s Inge ] s
e,Bel

30
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because § > 1 — « if and only if § = (1 — a)T™*e for some € € I, equivalently
1—0=aT(1—c¢) (due to the continuity of T ), and such (1 — €) is greater or equal
to Y(1-6),a, hence piq_o« C I(vii—gy.0)* - Therefore,

(T, \) = (1 — a)T* Acper [eTBT*C (Luyy s 1nye )]
= (1= a)T"¢(u, ), by (iii).

Similarly, by using Lemma 2.2 (ii), we can show
Clp, (L=a)T"A) = (1 = a)T"C(p, A),

which winds up the proof. O

Proposition 3.7. Let ¢ be a T-topogenous order on a set X. Then for all p,\ € I,
we have

Proof. (i) By (TT4), we have for all z € X,
)‘O(x) = C(lzv /\) <1—hgt |:1IT(; - /\)] = /\(l‘)

(ii) By the continuity of T', for every real number 6 > 1 — ((u, A) and every € > 0,
there is By > 0 such that

[1 - C(/J/v )‘)] +e> eTﬁH >1- C(Ma )‘)

Hence, by (TT3) and the continuity of T, there is Cy C X such that

(3.2) C(/J,, 109) >1— By and C(1097)\) >1-90.

Consequently, for every z € Cy, we have

A(z) =C(12,A) = ¢(1¢,, M), by (TT2)
>1-6, by (3.2)
= q, by putting 1 — 6 = a.

Therefore, z € (A°)y«, that is

(3.3) Co € (A%)ax-
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Hence,

Clp, A°) = [aT*Cu, 1()\o)a*] , by Proposition 3.6

/\ [aT*C(u,l(,\o)a*] A /\ [aT*C(u,l(Ao)a*] , clear

AN [L=(0TBe)] p AL A)

0>1—C(1,N)

{(x<((u,/\) a>¢(p,\)

> { /\ [T C (1, Lney, . ] p A /\ @
a<¢(u,\) a>¢(p,\)

> { N =0T, 1c,)] p A, ), by (3.3) and (TT2)
0>1—C(p,\)

> { N [A=0T"(1 = Bp)]  AC(, V), by (3.2)
0>1—C(p,\)
¢

v

[C(ps A) — €l AL, )
= C(H’v )‘) — €

By the arbitrariness of €, we get the inequality ((u, A\°) > ((u, A). The opposite
inequality follows from (i) and (TT2). O

Theorem 3.8. The above mapping u — u° is a fuzzy interior operator.

Proof. We have shown that ° is a lower operator. Also, for every u, A € IX, a € I
and r € X, we have

a’(z) = sup ((1,,2770)

ez
= oT™ sup ((1,,0), by (TT5)
ce?
— o, by (TT4)
= a(x).

By monotonicity of °, we have
(2 AA%) = (B AN
On the other hand, if € > 0, then there are (, n € & such that

po(x) — e < ((1,,p) and A°(z) — e < np(1,, A).
32
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By (TS1), we can get ¢ € & such that £ > (, 7, thus
(L AX) (@) — e = [n(x) — ] A [A(x) — €]
< [(1a, ) NE(La, A)]
= [£(La, p AN, by (TT2)
< (LAN)°(2).

This proves that (u® AX°) < (A X)° and so (A X)° = u® A A°. Moreover, by (ii)
of the preceding proposition, we get

Iz
[

(1°)°(x) = sup ((1g, u%) = sup ((1g, p) = p°(z);
ez (e
that is, © is idempotent. This proves that © is a fuzzy interior operator. O

As a consequence of this theorem we may define an I-topology in the usual way,
namely assuming a fuzzy set p to be open if and only if u = p°. We shall denote
this I-topology by t(&?), and we shall refer to it as the I-topology generated by .

Obviously one can equip the set of all T-topogenous orders on a set X, with a
partial order by defining (; is coarser than (3 (and (s is finer than (7) if (3 (u, A) <
Co(p, \) for every pair of fuzzy sets u, A € IX. Consequently, the T-syntopogenous
structure &; on X is said to be coarser than another one &5 (and 22, is finer than
P1) i for every ¢ € &2, there is (' € &5 such that { < (.

It clearly follows that if & and &5 are T-syntopogenous structures on a set X,
and &, is coarser than ,, then 1(#;) C 1(S).

Proposition 3.9. Let & be a T-syntopogenous structure on a set X and define
Co: IX xIX =1, by :

Co(p, A) = sup C(p, A),  p, A€ TX.
Cew

Then (s is a T-topogenous order on X, with ©({¢s}) = ©(2).

Proof. Tt is easy to see that (s satisfies (TT1), (TT3),(TT4) and (TT5). To prove
(TT2), let u, A, v € IX. Then

Cs(uV A v)=sup ((uV A v)
(e

= sup [((u,v) AC(Av)], by (TT2)
(e

< [Sup C(MW)] A [SUP C(%V)]
ez ez
= Gs(p, V) A Gs(A,v).
For the opposite inequality, let ¢ € Iy be such that
€ < Gl ) A GAD).
Then there are (1, (2 € & such that

€ S Cl(/’(‘ay) AC2()‘aV)'
33
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Since & is directed, then there is n € & such that n > (3 V (3. Hence
e < n(p,v) An(A,v)
=n(uVAv), by (TT2)

< sup ((uVAv)
e

= (VA ).
This proves that

Gl v) A Gs(Av) < Calp VA v).
So, Cs(pu VA v) = (s, v) A Cs(A, v). Analogously, we show that

CS(,U'a)‘ A V) = CS(H’v )‘) A CS(H’v V)'

Finally, we denote the fuzzy interior operators associated with t({(s}) and t(%?),
respectively by °* and °2. Let A € IX and z € X. Then we have

A% (@) = (s(1a, A) = sup ((1q, A) = A% (2).
e

That is, A°* = A\°2, which implies that T({(s}) = T(£?). Hence, the result follows. 0O

We call (, is the supremum of the T-syntopogeneous structure Z.

Example 3.10. Let X be a set and define (1, : IX x IX — I, by for every pu,
e I¥:

G(p, A) =1 —hgt[uT(1 - A)],

Co(pN) = 1 — [(hgtp) Thet (1 — ).
We verify that the function (; is a biperfect symmetrical T-topogenous order. It

suffices to check (TT3), since the other axioms trivially hold. Let ¢; (i, A) > 1—(6T3)
for some 6, § € I. So for every z € X,

WT(L— \))(2) < hetluT(L - )] < 0T,

hence
@ = [uT(1— Nlorp)-

= U [es N (L= N)y ], by Lemma 2.1(i)
eT~y>0Tp3

2 pos N (L= A)p.
By taking C' = pug» C X, we have
G 1o) =1 —=hgt[uT(L—1¢)] = 1 — hgt[pT(L - 1,,.)] = 1 -0,
(10, ) =1 het[1eT(L— A)] =1 - het[L,,. (1~ \)]
>1-hgt{l -1, )TAL-N]=1-56.
This yields (TT3). Moreover, it follows immediately that (; is a biperfect symmet-

rical.

34
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The I-topology generated by (7 is the discrete one (i.e. every fuzzy set is open),
since for every z € X and u € IX, we have

po(z) = Ci(1a, p)
=1 — hgt[(1,)T(1 — p)]
=1—sup[(1,)T(1 — p)(2)

zeX
=1-(1—-p)(x)
= p().

Also, the function (; is the finest (discrete) T-topogenous order on X, because for
every T-topogenous order ¢ on X, we have by (TT4),

C(p, A) < 1 —hgt[uT(1— N)] = (g, A).

To see that (5 is a T-topogenous order, we need only check (TT3). Let (a(pu, ) >
1 —(0Tp) for some 0, 5 € I, therefore

(hgtp)T (hgt(1 — A)) < 61'8.
Hence, if (hgtu) < 6, then C' = @& yields;
G 1e) = C2(p,0) = 1 — [(hgtp)Thgt(l — 0)] = 1 — (hgtp) > 1 -0,
G(le,A) = ¢2(0,A) =1 —[(hgt0)Thegt(L —A)] =1>1-6.
Whereas if (hgtu) > 6, then hgt(1 — A) < 8, and hence C' = X similarly yields
G 1c) > 1 -0 and G (16, M) > 1 6.

This establishes (TT3). Moreover, it is easy to see that (s is a biperfect symmetrical.
The I-topology generated by (s is the indiscrete one (exactly the constant fuzzy sets
are open) because, for every z € X and u € IX, we have

1O(2) = Ca(Las i) = 1 — [hgt(L,) Thet(L — p)] = 1 — hgt(L — ).

Also, the function (5 is the coarsest (indiscrete) T-topogenous order on X, because
if hgtyt = o and hgt(1— ) = v, then for every T-topogenous order ¢ on X, we have

¢y A) > C(a, 1—:7), clearly by (TT2)
=¢(aTl, (1 -)T70)
=1 - a)T*(1=)T"¢(L0), by (TT5)
=(1-—a)T*(1—7), by (TT1)
=1-(aTv)
=1 —[(hgty)Thgt(L — N)]
= G2(p, A).

Example 3.11. Let X be a nonempty set and let T =Min, take & = {(1, (2},
where (1, (2 as in Example 3.10. We verify that (X, &) is a biperfect symmetrical
Min-syntopogenous space.

(TS1) It obviously holds because ¢; > (.
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(TS2) Let u, A € I and € € Iy. Then
[(Cror C1) +¢] (1) = sup. [Ci(p,1e) ANCi(Xe, A)] + €
2> [Cl(}h ]-X) A <1(1X’ )‘)] +e
={[1 —hgt(pA (L—D)IA[1—hgt(LA L~ N)]} +e
=[1—hgt(l-X)]+e
= ng;[; )\(x)} +e
> Axp), for some zy € X.
Also,
[(Cror G1) +¢] (1, A) = s [CilLo) AG(Le, M) + €

[C1(ps 1) A Ci(La, A)] + €
= {[t — het(u A 1—0>]A [1—hgt(QA (L= )]} +e

v

= [1 — (hgtp)] +
= |t - )} e
> (1 — p)(yo), for some yp € X.

On the other hand,
Ci(p, A) =1 —hgtluA (L= A)]
= it (A VAl (@)
< (A= p)(z) V), Vo € X.

So, for every x € X, we have
Gp, A) < (L= p)(x) or Crp, A) < A=)
I G, A) < (L= (@), then G, A) < (1= 1)(g0) < [(G or 1) + €l(1u, A), and if

Ci(ps A) < A(x), then (1 (p, A) < AMzo) < [(Cror (i) +e)(p, A). That is (¢ror (1) +¢ >
¢1. Also, (¢1or ¢1) + € > (o since ¢4 > (2. This renders (TS2) and shows that &2
is a Min-syntopogenous structure on X. Moreover, the members (i, (5 of & are
biperfect symmetrical from Example 3.10. Also, obviously ©(%?) = t({(1}), where

(1 is the supremum of &.

Now, we clarify the relation between our T-syntopogenous structures and Kat-
saras’ fuzzy syntopogenous structures.

Proposition 3.12 ([3]). Let T be a continuous triangular norm. If 2 : IX — T
satisfies for all uy, A € I, H C X and o € I: 2(uV ) = 2(p) vV 2(N\) and
N(anly)=aTR(1y), then 2(a) = R(1)Ta and 2 is uniformly continuous with
respect to the Loo-distance on IX. Specifically, for given € > 0, let 0 = Or . be as in
(2.1). Then for all u, \ € IX:
[p=Al <0 = [2(n) — 2| <e
36
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Proposition 3.13. If ( : IX x IX — I satisfies (TT2) and (TT5), then ( is
uniformly continuous with respect to the Loo-distance on IX.

Proof. Let u, A\, v, p € I*. For a given € > 0, let O, be as in (2.1). Put 6 =
L(& A fr.). Suppose that (4,1 — A) — (111 — p)]| = | —v]| Vo All < 6. Then

€L =N~ L= )] < ICn L= X) — (L )]+ (L~ p) — C(v. 1~ )
<e+4e=2¢
because, for fixed fuzzy sets u, p; £21(\) =1 — (i, 1 — ), satisfies
21OV N) =1 (L — AV X))
=1- C(u,é— MNAL=X)), ANel®
=1 [Cl, L= X)) AC(u, L= N))], by (TT2)

= [1 - C(:U’v (é - )‘))] 4 [1 - C(/J, (é - )‘/))]
=2:(\) V21 (),

and
21 (anly)=1-((p,1—(aAlp)), aecl, He2X
= 1—((#,(1*0[)\/(£*1H))
=1—((n,(L=a)T*(1 - 1g))

=1-[(1-a)T"¢(u, (L~ 1m))], by (TTH)

—aT [1 = ¢(u, (L—15))]
= OéTQ]_(lH)

In an analogous way, we can show that £25(v) = 1 — ((v,1 — p) also satisfies the
above two conditions in Proposition 3.12. This establishes the uniform continuity of
C. O

Remark 3.14. It follows from (TT1), (TT4) and Proposition 3.13 that ¢ satisfies
the axioms (i)-(v) of Definition 3.1 in [7], when 7' =Min. That is, the T-topogenous
order (T-syntopogenous structure) is a generalization of Katsaras’ fuzzy topogenous
order (Katsaras’ fuzzy syntopogenous structure).

In the following, we deduce the notion of image and inverse image of T-topogenous
orders and T-syntopogenous structures.

Let f: X — Y be a function and 1 be a T-topogenous order on Y, we define the
mapping f(n) : [X x IX — I, by:

(F= M) A) = n(f(w), L= fFL=N), n, AeTlr.
We call f<(n) the inverse image of 7 under the function f.

Proposition 3.15. For the mapping [~ (n) defined above, one has the following:
(i) f=(n) is a T-topogenous order on X ;
(ii) If n is a perfect (resp. biperfect, resp. symmetrical), then f<(n) is a perfect
(resp. biperfect, resp. symmetrical).
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Proof. (i) Let n be a T-topogenous order on Y. We verify that f<(n) is a T-
topogenous order on X. Let u, A\, v € IX. Clearly, (TT1) holds.
(TT2)

(VX \v)=n(f(pVvA),l- f(L-v))
=n(f(w)V f(A),L-f(l-v))
=n(f(p), L= fA-v)) An(f(N),1 - f(L-v))
f

Similarly, we can show

() AAv) = (F~ ) A A () (1, v).-

(TT3) Obviously, f(L—f~(1g)) =1—1g,forall H CY. Now, let (f(n))(p, A) >
1 — (ATB) for some 0, 3 € Iy. Then n(f(n),1 — J(L—=X)) >1—(010), so there is

H CY such that n(f(un), 1) > 1—6 and n(liH,;—f(;—)\)) > 1— (3, which implies
by taking C' = f~!1(H) C X, that

(=) (1) = n(f (1), L = f(L-10))
=n(f(w), L= fL—f"(1n)))
=n(f(n),1n)
>1-80,

and
(f~ )1, A) =n(f(1e), 1= f(L= X))
=n(f(f"(An)), L= f(L = X))
>n(lg,1— f(1—A), by (TT2)
>1-8.
(TT4)
(f ) A) = n(f (1), L= f(L— X))
< 1—=hgt[f()Tf(L—N)]
<1 —hgt[f(uT(L—X))], by Lemma 2.1(iv)
=1 —hgt[uT(1 - N)]. by Lemma 2.1(iv) again
(TT5)
(f=m)(@Tu, A) =n(f(@Tp),1— f(L—X)
=n(aTf(p), L= f(L—=X)

Analogously we can show
(), L=)T"A) = (1 = )T (f (1)) (1, M)
This proves that f<(n) is a T-topogenous order on X.
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(ii) The perfect (resp. biperfect) of f(n) is immediately follows from the obviously
fact that f (vjeJ Wil = \/jeJ f(p;) for any nonempty index set J. Now, we show
that f< (n) is symmetrical.
(f= )k, A) =
1—X),1— f(u)), by Definition 3.2

This completes the proof. O
From the above proposition, we arrive

Proposition 3.16. Let f : X — Y be a function and € be a T-syntopogenous
structure on Y. Then [~ () ={f"(n) : n € S} is a T-syntopogenous structure
on X.

Proof. Let # be a T-syntopogenous structure on Y. We verify that f~(J¢) is a
T-syntopogenous structure on X as:

(TS1) To show that f— () is directed, given f(n), f~(¢) € f~ (), that is n,
¢ € . Since 7 is directed, then there is £ € 7 such that £ > nV (. This meaning
that, there is f(§) € f~ (), which satisfies (&) > f~(nV{) = f~(n) V().
(TS2) Let f(n) € f~ (o) and € € Iy. Then there is 7. € S such that

n < (e or ne) + €.
Hence for every u, A € IX, we have
(=) (s A)
=n(f(p), 1= fL=N)

< (Meorne)(f(n), L= f(L—XN) +e€

= }sltépy[ne(f(u% 1g)Tne(1m, 1= f(L=N)] + €

< Slél;{[m(f(ﬂ)g —fA—= AT (f(f~(Am)), L= f(L=N)]} + ¢
= ;gr;{[(fﬂne))(u, FT@aITI(f~ )™ (), N} +e

<

glg{[(f‘_(m))(u, Lo)|T[(f (ne))(Xe, M)} + €
= [fh(ﬁe) or f<_ (Tle)](lh >‘) + g
Thus, there is f (7)) an element in f () satisfies

F=) < [f~ () e f~(ne)] + &
This completes the proof. O

Let f: X — Y be a function and ¢ be a T-topogenous order on X, we define the
mapping f(¢) : IY x IY — I by:

(FO)wp) =C(fF~ W), f~(p), v, pel”.
We call f(¢) the image of ¢ under the function f.

Proposition 3.17. For the mapping f({) defined above, one has the following:
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(i) If f is a bijective, then f({) is a T-topogenous order on'Y ;
(ii) If ¢ is a perfect (resp. biperfect, resp. symmetrical) and f is a bijective, then
f(Q) is a perfect (resp. biperfect, resp. symmetrical).

Proof. (i) Let ¢ be a T-topogenous order on X. Then obviously f(¢) satisfies (TT1),
(TT2) and (TT5).

(TT3) Let v, p € IY and 0, B € Iy, be such that (f(¢))(v,p) > 1 — (0TB). Then
C(f=(w), f(p)) = 1—(0Tp), so there is C C X such that {(f~(v),1¢) >1—-6
and ((1¢, f(p)) > 1— 3, which implies by putting H = f(C) C Y (i.e, f~(H)=C
because [ is injective), that (f({))(v,1g) = C(f~ W), f(1Rr)) = {(f~(v),1¢c) >
L0 wd (0o =< (L) S0 = e~ (0) > 1

TT4

(F( ) w,p) = (W), f(p)

zeX
= Lsup[T(L - p)|(f(2))
zeX
=1-—sup[vT (1l —p)](y), because f is surjective
yey -

=1—hgt[vT(1—p)].
This proves that f(¢) is a T-topogenous order on Y.

(ii) The perfect(resp. biperfect) of f({) is immediately follows from the obviously

facts that f— (\/jEJ yj) = V,ey F~(vy) and f= (/\jeJ yj) = Njey F=(v;) for any
index set J. Also, the symmetrical of f(¢) is trivially hold. O

Proposition 3.18. Let f : X — Y be a bijective function and & a T-syntopogenous
structure on X. Then f(Z?) = {f({) : ¢ € &} is a T-syntopogenous structure on
Y.

Proof. The proof can be along similar lines of Proposition 3.16. O

4. SYNTOPOGENOUSLY CONTINUOUS FUNCTIONS
The aim of this section is to study the continuity of functions between T-syntopogenous
spaces.

Definition 4.1. Let (X, ) and (Y, ) be T-syntopogenous spaces. A function
f: X — Y is called syntopogenous map, or syntopogenously continuous, if for every
n € J there is ( € & such that

(4.1) n(w,p) <C(f~ @), f~(p)), v, pel’.
Equivalently, if for every n € JZ there is ( € & such that
(4.2) n(f (), L= f(N) < ¢(p, 1= A), py A e IX.
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We can see that the conditions (4.1) and (4.2) above are equivalent as follows:
Suppose (4.1) holds. Then for every u, A € IX,

n(f(w), L= f(N) <~ (f(), f7 (L= f(N)
<, L= f7(f(N), by (TT2), for f7(f(u)) = p
< 1), by (TT2) again
Rendering (4.2).
Suppose (4.2) holds. Then for every v, p € IV,

n(w,p) <n(f(f~ @), 1= f(f~(L—=p), by (TT2), for f(f~(¥) <v

=n(f(f~ W), L= fA~f"(p))
<T@ L=A =), by (4.2)
= (=), (),

which yields (4.1).
The next two theorems follow immediately from definitions (cf. [3]).

Theorem 4.2. Let f : (X, ) — (Y, ) and g : (Y, ) — (Z,€) be syntopogenous
maps. Then the composition g o f is also a syntopogenous map.

Theorem 4.3. If f : (X, P) — (Y, H) is a syntopogenous map, then f : (X,7(F)) —
(Y,©(52)) is continuous.

The above shows that the class of all T-syntopogenous spaces, forms a concrete
category; together with syntopogenous maps as arrows [1]. We denote this category
by T-SS. Also, a functor F r is defined from this category to the category FTS of
Lowen I-topological spaces by F (X, 2) = (X,1(Z)), on objects, and by leaving
arrows unchanged.

5. CHARACTERIZATION OF A T-TOPOGENOUS ORDER
IN TERMS OF CRISP FUZZY SUBSETS

We provide axioms for a function ¢ : 2% x 2X — T to be a restriction of a (unique)
T-topogenous order on X.

Theorem 5.1. A function ¢ : IX x I*X — I is a T-topogenous order on X if and
only if it satisfies the following five axioms, the first four of which are properties of
its restriction ¢ : 2% x 2X — I. For all H, M, N € 2%

(TT]‘7) C(]-X; ]-X) = C(lzv 115) =1 and C(]-Xv 1@) = O;

(TT2") C(X(mumy,1n) = C(1m, IN)AC(Ans, 1n), and ((1a, Lpnny) = C(1m, 1ar) A
C(1m,1n);

(TT3) If C(Ap,1p) > 1 — (0T0B) for some 0, 5 € Iy, there is C C X such that
C(1H7 10) >1-0 and 4(1071]\/[) >1- ﬁ;

(TT4) If H ¢ M, then ((1g,15) =0;

(TT5) ¢ A) = No per 0T BT (1 gy Ly )]

We need the next two propositions and two definitions, in the course of proving

this theorem.
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Proposition 5.2. Let ¢ : 2% x 2X — I be a function satisfies the five conditions
(TT1)-(TT5). Let H, My, Mo, ..., My, CX, ¥1, ..., 7n € I and put

= /\ (%\/ 11\/[k) er1¥.
k=1
If C(1g,\) > 1 — (0TB) for some 0, 5 € Iy, then there is C C X such that
C(lH,lc) Z 1-06 and C(lc,/\) Z 1 —ﬁ.

Proof. First, we notice that ¢ satisfies (TT2), by repeated application of (TT2’) and
(TT5’). Also, by continuity of T, there is 5’ € I such that

1—(0T8) < 1— (0T8')

= /\ ¢(1y, 'ykT 1)), by (TT2) which yields above
/\ Y T*C(1a, 1ag,)], by Proposition 3.6(7),

that is 073 > 6T3" > \/_{(1 — v)T[1 — ¢(1p,1as,)]}. Hence, for every k =
1,...,n such that 1 — v, > (3,

073 > (1 —v)T[1 — 1y, 1)l

Thus, by (2.3) then Lemma 2.3,

1—((1g, 1) < F (1 =7, 0T6') < 0T 7 (1 — v, B),
that is

(g, 1ag) > 1= (0T 7 (1 =k, B))].

Then from (TT3’) there is Cy, C X such that
(5.1) (g, 1c,) >1-0and ((1cy, 1a) > 1= F(1 =, ).
For every kK =1,...,n such that 1 — v, < 3, we take C, = X, Then

C(1m,1c,) =¢1Am,1x) > ¢(1x,1x), by (TT2)
—1>1-9

and
C(]‘Ck? 1Mk) = C(]-Xv 1Mk) > C(]-Xa 19)7 by (TTT)

=0=1-1=1- (1 —w,0B), by (2.3)
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1).

=

which again yields (

~—

By taking C' = J_, C; C X, we get

C(]-Ha]-C) = C <1Ha \/ 1 ) = \/ C(]‘H?]'Ci) >1- 97 by (51)
i=1 i=1
(1o, M) =¢ (\/ /\ T Lo )

= /”\ [T*C(1e,,1as,)], by (TT2) and Proposition 3.6
k=1

> AT 1— 20— B}, by (5.1)
k=1

=1- {\/ (=% T/(l’Yk,ﬂ)]}

—1—{\/ (1 =) /\ﬁ} by (2.2)

> 1- ﬂv )

which proves our assertion. O

Proposition 5.3. Let ¢ : 2% x 2X — I be a function satisfies the five conditions
(TTV)-(TT5"). Let Hi,..., Ho, My, ..., My C X, @1y vy Qs Y1y oees Am € 1,
and write 1 =\/\_ (i A1p,), A= Nj_y (0 V1ag,) € IX. IFC(p, N) > 1—(0T'3) for
some 0, 3 € Iy, then there is C C X such that ((p,1¢) > 1—f and ((1c,\) > 1—6.

Proof. By continuity of T, there is 8’ € I such that

C(0iT 1, \)

I
~.

N
Il
-

[(1—0;)T*¢(1p,,A)], by Proposition 3.6

|
~.

S
Il
_

That is, 073 > 073" > \/;_,{ca;T[1 — ((1,,N)]}. Therefore, by (2.3) then Lemma
2.3, we get for every i = 1,...,r such that o; > :
1—¢(1p,,A) < _7(0,0TB") < 0T 7 (v, B) = 7 (i, 3)T6,
that is,
C(1m,A)>1—[ 7(a;, B)TE).
Consequently, from Proposition 5.2, there is C; C X such that

(52) C(]-Hw 1C¢) >1- f(auﬁ) and C(]-Cm)‘) >1-0.
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For every i = 1,...,r with a; < 8, we take C; = X. Then (as shown for (5.1)) C;
will also satisfy (5.2). By taking C'=(;_,; C; C X, we get

r

C<M7 1C) = C (\/(al/\ 1H1>7 /\ 1Ct>

i=1 t=1

|
~.

@
Il
=

¢(;T1m,,1¢,), by (TT2) which yields above

[(1—a)T*¢(1m,,1c,)], by Proposition 3.6

I
~.

N
Il
N

{1 = )T [1 = F (e, B)]}, Dby (5:2)

Y
~-

i=1
=1- {\/[ain(aivﬁ)]}
i=1
—1- l\/wi A m] L by (22)
i=1
>1-p
and ((1c,A\) = C(Aj—; 1o, N) = Vi_ C(1¢,, A) > 1 —6 by (TT2’) and (5.2), which
completes the proof. O
A possibility distribution on a nonempty set X [12], is an assignment of possibility

values in [0, 1] to the elements of X, such that those values have supremum 1. Such
a function is numerically equal to a normalized fuzzy subset of X (i.e. one with
height 1).

Definition 5.4 ([3]). A generalized possibility measure, GPM, on a set X is a
function f : 2X — I which satisfies the following three axioms:

(GPML) £(X) = 1;

(GPM2) £(2) = 0;

(GPM3) f (Ui, H;) = max{f(H;) : i = 1,2,...,n} for every nonempty, finitely
indexed family {H;}?_; of subsets of X.

Definition 5.5 ([3]). An extended generalized possibility measure, (extended GPM)
on X is a function §2 : IX — I that satisfies:

(E-GPM1) 2(X) = 1;

(E-GPM2) 22(2) = 0;

(E-GPM3) 2(uV ) = 2(p) Vv £2()), for every u, A € IX.

It is evident that the restriction of an extended GPM to 2% is a GPM on X.

Proof. (Proof of Theorem 5.1) Suppose that ¢ : IX x I — [ is a T-topogenous

order on X. Then (TT1’)-(TT4’) immediately follow from the corresponding ax-

ioms in Definition 3.1, and (TT5’) follows from Proposition 3.6. Conversely, let

¢ : IX x I — T be satisfies (TT1")-(TT5’). Then (TT1), (TT2) are satisfied by

(TT1’), (TT2’) and repeated applications of (TT5’), and then (TT5) follows from
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Proposition 3.6. To prove (TT3), let ((u, A) > 1 — (§T3) for some u, A € IX and
0, 8 € Iy. Then on one hand, by continuity of T', there is € > 0 in such a way that
(1 N) > 1= [(0— OT(B— )] +«.

On the other hand, (TT2) and (TT5) (proved above) imply, by Proposition 3.13,
that such ¢ is uniformly continuous on IX x IX with respect to the L.o-distance,
and so there is v = 47, > 0 such that for every \, X, p, p' € IX,

(5.3) IA=XVie=Fll <y = [C(Ap) = ¢V, ) <e
But there exist u1, A\; € IX with finite ranges such that
1 = pll VAL = Al <,

hence

(1, A1) = G, M| < e,
i.e.,

C(pr, A1) = C(p, A) —e> 1= [(0 — T (5 —€)].

So, by Proposition 5.3, there is C' C X such that

C(p1,1c) >1—(0—¢)and ((1c, A1) > 1— (B —¢).
Consequently, by (5.3),

((10) 2 ((p,10) —e21—- (0 —€) —e=1-0,
and also,

C(]-Ca)‘) ZC(]-Cv)\l)*GZ 17(576)76:175
which renders (TT3).

We next prove (T'T4). For every real number € > 1 —hgt[uT'(1 — A)], we have

@ # [uT(L— A"

= U Iida (1- M), by Lemma 2.2 (i)
0TB>1—e

c U (o= N (X = A1—p)y-)], clear, since p? C pg-.
oTB>1—e

Consequently, there exist 6, 8 € I with e > 1 — (T5) = (1 — 0)T*(1 — 3) such
that pe- N (X — A1—p)+) # @, that is pg- ¢ A1_p)- and so by (TT4’), we have
C(1p-, 1,\(1_3)*) = 0. Hence,

€2 (1 - Q)T*(l - ﬂ) = [(1 - H)T*(l - B)T*C(lus* ) 1)\(1_[5)*] > C(,u7 A)
This establishes that ¢(u, A) <1 —hgt[uT(1 — A)], which completes the proof. [

Theorem 5.6. For a T-topogenous order { on a set X, we have

(1) If( isa perf€Ct7 then C (UjeJ 1Hj71M) = /\jEJ C(]-Hj71]\/[)7 Hj ’ M e 2X1'
(ii) ¢ is a biperfect if and only if it is a perfect and

(54) ¢ lH,ﬂle = /\C(]_H,]_Mj), H, MjGQX.
jeJ jeJ
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(iii) ¢ 4s a symmetrical if and only if ((1g,1nr) = ((X(x—nr), L x—m)), H, M €
2%, Also, the order relation on the set of T-topogenous orders on X, is
completely determined by the order on their restrictions to pairs of crisp
fuzzy subsets of X.

Proof. (i) Obviously holds.
(ii) Suppose that ¢ is a biperfect. Then it is a perfect and

Cl1m, () 1y, | = N\ C(m,1u,), for all H, M; € 2.
JjeJ jeJ

Conversely, let ¢ be a perfect and satisfies (5.4). Then by (TT5’), we have

¢ /,L,/\)\j = /\ {GT*BT*C(I#ufé})*’l(AjeJ)‘j)ﬁ*)}

jeJ 0,6el
= /\ 0T*BT*¢ L _gyes ﬂ 1) , Cclear
0,8l jeJ

0,8l | jeJ

= /\ oT* BT /\((1#(19>*,1(Aj)ﬁ*)], by hypothesis
)

= /\ /\ {QT*ﬁT*C (1u<179)*’1()\j)ﬁ* }

jeJ | 0,8¢el
= /\ C(/’L’ )‘j)’
JjeJ

which proves that ¢ is a biperfect.

(iii) can be proved analogously in similar lines. Now, let (1(1g,15:) < G(1m, 1)
for every H, M € 2%, where (;, (5 are T-topogenous orders on X. Then for every
i, A € I we have, by (TT5’) that

G, A) = /\ [0T*BT*C1 (L _gye > 1nse )]

0,8el

< /\ [GT*BT*CQ (111«(176)*’1)‘6*)]

6,81
= CQ (Na /\)a

which establishes that (; < (2. The converse is immediate. O

Theorem 5.7. Let (X, %) and (Y, ) be T-syntopogenous spaces. A function
f: X =Y is a syntopogenous map, if and only if for every n € S there is { € &
such that
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Proof. The “ only if 7 part, obviously follows. For the “if ” part , suppose f satisfies
the stated condition and 7 € 5. Then by (TT5’), we have for every v, p € IV,

nw,p)= N\ 0T BT N1y, ). 1p,.)]
0,8el

N\ [0T*BT*¢C(f~(Luy_y. ), F~(1,,.))], by hypothesis
6,8el

- /\ {HT*ﬂT*C(lf'_(Vu-a)*)’1f’—(p[,*)}, obvious
0,81

= N\ 0T8T CA w1 oy L]+ clean
0,6el

= (=), ()

This proves that f is a syntopogenous map. O

IN

Theorem 5.8. Let (X, %) and (Y, ) be T-syntopogenous spaces. A function
f: X =Y is a syntopogenous map, if and only if for every n € J there is { € &
such that

n(f(lE)7é7f(1G)) SC(]-Ea]-(X—G))a Ea GGQX-

Proof. The proof is analogous to the above one. O

6. CONCLUSION

This manuscript introduces a new structure of T-syntopogenous spaces which is
interpreted as enlarge of fuzzy syntopogenous spaces introduced by A. K. Katsaras
(1990). Tt gives express the concept of T-syntopogenous spaces in terms of fuzzy
binary relations in power sets. The motivation of this study is to will lead us and
contribute, in future research, to show that the T-syntopogenous structures com-
patible with fuzzy T-uniform structures (1998), T-proximity and T-neighbourhood
structures (2002).
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