Annals of Fuzzy Mathematics and Informatics Volume 4, No. 1, (July 2012), pp. 25-48 ISSN 2093–9310 http://www.afmi.or.kr

T-syntopogenous spaces

KHALED A. HASHEM

Received 14 June 2011; Accepted 16 September 2011

ABSTRACT. In this paper, we introduce the concepts of T-syntopogenous spaces and investigate some of their properties, where T stands for any continuous triangular norm. Their definitions subsumes that of fuzzy syntopogenous spaces due to A. K. Katsaras (Fuzzy Sets and Systems 36 (1990)), as our Min-syntopogenous spaces. In particular, we study the continuity of functions between T-syntopogenous spaces and the I-topological space associated with a T-syntopogenous space. Moreover, we describe the T-syntopogenous structures as fuzzy relations in (ordinary) power sets.

2010 AMS Classification: 62P30, 62A86

Keywords: Triangular norm, T-syntopogenous spaces, I-topological spaces

Corresponding Author: Khaled A. Hashem (Khaledahashem@yahoo.com)

1. INTRODUCTION

K atsaras and Petalas [5, 6, 7] introduced the fuzzy syntopogenous structures and studied the unified theory of Chang *I*-topologies [2] and Lowen Fuzzy uniformities [10]. In this manuscript, we introduce, for each continuous triangular norm *T*, a new structure of *T*-syntopogenous spaces that conforms well with Lowen *I*-topological spaces [9]. Our concept of *T*-syntopogenous structure generalizes, to arbitrary continuous triangular norm *T*, the fuzzy syntopogenous structure of A. K. Katsaras [7], now becoming the special case corresponding to T = Min. Also we deduce the notion of syntopogenous maps and here we show that the class of all *T*-syntopogenous spaces together with syntopogenous maps as arrows forms a concrete category. The basic idea is to introduce a degree of divergence between fuzzy subsets, which is a real number in the unit interval I = [0, 1].

We proceed as follows: In Section 2, we state and supply some basic ideas and lemmas on the *T*-residuated implication and on the α -cuts of fuzzy subsets, which will be needed in the sequel. In the third section, we introduce our definition of *T*-topogenous order, and hence *T*-syntopogenous structure on a set, also we define the *I*-topology associated with a *T*-syntopogenous structure. We deduce the notions of image and inverse image of T-topogenous orders. Moreover, we give the examples of T-topogenous orders and T-syntopogenous spaces together with the I-topology generated by them. In Section 4, we deduce the notion of syntopogenous maps (syntopogenously continuous functions) and we define a functor from category of T-syntopogenous spaces into category of I-topological spaces. The fifth section characterizes both T-topogenous orders and syntopogenous maps, uniquely, in terms of fuzzy binary relations in power sets.

2. Preliminaries

A triangular norm T (cf. [12]) is a binary operation on the unit interval I = [0, 1]that is associative, symmetric, monotone in each argument and has neutral element 1. The basic two (continuous) triangular norms are their simplest, namely Min (also denoted by \wedge) and product.

The triangular conorm of a triangular norm T is the binary operation T^* on the unit interval I given by : $\alpha T^*\beta = 1 - [(1 - \alpha)T(1 - \beta)], \alpha, \beta \in I$. A continuous triangular norm T is uniformly continuous, that is for every $\epsilon > 0$ there is $\theta = \theta_{T,\epsilon}$ such that for every $(\alpha, \beta) \in I \times I$, we have

(2.1)
$$(\alpha T\beta) - \epsilon \le (\alpha - \theta)T(\beta - \theta) \le \alpha T\beta \le (\alpha + \theta)T(\beta + \theta) \le (\alpha T\beta) + \epsilon.$$

For a continuous triangular norm T, the following binary operation on I

$$\mathscr{J}(\alpha,\gamma) = \sup\{\epsilon \in I : \alpha T \epsilon \le \gamma\}, \ \alpha, \ \gamma \in I,$$

is called the residuation implication of T [11]. For this implication, we shall use the following properties, $\forall \alpha, \epsilon, \gamma \in I$: By continuity of T,

(2.2)
$$\alpha T \mathscr{J}(\alpha, \epsilon) = \alpha \wedge \epsilon$$

By the definition of \mathscr{I} , we have :

(2.3)
$$\alpha \leq \epsilon \text{ iff } \mathscr{J}(\alpha, \epsilon) = 1, \text{ and } \alpha T \gamma \leq \epsilon \text{ iff } \alpha \leq \mathscr{J}(\gamma, \epsilon).$$

A fuzzy set λ in a universe set X, introduced by Zadeh in [13], is a function $\lambda: X \to I = [0,1]$. The height of a fuzzy set $\lambda \in I^X$ is the following real number :

hgt
$$\lambda = \sup\{\lambda(x) : x \in X\}.$$

We shall often need to consider a subset $H \subseteq X$ as a fuzzy subset of X, said to be a crisp fuzzy subset of X, which we shall denote by the symbol $\mathbf{1}_H$. We do this by identifying $\mathbf{1}_{H}$ with its characteristic function. We also denote the constant fuzzy set of X with value $\alpha \in I$ by $\underline{\alpha}$.

Given a fuzzy set $\lambda \in I^X$ and a real number $\alpha \in I_1 = [0, 1[$, the strong α -cut of λ is the following subset of X :

$$\lambda^{\alpha} = \{ x \in X : \lambda(x) > \alpha \},\$$

and for a real number $\alpha \in I$, the weak α -cut of λ is the subset of X:

$$\lambda_{\alpha^*} = \{ x \in X : \lambda(x) \ge \alpha \}.$$
26

It is directly verified that every $\lambda \in I^X$ has the following formulations

(2.4)
$$\lambda = \bigvee_{\alpha \in I} [\underline{\underline{\alpha}} \wedge \mathbf{1}_{\lambda_{\alpha^*}}] = \bigvee_{\alpha \in I} [\underline{\underline{\alpha}} T \mathbf{1}_{\lambda_{\alpha^*}}].$$

(2.5)
$$\lambda = \bigwedge_{\alpha \in I} \left[\underline{\underline{\alpha}} \vee \mathbf{1}_{\lambda_{\alpha^*}}\right] = \bigwedge_{\alpha \in I} \left[\underline{\underline{\alpha}} T^* \mathbf{1}_{\lambda_{\alpha^*}}\right]$$

Given two fuzzy sets μ , $\lambda \in I^X$, we denote by $\mu T \lambda$ the fuzzy subset of X given by : $(\mu T \lambda)(x) = \mu(x)T\lambda(x), x \in X$. Hence for all $\epsilon > 0$ and the above $\theta = \theta_{T,\epsilon}$, we find that for all μ , λ , ν , $\rho \in I^X$:

$$\|\mu - \nu\| \vee \|\lambda - \rho\| \le \theta \implies \|\mu T\lambda - \nu T\rho\| \le \epsilon,$$

where $\|-\|$ denotes the L_{∞} -distance on I^X , given by

$$\|\mu - \nu\| = \sup\{|\mu(x) - \nu(x)| : x \in X\}, \ \mu, \nu \in I^X,$$

that is, the function $T: I^X \times I^X \to I^X$ is also uniformly continuous with respect to the L_{∞} -distance on I^X .

Lemma 2.1 ([4]). For every μ , $\lambda \in I^X$ and $\epsilon \in I$, we have

- (i) $(\mu T\lambda)_{\epsilon^*} = \bigcup_{\theta T\gamma > \epsilon} (\mu_{\theta^*} \cap \lambda_{\gamma^*});$
- (ii) $(\mu T \underline{\alpha})_{\epsilon^*} = \bigcup_{\theta T \gamma \ge \epsilon} (\mu_{\theta^*});$
- (iii) hgt $(\lambda T \mathbf{1}_H) \leq \epsilon \Rightarrow \lambda^{\epsilon} \cap H = \emptyset;$
- (iv) hgt $f(\mu) = hgt \ \mu \text{ and } f(\mu T\lambda) \leq f(\mu)Tf(\lambda);$
- (v) For all $\alpha \in [0, \epsilon]$, let $\gamma_{\alpha, \epsilon} = \inf\{\theta \in I : \theta T \epsilon \geq \alpha\}$. Then $\gamma_{\alpha, \epsilon} T \epsilon = \alpha$ and consequently, $(\mu T \underline{\epsilon})_{\alpha^*} = \mu_{\gamma^*_{\alpha, \epsilon}}$.

Lemma 2.2. For every μ , $\lambda \in I^X$ and α , $\epsilon \in I$, we have

(i)
$$(\mu T \lambda)^{\epsilon} = \bigcup_{\theta T \gamma \geq \epsilon} (\mu^{\theta} \cap \lambda^{\gamma});$$

(ii) $\left((\underline{1-\alpha})T^*\lambda\right)_{(1-\epsilon)^*} = \lambda_{(1-\mathscr{J}(\alpha,\epsilon))^*}.$

Proof. (i) Let $\mu, \lambda \in I^X$ and $\epsilon \in I$. Then for every $x \in X$, we get the equivalences:

$$\begin{split} x \in (\mu \ T\lambda)^{\epsilon} \ \text{iff} \ \ \mu(x)T\lambda(x) > \epsilon \\ & \text{iff} \ \ \exists \ \theta, \gamma \in I \text{ such that } \mu(x) > \theta \text{ and } \lambda(x) > \gamma \text{ with } \theta T\gamma \geq \epsilon \\ & \text{iff} \ \ \exists \ \theta, \gamma \in I \text{ such that } x \in \mu^{\theta} \cap \lambda^{\gamma} \text{ with } \theta T\gamma \geq \epsilon \\ & \text{iff} \ \ x \in \bigcup_{\theta T\gamma \geq \epsilon} \left(\mu^{\theta} \cap \lambda^{\gamma}\right). \end{split}$$

This proves (i).

(ii) Let $\lambda \in I^X$ and $\alpha, \epsilon \in I$. Then

$$\begin{split} \left((\underline{1-\alpha})T^*\lambda\right)_{(1-\epsilon)^*} &= \{x \in X : (1-\alpha)T^*\lambda(x) \ge 1-\epsilon\} \\ &= \{x \in X : 1-[\alpha T(\underline{1}-\lambda)(x)] \ge 1-\epsilon\} \\ &= \{x \in X : \alpha T(\underline{1}-\lambda)(x) \le \epsilon\} \\ &= \{x \in X : (\underline{1}-\lambda)(x) \le \mathscr{J}(\alpha,\epsilon)\}, \text{ by (2.3)} \\ &= \{x \in X : \lambda(x) \ge 1-\mathscr{J}(\alpha,\epsilon)\} \\ &= \lambda_{(1-\mathscr{J}(\alpha,\epsilon))^*}. \end{split}$$

Rendering (ii).

Lemma 2.3 ([4]). Suppose γ , α , α' , $\epsilon \in I$ are such that $\alpha \leq \gamma$ and $\epsilon T \alpha' < \epsilon T \alpha$. Then $\mathscr{J}(\gamma, \epsilon T \alpha') < \epsilon T \mathscr{J}(\gamma, \alpha).$

3. T-Syntopogenous spaces

T-topogenous orders and T-syntopogenous spaces are introduced in this section, and some of their properties are given. We generate an *I*-topological space from a T-syntopogenous space. We introduce the discrete and indiscrete T-topogenous orders, as special examples. Also, the image and inverse image of T-topogenous orders are define.

Definition 3.1. A *T*-topogenous order on a set *X* is a function $\zeta : I^X \times I^X \to I$, that satisfies, for any $\mu, \lambda, \nu \in I^X$ and $\alpha \in I$, the following:

- (TT1) $\zeta(\underline{1},\underline{\alpha}) = \alpha$ and $\zeta(\underline{\alpha},\underline{0}) = 1 \alpha$;
- (TT2) $\zeta(\overline{\mu} \lor \lambda, \nu) = \zeta(\mu, \overline{\nu}) \land \zeta(\lambda, \nu)$ and $\zeta(\mu, \lambda \land \nu) = \zeta(\mu, \lambda) \land \zeta(\mu, \nu);$
- (TT3) If $\zeta(\mu, \lambda) > 1 (\theta T \beta)$ for some $\theta, \beta \in I_0 =]0, 1]$, there is $C \subseteq X$ such that $\zeta(\mu, \mathbf{1}_C) \geq 1 - \theta$ and $\zeta(\mathbf{1}_C, \lambda) \geq 1 - \beta$;

(TT4) $\zeta(\mu, \lambda) \leq 1 - \operatorname{hgt}[\mu T(\underline{1} - \lambda)];$

(TT5) $\zeta(\underline{\alpha}T\mu,\lambda) = (1-\alpha)T^{\overline{*}}\zeta(\mu,\lambda) = \zeta(\mu,(1-\alpha)T^{*}\lambda).$

The real number $\zeta(\mu, \lambda)$ can be interpreted as the degree of farness (divergence) of the fuzzy sets μ and $(\underline{1} - \lambda)$.

Definition 3.2 ([7])). A T-topogenous order ζ on a set X is said to be :

- (i) perfect if $\zeta \left(\bigvee_{j \in J} \mu_j, \lambda \right) = \bigwedge_{j \in J} \zeta(\mu_j, \lambda), \quad \mu_j, \lambda \in I^X;$
- (ii) biperfect if it is perfect and $\zeta \left(\mu, \bigwedge_{j \in J} \lambda_j\right) = \bigwedge_{j \in J} \zeta(\mu, \lambda_j), \quad \mu, \lambda_j \in I^X;$ (iii) symmetrical if $\zeta(\mu, \lambda) = \zeta(\underline{1} \lambda, \underline{1} \mu), \quad \mu, \lambda \in I^X.$

Definition 3.3. For T-topogenous orders ζ , η on X, we define the T-composition of ζ and η by:

$$(\zeta \circ_T \eta)(\mu, \lambda) = \sup_{C \subseteq X} [\eta(\mu, \mathbf{1}_C) T \zeta(\mathbf{1}_C, \lambda)], \quad \mu, \lambda \in I^X.$$

Definition 3.4. (i) A T-syntopogenous structure on a set X is a family \mathscr{P} of T-topogenous orders on X satisfying the following conditions

(TS1) \mathscr{P} is directed in the sense that, given $\zeta, \eta \in \mathscr{P}$ there is $\xi \in \mathscr{P}$ such that

 $\xi \geq \zeta \vee \eta;$

(TS2) for every $\zeta \in \mathscr{P}$ and $\epsilon \in I_0$, there is $\zeta_{\epsilon} \in \mathscr{P}$ such that

$$(\zeta_{\epsilon} \circ_T \zeta_{\epsilon}) + \underline{\epsilon} \ge \zeta.$$

(ii) A *T*-syntopogenous structure \mathscr{P} is called perfect (resp. biperfect, resp. symmetrical) if every member of \mathscr{P} is perfect (resp. biperfect, resp. symmetrical). The pair (X, \mathscr{P}) is said to be a *T*-syntopogenous space.

First, we see how a *T*-syntopogenous structure can generate an *I*-topology. Take a *T*-syntopogenous space (X, \mathscr{P}) , and for any $\mu \in I^X$ and $x \in X$, we define a map $o^{\circ} : I^X \to I^X$ by:

(3.1)
$$\mu^{o}(x) = \sup_{\zeta \in \mathscr{P}} \zeta(\mathbf{1}_{x}, \mu).$$

The following lemma and two propositions lead to the proof of Theorem 3.8, below, which states that the mapping $\mu \to \mu^o$ is a fuzzy interior operator.

Given a real number $0 < \gamma < 1$, we denote by $n(\gamma)$ the unique positive integer n satisfying $n(\gamma) < 1 \le (n+1)\gamma$.

Lemma 3.5 (El-Rayes and Morsi [3]). For every $\mu \in I^X$ and $0 < \gamma < 1$,

$$\mu \leq \bigvee_{j=0}^{n(\gamma)} \left[\underline{j\underline{\gamma}}T\mathbf{1}_{(\mu^{j\gamma})}\right] \leq \mu + \underline{\underline{\gamma}}.$$

We use this lemma to establish :

Proposition 3.6. If $\zeta : I^X \times I^X \to I$ satisfies (TT2), then the following are equivalent statements:

- (i) $\zeta(\underline{\alpha}T\mu,\lambda) = (1-\alpha)T^*\zeta(\mu,\lambda) = \zeta(\mu,(\underline{1-\alpha})T^*\lambda), \ \forall \ \alpha \in I, \ \mu,\lambda \in I^X;$
- (ii) $\zeta(\mu, \lambda) = \bigwedge_{\theta \in I} \left[\theta T^* \zeta(\mathbf{1}_{\mu_{(1-\theta)^*}}, \lambda) \right]$ $= \bigwedge_{\beta \in I} \left[\beta T^* \zeta(\mu, \mathbf{1}_{\lambda_{\beta^*}} \right], \qquad \forall \ \mu, \lambda \in I^X;$ (iii) $\zeta(\mu, \lambda) = \bigwedge_{\theta, \beta \in I} \left[\theta T^* \beta T^* \zeta(\mathbf{1}_{\mu_{(1-\theta)^*}}, \mathbf{1}_{\lambda_{\beta^*}} \right], \qquad \forall \ \mu, \lambda \in I^X.$

Proof. (i) \Rightarrow (ii) : Suppose that (i) holds. Then for all $\mu, \lambda \in I^X$,

$$\begin{aligned} \zeta(\mu,\lambda) &\leq \zeta\left((\underline{1-\theta})T\mathbf{1}_{\mu_{(1-\theta)^*}},\lambda\right), \quad \forall \ \theta \in I, \ \text{ by (2.4) and (TT2)} \\ &= \theta T^*\zeta\left(\mathbf{1}_{\mu_{(1-\theta)^*}},\lambda\right), \qquad \forall \ \theta \in I, \ \text{ by (i)} \end{aligned}$$

hence, $\zeta(\mu, \lambda) \leq \bigwedge_{\theta \in I} \left[\theta T^* \zeta(\mathbf{1}_{\mu_{(1-\theta)^*}}, \lambda) \right].$ For the converse inequality, since

$$\mu \leq \bigvee_{j=0}^{n(\gamma)} \left[\underline{j\gamma} T \mathbf{1}_{(\mu^{j\gamma})} \right] \leq \bigvee_{j=0}^{n(\gamma)} \left[\underline{j\gamma} T \mathbf{1}_{\mu_{j\gamma^*}} \right],$$
29

we have

$$\begin{aligned} \zeta(\mu,\lambda) &\geq \zeta \left(\bigvee_{j=0}^{n(\gamma)} \left[\underline{j\gamma} T \mathbf{1}_{\mu_{j\gamma^*}} \right], \lambda \right) \\ &= \bigwedge_{j=0}^{n(\gamma)} \left[(1-j\gamma) T^* \zeta \left(\mathbf{1}_{\mu_{j\gamma^*}}, \lambda \right) \right], \quad \text{by (TT2) and (i)} \\ &\geq \bigwedge_{\theta \in I} \left[\theta T^* \zeta \left(\mathbf{1}_{\mu_{(1-\theta)^*}}, \lambda \right) \right] \end{aligned}$$

Hence, we get the conclusion, which proves the first equality of (ii). For the second equality, we have as above, by (2.5),

$$\zeta(\mu,\lambda) \leq \bigwedge_{\beta \in I} \left[\beta T^* \zeta\left(\mu, \mathbf{1}_{\lambda_{\beta^*}}\right) \right].$$

For the converse inequality, putting $\lambda = \underline{1} - \nu$, for some $\nu \in I^X$, we have

$$\begin{split} \zeta(\mu,\lambda) &= \zeta(\mu,\underline{1} - \nu) \\ &\geq \zeta \left(\mu,\underline{1} - \left[\bigvee_{j=0}^{n(\gamma)} \left(\underline{j\gamma}T\mathbf{1}_{(\nu^{j\gamma})}\right)\right]\right), \quad \text{by (TT2)} \\ &= \zeta \left(\mu,\bigwedge_{j=0}^{n(\gamma)} \left[(\underline{1-j\gamma})T^*(\underline{1} - \mathbf{1}_{(\nu^{j\gamma})})\right]\right) \\ &= \bigwedge_{j=0}^{n(\gamma)} \left[(1-j\gamma)T^*\zeta(\mu,\mathbf{1}_{(X-\nu^{j\gamma})})\right], \quad \text{by (TT2) and (i)} \\ &= \bigwedge_{j=0}^{n(\gamma)} \left[(1-j\gamma)T^*\zeta(\mu,\mathbf{1}_{(\underline{1}-\nu)_{(1-j\gamma)^*}})\right], \quad \text{clear} \\ &\geq \bigwedge_{\beta \in I} \left[\beta T^*\zeta(\mu,\mathbf{1}_{\lambda_{\beta^*}})\right]. \end{split}$$

Hence, we get the conclusion, which proves the second equality of (ii).

(ii) \Rightarrow (iii): Direct.

(iii)
$$\Rightarrow$$
 (i): Suppose (iii) holds. Then for all $\mu, \lambda \in I^X$ and all $\alpha \in I$,

$$\zeta(\underline{\alpha}T\mu, \lambda) = \bigwedge_{\theta, \beta \in I} \left[\theta T^* \beta T^* \zeta(\mathbf{1}_{(\underline{\alpha}T\mu)_{(1-\theta)^*}}, \mathbf{1}_{\lambda_{\beta^*}}) \right], \qquad \text{by (iii)}$$

$$= \bigwedge_{\substack{\theta \in [1-\alpha, 1]\\ \theta \in [1-\alpha, 1]}} \left[\theta T^* \beta T^* \zeta\left(\mathbf{1}_{\mu_{(\gamma(1-\theta),\alpha)^*}}, \mathbf{1}_{\lambda_{\beta^*}}\right) \right], \qquad \text{by Lemma 2.1 (v)}$$

$$= \bigwedge_{\epsilon, \beta \in I} \left[(1-\alpha) T^* \epsilon T^* \beta T^* \zeta(\mathbf{1}_{\mu_{(1-\epsilon)^*}}, \mathbf{1}_{\lambda_{\beta^*}}) \right],$$

because $\theta \geq 1 - \alpha$ if and only if $\theta = (1 - \alpha)T^*\epsilon$ for some $\epsilon \in I$, equivalently $1 - \theta = \alpha T(1 - \epsilon)$ (due to the continuity of T), and such $(1 - \epsilon)$ is greater or equal to $\gamma_{(1-\theta),\alpha}$, hence $\mu_{(1-\epsilon)^*} \subseteq \mu_{(\gamma_{(1-\theta),\alpha})^*}$. Therefore,

$$\begin{aligned} \zeta(\underline{\underline{\alpha}}T\mu,\lambda) &= (1-\alpha)T^* \wedge_{\epsilon,\beta \in I} \left[\epsilon T^*\beta T^* \zeta \left(\mathbf{1}_{\mu_{(1-\epsilon)^*}}, \mathbf{1}_{\lambda_{\beta^*}} \right) \right] \\ &= (1-\alpha)T^* \zeta(\mu,\lambda), \qquad \text{by (iii).} \end{aligned}$$

Similarly, by using Lemma 2.2 (ii), we can show

$$\zeta(\mu, (\underline{1-\alpha})T^*\lambda) = (1-\alpha)T^*\zeta(\mu, \lambda),$$

which winds up the proof.

Proposition 3.7. Let ζ be a *T*-topogenous order on a set *X*. Then for all $\mu, \lambda \in I^X$, we have

(i) $\lambda^o \leq \lambda;$ (ii) $\zeta(\mu, \lambda^o) = \zeta(\mu, \lambda).$

Proof. (i) By (TT4), we have for all $x \in X$,

$$\lambda^{o}(x) = \zeta(\mathbf{1}_{x}, \lambda) \le 1 - \operatorname{hgt}\left[\mathbf{1}_{x}T(\underline{1} - \lambda)\right] = \lambda(x).$$

(ii) By the continuity of T, for every real number $\theta > 1 - \zeta(\mu, \lambda)$ and every $\epsilon > 0$, there is $\beta_{\theta} > 0$ such that

$$[1 - \zeta(\mu, \lambda)] + \epsilon > \theta T \beta_{\theta} > 1 - \zeta(\mu, \lambda).$$

Hence, by (TT3) and the continuity of T, there is $C_{\theta} \subseteq X$ such that

(3.2)
$$\zeta(\mu, \mathbf{1}_{C_{\theta}}) \ge 1 - \beta_{\theta} \text{ and } \zeta(\mathbf{1}_{C_{\theta}}, \lambda) \ge 1 - \theta.$$

Consequently, for every $z \in C_{\theta}$, we have

$$\begin{split} \lambda^{o}(z) &= \zeta(\mathbf{1}_{z},\lambda) \geq \zeta(\mathbf{1}_{C_{\theta}},\lambda), & \text{by (TT2)} \\ &\geq 1-\theta, & \text{by (3.2)} \\ &= \alpha, & \text{by putting } 1-\theta = \alpha. \end{split}$$

Therefore, $z \in (\lambda^o)_{\alpha^*}$, that is

г		
L		
L		

Hence,

$$\begin{split} \zeta(\mu,\lambda^{o}) &= \bigwedge_{\alpha \in I} \left[\alpha T^{*} \zeta \mu, \mathbf{1}_{(\lambda^{o})_{\alpha^{*}}} \right], & \text{by Proposition 3.6} \\ &= \left\{ \bigwedge_{\alpha < \zeta(\mu,\lambda)} \left[\alpha T^{*} \zeta(\mu, \mathbf{1}_{(\lambda^{o})_{\alpha^{*}}} \right] \right\} \wedge \left\{ \bigwedge_{\alpha \ge \zeta(\mu,\lambda)} \left[\alpha T^{*} \zeta(\mu, \mathbf{1}_{(\lambda^{o})_{\alpha^{*}}} \right] \right\}, & \text{clear} \\ &\geq \left\{ \bigwedge_{\alpha < \zeta(\mu,\lambda)} \left[\alpha T^{*} \zeta(\mu, \mathbf{1}_{(\lambda^{o})_{\alpha^{*}}} \right] \right\} \wedge \left\{ \bigwedge_{\alpha \ge \zeta(\mu,\lambda)} \alpha \right\} \\ &\geq \left\{ \bigwedge_{\theta > 1 - \zeta(\mu,\lambda)} \left[(1 - \theta) T^{*} \zeta(\mu, \mathbf{1}_{C_{\theta}}) \right] \right\} \wedge \zeta(\mu,\lambda), & \text{by (3.3) and (TT2)} \\ &\geq \left\{ \bigwedge_{\theta > 1 - \zeta(\mu,\lambda)} \left[(1 - \theta) T^{*} (1 - \beta_{\theta}) \right] \right\} \wedge \zeta(\mu,\lambda), & \text{by (3.2)} \\ &= \left\{ \bigwedge_{\theta > 1 - \zeta(\mu,\lambda)} \left[1 - (\theta T \beta_{\theta}) \right] \right\} \wedge \zeta(\mu,\lambda) \\ &\geq \left[\zeta(\mu,\lambda) - \epsilon \right] \wedge \zeta(\mu,\lambda) \\ &= \zeta(\mu,\lambda) - \epsilon. \end{split}$$

By the arbitrariness of ϵ , we get the inequality $\zeta(\mu, \lambda^o) \geq \zeta(\mu, \lambda)$. The opposite inequality follows from (i) and (TT2).

Theorem 3.8. The above mapping $\mu \rightarrow \mu^o$ is a fuzzy interior operator.

Proof. We have shown that ^o is a lower operator. Also, for every μ , $\lambda \in I^X$, $\alpha \in I$ and $x \in X$, we have

$$\underline{\underline{\alpha}}^{o}(x) = \sup_{\zeta \in \mathscr{P}} \zeta(\mathbf{1}_{x}, \underline{\underline{\alpha}}T^{*}\underline{\underline{0}})$$

$$= \alpha T^{*} \sup_{\zeta \in \mathscr{P}} \zeta(\mathbf{1}_{x}, \underline{\underline{0}}), \qquad \text{by (TT5)}$$

$$= \alpha, \qquad \qquad \text{by (TT4)}$$

$$= \underline{\underline{\alpha}}(x).$$

By monotonicity of o , we have

$$(\mu^o \wedge \lambda^o) \ge (\mu \wedge \lambda)^o.$$

On the other hand, if $\epsilon > 0$, then there are $\zeta, \eta \in \mathscr{P}$ such that

$$\mu^{o}(x) - \epsilon < \zeta(\mathbf{1}_{x}, \mu) \text{ and } \lambda^{o}(x) - \epsilon < \eta(\mathbf{1}_{x}, \lambda).$$
32

By (TS1), we can get $\zeta \in \mathscr{P}$ such that $\xi \geq \zeta$, η , thus

$$(\mu^{o} \wedge \lambda^{o})(x) - \epsilon = [\mu^{o}(x) - \epsilon] \wedge [\lambda^{o}(x) - \epsilon]$$

$$< [\xi(\mathbf{1}_{x}, \mu) \wedge \xi(\mathbf{1}_{x}, \lambda)]$$

$$= [\xi(\mathbf{1}_{x}, \mu \wedge \lambda)], \qquad \text{by (TT2)}$$

$$\le (\mu \wedge \lambda)^{o}(x).$$

This proves that $(\mu^o \wedge \lambda^o) \leq (\mu \wedge \lambda)^o$ and so $(\mu \wedge \lambda)^o = \mu^o \wedge \lambda^o$. Moreover, by (ii) of the preceding proposition, we get

$$(\mu^{o})^{o}(x) = \sup_{\zeta \in \mathscr{P}} \zeta(\mathbf{1}_{x}, \mu^{o}) = \sup_{\zeta \in \mathscr{P}} \zeta(\mathbf{1}_{x}, \mu) = \mu^{o}(x);$$

that is, ^o is idempotent. This proves that ^o is a fuzzy interior operator.

As a consequence of this theorem we may define an *I*-topology in the usual way, namely assuming a fuzzy set μ to be open if and only if $\mu = \mu^o$. We shall denote this *I*-topology by $\tau(\mathscr{P})$, and we shall refer to it as the *I*-topology generated by \mathscr{P} .

Obviously one can equip the set of all *T*-topogenous orders on a set *X*, with a partial order by defining ζ_1 is coarser than ζ_2 (and ζ_2 is finer than ζ_1) if $\zeta_1(\mu, \lambda) \leq \zeta_2(\mu, \lambda)$ for every pair of fuzzy sets $\mu, \lambda \in I^X$. Consequently, the *T*-syntopogenous structure \mathscr{P}_1 on *X* is said to be coarser than another one \mathscr{P}_2 (and \mathscr{P}_2 is finer than \mathscr{P}_1) if for every $\zeta \in \mathscr{P}_1$, there is $\zeta' \in \mathscr{P}_2$ such that $\zeta \leq \zeta'$.

It clearly follows that if \mathscr{P}_1 and \mathscr{P}_2 are *T*-syntopogenous structures on a set *X*, and \mathscr{P}_1 is coarser than \mathscr{P}_2 , then $\tau(\mathscr{P}_1) \subseteq \tau(\mathscr{P}_2)$.

Proposition 3.9. Let \mathscr{P} be a *T*-syntopogenous structure on a set *X* and define $\zeta_s: I^X \times I^X \to I$, by :

$$\zeta_s(\mu,\lambda) = \sup_{\zeta \in \mathscr{P}} \zeta(\mu,\lambda), \quad \mu,\lambda \in I^X.$$

Then ζ_s is a T-topogenous order on X, with $\tau(\{\zeta_s\}) = \tau(\mathscr{P})$.

Proof. It is easy to see that ζ_s satisfies (TT1), (TT3),(TT4) and (TT5). To prove (TT2), let $\mu, \lambda, \nu \in I^X$. Then

$$\begin{aligned} \zeta_s(\mu \lor \lambda, \nu) &= \sup_{\zeta \in \mathscr{P}} \zeta(\mu \lor \lambda, \nu) \\ &= \sup_{\zeta \in \mathscr{P}} \left[\zeta(\mu, \nu) \land \zeta(\lambda, \nu) \right], \quad \text{by (TT2)} \\ &\leq \left[\sup_{\zeta \in \mathscr{P}} \zeta(\mu, \nu) \right] \land \left[\sup_{\zeta \in \mathscr{P}} \zeta(\lambda, \nu) \right] \\ &= \zeta_s(\mu, \nu) \land \zeta_s(\lambda, \nu). \end{aligned}$$

For the opposite inequality, let $\epsilon \in I_0$ be such that

$$\epsilon < \zeta_s(\mu,\nu) \wedge \zeta_s(\lambda,\nu).$$

Then there are $\zeta_1, \, \zeta_2 \in \mathscr{P}$ such that

$$\epsilon \leq \zeta_1(\mu,\nu) \wedge \zeta_2(\lambda,\nu).$$
33

Since \mathscr{P} is directed, then there is $\eta \in \mathscr{P}$ such that $\eta \geq \zeta_1 \vee \zeta_2$. Hence

$$\begin{aligned} \epsilon &\leq \eta(\mu, \nu) \land \eta(\lambda, \nu) \\ &= \eta(\mu \lor \lambda, \nu), & \text{by (TT2)} \\ &\leq \sup_{\zeta \in \mathscr{P}} \zeta(\mu \lor \lambda, \nu) \\ &= \zeta_s(\mu \lor \lambda, \nu). \end{aligned}$$

This proves that

$$\zeta_s(\mu,\nu) \wedge \zeta_s(\lambda,\nu) \leq \zeta_s(\mu \lor \lambda,\nu).$$

So, $\zeta_s(\mu \lor \lambda, \nu) = \zeta_s(\mu, \nu) \land \zeta_s(\lambda, \nu)$. Analogously, we show that

$$\zeta_s(\mu, \lambda \wedge \nu) = \zeta_s(\mu, \lambda) \wedge \zeta_s(\mu, \nu).$$

Finally, we denote the fuzzy interior operators associated with $\tau(\{\zeta_s\})$ and $\tau(\mathscr{P})$, respectively by o_1 and o_2 . Let $\lambda \in I^X$ and $x \in X$. Then we have

$$\lambda^{o_1}(x) = \zeta_s(\mathbf{1}_x, \lambda) = \sup_{\zeta \in \mathscr{P}} \zeta(\mathbf{1}_x, \lambda) = \lambda^{o_2}(x).$$

That is, $\lambda^{o_1} = \lambda^{o_2}$, which implies that $\tau(\{\zeta_s\}) = \tau(\mathscr{P})$. Hence, the result follows. \Box

We call ζ_s is the supremum of the *T*-syntopogeneous structure \mathscr{P} .

Example 3.10. Let X be a set and define $\zeta_1, \zeta_2 : I^X \times I^X \to I$, by for every μ , $\lambda \in I^X$:

$$\begin{aligned} \zeta_1(\mu, \lambda) &= 1 - \operatorname{hgt}[\mu T(\underline{1} - \lambda)], \\ \zeta_2(\mu, \lambda) &= 1 - \left[(\operatorname{hgt}\mu)T\operatorname{hgt}(\underline{1} - \lambda)\right] \end{aligned}$$

We verify that the function ζ_1 is a biperfect symmetrical *T*-topogenous order. It suffices to check (TT3), since the other axioms trivially hold. Let $\zeta_1(\mu, \lambda) > 1 - (\theta T \beta)$ for some $\theta, \beta \in I$. So for every $x \in X$,

$$[\mu T(\underline{1} - \lambda)](x) \le \operatorname{hgt}[\mu T(\underline{1} - \lambda)] < \theta T\beta,$$

hence

$$\begin{split} & \varnothing = [\mu T(\underline{1} - \lambda)]_{(\theta T \beta)^*} \\ & = \bigcup_{\epsilon T \gamma \ge \theta T \beta} \left[\mu_{\epsilon^*} \cap (\underline{1} - \lambda)_{\gamma^*} \right], \qquad \text{by Lemma 2.1(i)} \\ & \supseteq \mu_{\theta^*} \cap (\underline{1} - \lambda)_{\beta^*}. \end{split}$$

By taking $C = \mu_{\theta^*} \subseteq X$, we have

$$\begin{aligned} \zeta_1(\mu, \mathbf{1}_C) &= 1 - \operatorname{hgt}[\mu T(\underline{1} - \mathbf{1}_C)] = 1 - \operatorname{hgt}[\mu T(\underline{1} - \mathbf{1}_{\mu_{\theta^*}})] \geq 1 - \theta, \\ \zeta_1(\mathbf{1}_C, \lambda) &= 1 - \operatorname{hgt}[\mathbf{1}_C T(\underline{1} - \lambda)] = 1 - \operatorname{hgt}[\mathbf{1}_{\mu_{\theta^*}} T(\underline{1} - \lambda)] \\ &\geq 1 - \operatorname{hgt}[(\underline{1} - \mathbf{1}_{(\underline{1} - \lambda)_{\beta^*}})T(\underline{1} - \lambda)] \geq 1 - \beta. \end{aligned}$$

This yields (TT3). Moreover, it follows immediately that ζ_1 is a biperfect symmetrical.

The *I*-topology generated by ζ_1 is the discrete one (i.e. every fuzzy set is open), since for every $x \in X$ and $\mu \in I^X$, we have

$$\mu^{o}(x) = \zeta_{1}(\mathbf{1}_{x}, \mu)$$

= 1 - hgt[$(\mathbf{1}_{x})T(\underline{1} - \mu)$]
= 1 - sup_{z \in X}[$(\mathbf{1}_{x})T(\underline{1} - \mu)$](z)
= 1 - $(\underline{1} - \mu)(x)$
= $\mu(x)$.

Also, the function ζ_1 is the finest (discrete) *T*-topogenous order on *X*, because for every *T*-topogenous order ζ on *X*, we have by (TT4),

$$\zeta(\mu, \lambda) \le 1 - \operatorname{hgt}[\mu T(\underline{1} - \lambda)] = \zeta_1(\mu, \lambda).$$

To see that ζ_2 is a *T*-topogenous order, we need only check (TT3). Let $\zeta_2(\mu, \lambda) > 1 - (\theta T \beta)$ for some $\theta, \beta \in I$, therefore

$$(\operatorname{hgt}\mu)T(\operatorname{hgt}(\underline{1}-\lambda)) < \theta T \beta.$$

Hence, if $(hgt\mu) < \theta$, then $C = \emptyset$ yields;

$$\begin{aligned} \zeta_2(\mu, \mathbf{1}_C) &= \zeta_2(\mu, \underline{0}) = 1 - \left[(\operatorname{hgt} \mu) T \operatorname{hgt}(\underline{1} - \underline{0}) \right] = 1 - (\operatorname{hgt} \mu) > 1 - \theta, \\ \zeta_2(\mathbf{1}_C, \lambda) &= \zeta_2(\underline{0}, \lambda) = 1 - \left[(\operatorname{hgt} \underline{0}) T \operatorname{hgt}(\underline{1} - \lambda) \right] = 1 > 1 - \beta. \end{aligned}$$

 $\varsigma_{2}(\underline{1}_{C}, \lambda) = \varsigma_{2}(\underline{0}, \lambda) = 1 - [(\operatorname{Igc}\underline{0})^{T} \operatorname{Igc}(\underline{1} - \lambda)] - 1 > 1 - \beta.$ Whereas if $(\operatorname{hgt}\mu) \ge \theta$, then $\operatorname{hgt}(\underline{1} - \lambda) < \beta$, and hence C = X similarly yields

$$\zeta_2(\mu, \mathbf{1}_C) > 1 - \theta$$
 and $\zeta_2(\mathbf{1}_C, \lambda) > 1 - \beta$.

This establishes (TT3). Moreover, it is easy to see that ζ_2 is a biperfect symmetrical. The *I*-topology generated by ζ_2 is the indiscrete one (exactly the constant fuzzy sets are open) because, for every $x \in X$ and $\mu \in I^X$, we have

$$\mu^{o}(x) = \zeta_{2}(\mathbf{1}_{x}, \mu) = 1 - [\operatorname{hgt}(\mathbf{1}_{x})T\operatorname{hgt}(\underline{1} - \mu)] = 1 - \operatorname{hgt}(\underline{1} - \mu).$$

Also, the function ζ_2 is the coarsest (indiscrete) *T*-topogenous order on *X*, because if hgt $\mu = \alpha$ and hgt $(\underline{1} - \lambda) = \gamma$, then for every *T*-topogenous order ζ on *X*, we have

$$\begin{aligned} \zeta(\mu,\lambda) &\geq \zeta(\underline{\alpha},\underline{1-\gamma}), & \text{clearly by (TT2)} \\ &= \zeta(\underline{\alpha}T\underline{1},(\underline{1-\gamma})T^*\underline{0}) \\ &= (1-\alpha)T^*(1-\gamma)T^*\zeta(\underline{1},\underline{0}), & \text{by (TT5)} \\ &= (1-\alpha)T^*(1-\gamma), & \text{by (TT1)} \\ &= 1-(\alpha T\gamma) \\ &= 1-[(\text{hgt}\mu)T\text{hgt}(\underline{1}-\lambda)] \\ &= \zeta_2(\mu,\lambda). \end{aligned}$$

Example 3.11. Let X be a nonempty set and let T = Min, take $\mathscr{P} = \{\zeta_1, \zeta_2\}$, where ζ_1, ζ_2 as in Example 3.10. We verify that (X, \mathscr{P}) is a biperfect symmetrical Min-syntopogenous space.

(TS1) It obviously holds because $\zeta_1 \geq \zeta_2$.

(TS2) Let $\mu, \lambda \in I^X$ and $\epsilon \in I_0$. Then

$$\begin{bmatrix} (\zeta_1 \circ_T \zeta_1) + \underline{\epsilon} \end{bmatrix} (\mu, \lambda) = \sup_{C \subseteq X} [\zeta_1(\mu, \mathbf{1}_C) \land \zeta_1(\mathbf{1}_C, \lambda)] + \epsilon \\ \ge [\zeta_1(\mu, \mathbf{1}_X) \land \zeta_1(\mathbf{1}_X, \lambda)] + \epsilon \\ = \{ [1 - \operatorname{hgt}(\mu \land (\underline{1} - \underline{1}))] \land [1 - \operatorname{hgt}(\underline{1} \land (\underline{1} - \lambda))] \} + \epsilon \\ = [1 - \operatorname{hgt}(\underline{1} - \lambda)] + \epsilon \\ = \begin{bmatrix} \inf_{x \in X} \lambda(x) \end{bmatrix} + \epsilon \\ \ge \lambda(x_0), \quad \text{for some } x_0 \in X. \end{bmatrix}$$

Also,

$$\begin{bmatrix} (\zeta_1 \circ_T \zeta_1) + \underline{\epsilon} \end{bmatrix} (\mu, \lambda) = \sup_{C \subseteq X} [\zeta_1(\mu, \mathbf{1}_C) \land \zeta_1(\mathbf{1}_C, \lambda)] + \epsilon \\ \ge [\zeta_1(\mu, \mathbf{1}_{\varnothing}) \land \zeta_1(\mathbf{1}_{\varnothing}, \lambda)] + \epsilon \\ = \left\{ [1 - \operatorname{hgt}(\mu \land (\underline{1} - \underline{0})] \land [1 - \operatorname{hgt}(\underline{0} \land (\underline{1} - \lambda))] \right\} + \epsilon \\ = [1 - (\operatorname{hgt}\mu)] + \epsilon \\ = \left[\inf_{x \in X} (\underline{1} - \mu)(x) \right] + \epsilon \\ \ge (\underline{1} - \mu)(y_0), \quad \text{for some } y_0 \in X.$$

On the other hand,

$$\begin{aligned} \zeta_1(\mu,\lambda) &= 1 - \operatorname{hgt}[\mu \wedge (\underline{1} - \lambda)] \\ &= \inf_{x \in X} \left[(\underline{1} - \mu) \lor \lambda \right](x) \\ &\leq (\underline{1} - \mu)(x) \lor \lambda(x), \qquad \forall x \in X. \end{aligned}$$

So, for every $x \in X$, we have

$$\zeta_1(\mu, \lambda) \le (\underline{1} - \mu)(x) \text{ or } \zeta_1(\mu, \lambda) \le \lambda(x).$$

If $\zeta_1(\mu, \lambda) \leq (\underline{1} - \mu)(x)$, then $\zeta_1(\mu, \lambda) \leq (\underline{1} - \mu)(y_0) \leq [(\zeta_1 \circ_T \zeta_1) + \underline{\epsilon}](\mu, \lambda)$, and if $\zeta_1(\mu, \lambda) \leq \lambda(x)$, then $\zeta_1(\mu, \lambda) \leq \lambda(x_0) \leq [(\zeta_1 \circ_T \zeta_1) + \underline{\epsilon}](\mu, \lambda)$. That is $(\zeta_1 \circ_T \zeta_1) + \underline{\epsilon} \geq \zeta_1$. Also, $(\zeta_1 \circ_T \zeta_1) + \underline{\epsilon} \geq \zeta_2$ since $\zeta_1 \geq \zeta_2$. This renders (TS2) and shows that \mathscr{P} is a Min-syntopogenous structure on X. Moreover, the members ζ_1, ζ_2 of \mathscr{P} are biperfect symmetrical from Example 3.10. Also, obviously $\tau(\mathscr{P}) = \tau(\{\zeta_1\})$, where ζ_1 is the supremum of \mathscr{P} .

Now, we clarify the relation between our *T*-syntopogenous structures and Katsaras' fuzzy syntopogenous structures.

Proposition 3.12 ([3]). Let T be a continuous triangular norm. If $\Omega : I^X \to I$ satisfies for all μ , $\lambda \in I^X$, $H \subseteq X$ and $\alpha \in I$: $\Omega(\mu \lor \lambda) = \Omega(\mu) \lor \Omega(\lambda)$ and $\Omega(\underline{\alpha} \land \mathbf{1}_H) = \alpha T \Omega(\mathbf{1}_H)$, then $\Omega(\underline{\alpha}) = \Omega(\underline{1})T\alpha$ and Ω is uniformly continuous with respect to the L_{∞} -distance on I^X . Specifically, for given $\epsilon > 0$, let $\theta = \theta_{T,\epsilon}$ be as in (2.1). Then for all $\mu, \lambda \in I^X$:

$$\|\mu - \lambda\| \le \theta \implies |\boldsymbol{\Omega}(\mu) - \boldsymbol{\Omega}(\lambda)| \le \epsilon.$$

36

Proposition 3.13. If $\zeta : I^X \times I^X \to I$ satisfies (TT2) and (TT5), then ζ is uniformly continuous with respect to the L_{∞} -distance on I^X .

Proof. Let μ , λ , ν , $\rho \in I^X$. For a given $\epsilon > 0$, let $\theta_{T,\epsilon}$ be as in (2.1). Put $\theta = \frac{1}{2}(\frac{\epsilon}{2} \wedge \theta_{T,\epsilon})$. Suppose that $\|(\mu, \underline{1} - \lambda) - (\nu, \underline{1} - \rho)\| = \|\mu - \nu\| \vee \|\rho - \lambda\| < \theta$. Then $|\zeta(\mu, \underline{1} - \lambda) - \zeta(\nu, \underline{1} - \rho)| \le |\zeta(\mu, \underline{1} - \lambda) - \zeta(\mu, \underline{1} - \rho)| + |\zeta(\mu, \underline{1} - \rho) - \zeta(\nu, \underline{1} - \rho)|| \le \epsilon + \epsilon = 2\epsilon$

because, for fixed fuzzy sets μ , ρ ; $\boldsymbol{\Omega}_1(\lambda) = 1 - \zeta(\mu, \underline{1} - \lambda)$, satisfies

$$\begin{aligned} \boldsymbol{\Omega}_{1}(\boldsymbol{\lambda} \vee \boldsymbol{\lambda}') &= 1 - \zeta(\boldsymbol{\mu}, \underline{\underline{1}} - (\boldsymbol{\lambda} \vee \boldsymbol{\lambda}')) \\ &= 1 - \zeta(\boldsymbol{\mu}, (\underline{\underline{1}} - \boldsymbol{\lambda}) \wedge (\underline{\underline{1}} - \boldsymbol{\lambda}')), \quad \boldsymbol{\lambda}, \boldsymbol{\lambda}' \in I^{X} \\ &= 1 - \left[\zeta(\boldsymbol{\mu}, (\underline{\underline{1}} - \boldsymbol{\lambda})) \wedge \zeta(\boldsymbol{\mu}, (\underline{\underline{1}} - \boldsymbol{\lambda}'))\right], \quad \text{by (TT2)} \\ &= \left[1 - \zeta(\boldsymbol{\mu}, (\underline{\underline{1}} - \boldsymbol{\lambda}))\right] \vee \left[1 - \zeta(\boldsymbol{\mu}, (\underline{\underline{1}} - \boldsymbol{\lambda}'))\right] \\ &= \boldsymbol{\Omega}_{1}(\boldsymbol{\lambda}) \vee \boldsymbol{\Omega}_{1}(\boldsymbol{\lambda}'), \end{aligned}$$

and

$$\begin{aligned} \boldsymbol{\Omega}_1(\underline{\underline{\alpha}} \wedge \mathbf{1}_H) &= 1 - \zeta(\mu, \underline{\underline{1}} - (\underline{\underline{\alpha}} \wedge \mathbf{1}_H)), & \alpha \in I, \ H \in 2^X \\ &= 1 - \zeta(\mu, (\underline{\underline{1-\alpha}}) \vee (\underline{\underline{1}} - \mathbf{1}_H)) \\ &= 1 - \zeta(\mu, (\underline{\underline{1-\alpha}})T^*(\underline{\underline{1}} - \mathbf{1}_H)) \\ &= 1 - \left[(1 - \alpha)T^*\zeta(\mu, (\underline{\underline{1}} - \mathbf{1}_H)) \right], & \text{by (TT5)} \\ &= \alpha T \left[1 - \zeta(\mu, (\underline{\underline{1}} - \mathbf{1}_H)) \right] \\ &= \alpha T \boldsymbol{\Omega}_1(\mathbf{1}_H). \end{aligned}$$

In an analogous way, we can show that $\Omega_2(\nu) = 1 - \zeta(\nu, \underline{1} - \rho)$ also satisfies the above two conditions in Proposition 3.12. This establishes the uniform continuity of ζ .

Remark 3.14. It follows from (TT1), (TT4) and Proposition 3.13 that ζ satisfies the axioms (i)-(v) of Definition 3.1 in [7], when T =Min. That is, the *T*-topogenous order (*T*-syntopogenous structure) is a generalization of Katsaras' fuzzy topogenous order (Katsaras' fuzzy syntopogenous structure).

In the following, we deduce the notion of image and inverse image of T-topogenous orders and T-syntopogenous structures.

Let $f: X \to Y$ be a function and η be a *T*-topogenous order on *Y*, we define the mapping $f^{\leftarrow}(\eta): I^X \times I^X \to I$, by:

$$(f^{\leftarrow}(\eta))(\mu,\lambda) = \eta(f(\mu),\underline{1} - f(\underline{1} - \lambda)), \quad \mu, \ \lambda \in I^X.$$

We call $f^{\leftarrow}(\eta)$ the inverse image of η under the function f.

Proposition 3.15. For the mapping $f^{\leftarrow}(\eta)$ defined above, one has the following:

- (i) $f^{\leftarrow}(\eta)$ is a T-topogenous order on X;
- (ii) If η is a perfect (resp. biperfect, resp. symmetrical), then f[←](η) is a perfect (resp. biperfect, resp. symmetrical).

Proof. (i) Let η be a *T*-topogenous order on *Y*. We verify that $f^{\leftarrow}(\eta)$ is a *T*-topogenous order on *X*. Let μ , λ , $\nu \in I^X$. Clearly, (TT1) holds. (TT2)

$$\begin{split} (f^{\leftarrow}(\eta)(\mu \lor \lambda, \nu) &= \eta(f(\mu \lor \lambda), \underline{1} - f(\underline{1} - \nu)) \\ &= \eta(f(\mu) \lor f(\lambda), \underline{1} - f(\underline{1} - \nu)) \\ &= \eta(f(\mu), \underline{1} - f(\underline{1} - \nu)) \land \eta(f(\lambda), \underline{1} - f(\underline{1} - \nu)) \\ &= (f^{\leftarrow}(\eta))(\mu, \nu) \land (f^{\leftarrow}(\eta))(\lambda, \nu). \end{split}$$

Similarly, we can show

$$(f^{\leftarrow}(\eta))(\mu,\lambda\wedge\nu)=(f^{\leftarrow}(\eta))(\mu,\lambda)\wedge(f^{\leftarrow}(\eta))(\mu,\nu).$$

(TT3) Obviously, $f(\underline{1} - f^{\leftarrow}(\mathbf{1}_H)) = \underline{1} - \mathbf{1}_H$, for all $H \subseteq Y$. Now, let $(f^{\leftarrow}(\eta))(\mu, \lambda) > 1 - (\theta T \beta)$ for some $\overline{\theta}$, $\beta \in I_0$. Then $\eta(f(\mu), \underline{1} - f(\underline{1} - \lambda)) > 1 - (\theta T \beta)$, so there is $H \subseteq Y$ such that $\eta(f(\mu), \mathbf{1}_H) \ge 1 - \theta$ and $\eta(\mathbf{1}_H, \underline{1} - f(\underline{1} - \lambda)) \ge 1 - \beta$, which implies by taking $C = f^{-1}(H) \subseteq X$, that

$$(f^{\leftarrow}(\eta))(\mu, \mathbf{1}_C) = \eta(f(\mu), \underline{1} - f(\underline{1} - \mathbf{1}_C))$$

= $\eta(f(\mu), \underline{1} - f(\underline{1} - f^{-1}(\mathbf{1}_H)))$
= $\eta(f(\mu), \mathbf{1}_H)$
 $\geq 1 - \theta,$

and

$$(f^{\leftarrow}(\eta))(\mathbf{1}_{C},\lambda) = \eta(f(\mathbf{1}_{C}),\underline{1} - f(\underline{1} - \lambda))$$

= $\eta(f(f^{\leftarrow}(\mathbf{1}_{H})),\underline{1} - f(\underline{1} - \lambda))$
 $\geq \eta(\mathbf{1}_{H},\underline{1} - f(\underline{1} - \lambda)), \quad \text{by (TT2)}$
 $\geq 1 - \beta.$

(TT4)

$$\begin{split} (f^{\leftarrow}(\eta))(\mu,\lambda) &= \eta(f(\mu),\underline{1} - f(\underline{1} - \lambda)) \\ &\leq 1 - \operatorname{hgt}[f(\mu)Tf(\underline{1} - \lambda)] \\ &\leq 1 - \operatorname{hgt}[f(\mu T(\underline{1} - \lambda))], \quad \text{by Lemma } 2.1(\operatorname{iv}) \\ &= 1 - \operatorname{hgt}[\mu T(\underline{1} - \lambda)]. \quad \text{by Lemma } 2.1(\operatorname{iv}) \text{ again} \end{split}$$

(TT5)

$$(f^{\leftarrow}(\eta))(\underline{\underline{\alpha}}T\mu,\lambda) = \eta(f(\underline{\underline{\alpha}}T\mu),\underline{\underline{1}} - f(\underline{\underline{1}} - \lambda))$$

= $\eta(\underline{\underline{\alpha}}Tf(\mu),\underline{\underline{1}} - f(\underline{\underline{1}} - \lambda))$
= $(1 - \alpha)T^*\eta(f(\mu),\underline{\underline{1}} - f(\underline{\underline{1}} - \lambda))$
= $(1 - \alpha)T^*(f^{\leftarrow}(\eta))(\mu,\lambda).$

Analogously we can show

$$(f^{\leftarrow}(\eta))(\mu,(\underline{1-\alpha})T^*\lambda) = (1-\alpha)T^*(f^{\leftarrow}(\eta))(\mu,\lambda)$$

This proves that $f^{\leftarrow}(\eta)$ is a *T*-topogenous order on *X*.

(ii) The perfect (resp. biperfect) of $f^{\leftarrow}(\eta)$ is immediately follows from the obviously fact that $f\left(\bigvee_{j\in J}\mu_j\right) = \bigvee_{j\in J} f(\mu_j)$ for any nonempty index set J. Now, we show that $f^{\leftarrow}(\eta)$ is symmetrical.

$$\begin{split} (f^{\leftarrow}(\eta))(\mu,\lambda) &= \eta(f(\mu),\underline{1} - f(\underline{1} - \lambda)) \\ &= \eta(f(\underline{1} - \lambda),\underline{1} - f(\mu)), \quad \text{ by Definition 3.2} \\ &= (f^{\leftarrow}(\eta))(\underline{1} - \lambda,\underline{1} - \mu) \end{split}$$

This completes the proof.

From the above proposition, we arrive

Proposition 3.16. Let $f: X \to Y$ be a function and \mathscr{H} be a T-syntopogenous structure on Y. Then $f^{\leftarrow}(\mathscr{H}) = \{f^{\leftarrow}(\eta) : \eta \in \mathscr{H}\}$ is a T-syntopogenous structure on X.

Proof. Let \mathscr{H} be a T-syntopogenous structure on Y. We verify that $f^{\leftarrow}(\mathscr{H})$ is a T-syntopogenous structure on X as:

(TS1) To show that $f^{\leftarrow}(\mathscr{H})$ is directed, given $f^{\leftarrow}(\eta), f^{\leftarrow}(\zeta) \in f^{\leftarrow}(\mathscr{H})$, that is η , $\zeta \in \mathscr{H}$. Since \mathscr{H} is directed, then there is $\xi \in \mathscr{H}$ such that $\xi \geq \eta \lor \zeta$. This meaning that, there is $f^{\leftarrow}(\xi) \in f^{\leftarrow}(\mathscr{H})$, which satisfies $f^{\leftarrow}(\xi) \ge f^{\leftarrow}(\eta \lor \zeta) = f^{\leftarrow}(\eta) \lor f^{\leftarrow}(\zeta)$. (TS2) Let $f^{\leftarrow}(\eta) \in f^{\leftarrow}(\mathscr{H})$ and $\epsilon \in I_0$. Then there is $\eta_{\epsilon} \in \mathscr{H}$ such that

$$\eta \leq (\eta_{\epsilon} \circ_T \eta_{\epsilon}) + \underline{\epsilon}.$$

Hence for every μ , $\lambda \in I^X$, we have

$$\begin{aligned} (f^{\leftarrow}(\eta))(\mu,\lambda) &= \eta(f(\mu),\underline{1} - f(\underline{1} - \lambda)) \\ &\leq (\eta_{\epsilon} \circ_{T} \eta_{\epsilon})(f(\mu),\underline{1} - f(\underline{1} - \lambda)) + \epsilon \\ &= \sup_{H \subseteq Y} [\eta_{\epsilon}(f(\mu),\mathbf{1}_{H})T\eta_{\epsilon}(\mathbf{1}_{H},\underline{1} - f(\underline{1} = \lambda))] + \epsilon \\ &\leq \sup_{H \subseteq Y} \{ [\eta_{\epsilon}(f(\mu),\underline{1} - f(\underline{1} - f^{\leftarrow}(\mathbf{1}_{H})))]T[\eta_{\epsilon}(f(f^{\leftarrow}(\mathbf{1}_{H})),\underline{1} - f(\underline{1} - \lambda))] \} + \epsilon \\ &= \sup_{H \subseteq Y} \{ [(f^{\leftarrow}(\eta_{\epsilon}))(\mu,f^{\leftarrow}(\mathbf{1}_{H}))]T[(f^{\leftarrow}(\eta_{\epsilon}))(f^{\leftarrow}(\mathbf{1}_{H}),\lambda)] \} + \epsilon \\ &\leq \sup_{C \subseteq Y} \{ [(f^{\leftarrow}(\eta_{\epsilon}))(\mu,\mathbf{1}_{C})]T[(f^{\leftarrow}(\eta_{\epsilon}))(\mathbf{1}_{C},\lambda)] \} + \epsilon \\ &= [f^{\leftarrow}(\eta_{\epsilon}) \circ_{T} f^{\leftarrow}(\eta_{\epsilon})](\mu,\lambda) + \underline{\epsilon}. \end{aligned}$$

Thus, there is $f^{\leftarrow}(\eta_{\epsilon})$ an element in $f^{\leftarrow}(\mathscr{H})$ satisfies

$$f^{\leftarrow}(\eta) \le [f^{\leftarrow}(\eta_{\epsilon}) \circ_T f^{\leftarrow}(\eta_{\epsilon})] + \underline{\epsilon}.$$

This completes the proof.

Let $f: X \to Y$ be a function and ζ be a T-topogenous order on X, we define the mapping $f(\zeta): I^Y \times I^Y \to I$ by:

$$(f(\zeta))(\nu,\rho) = \zeta(f^{\leftarrow}(\nu), f^{\leftarrow}(\rho)), \qquad \nu, \ \rho \in I^{Y}$$

We call $f(\zeta)$ the image of ζ under the function f.

Proposition 3.17. For the mapping $f(\zeta)$ defined above, one has the following:

- (i) If f is a bijective, then $f(\zeta)$ is a T-topogenous order on Y;
- (ii) If ζ is a perfect (resp. biperfect, resp. symmetrical) and f is a bijective, then f(ζ) is a perfect (resp. biperfect, resp. symmetrical).

Proof. (i) Let ζ be a *T*-topogenous order on *X*. Then obviously $f(\zeta)$ satisfies (TT1), (TT2) and (TT5).

(TT3) Let $\nu, \rho \in I^Y$ and $\theta, \beta \in I_0$, be such that $(f(\zeta))(\nu, \rho) > 1 - (\theta T \beta)$. Then $\zeta(f^{\leftarrow}(\nu), f^{\leftarrow}(\rho)) \ge 1 - (\theta T \beta)$, so there is $C \subseteq X$ such that $\zeta(f^{\leftarrow}(\nu), \mathbf{1}_C) \ge 1 - \theta$ and $\zeta(\mathbf{1}_C, f^{\leftarrow}(\rho)) \ge 1 - \beta$, which implies by putting $H = f(C) \subseteq Y(i.e, f^{\leftarrow}(H) = C)$ because f is injective), that $(f(\zeta))(\nu, \mathbf{1}_H) = \zeta(f^{\leftarrow}(\nu), f^{\leftarrow}(\mathbf{1}_H)) = \zeta(f^{\leftarrow}(\nu), \mathbf{1}_C) \ge 1 - \theta$ and $(f(\zeta))(\mathbf{1}_H, \rho)) = \zeta(f^{\leftarrow}(\mathbf{1}_H), f^{\leftarrow}(\rho)) = \zeta(\mathbf{1}_C, f^{\leftarrow}(\rho)) \ge 1 - \beta$. (TT4)

$$\begin{split} (f(\zeta))(\nu,\rho) &= \zeta(f^{\leftarrow}(\nu), f^{\leftarrow}(\rho)) \\ &\leq 1 - \operatorname{hgt}[f^{\leftarrow}(\nu)T(\underline{1} - f^{\leftarrow}(\rho))] \\ &= 1 - \operatorname{hgt}[f^{\leftarrow}(\nu)Tf^{\leftarrow}(\underline{1} - \rho)] \\ &= 1 - \operatorname{hgt}f^{\leftarrow}(\nu T(\underline{1} - \rho)) \\ &= 1 - \operatorname{sup}[f^{\leftarrow}(\nu T(\underline{1} - \rho))](x) \\ &= 1 \sup_{x \in X} [\nu T(\underline{1} - \rho)](f(x)) \\ &= 1 - \operatorname{sup}_{y \in Y} [\nu T(\underline{1} - \rho)](y), \quad \text{because } f \text{ is surjective} \\ &= 1 - \operatorname{hgt}[\nu T(\underline{1} - \rho)]. \end{split}$$

This proves that $f(\zeta)$ is a *T*-topogenous order on *Y*.

(ii) The perfect(resp. biperfect) of $f(\zeta)$ is immediately follows from the obviously facts that $f^{\leftarrow} \left(\bigvee_{j \in J} \nu_j \right) = \bigvee_{j \in J} f^{\leftarrow}(\nu_j)$ and $f^{\leftarrow} \left(\bigwedge_{j \in J} \nu_j \right) = \bigwedge_{j \in J} f^{\leftarrow}(\nu_j)$ for any index set J. Also, the symmetrical of $f(\zeta)$ is trivially hold. \Box

Proposition 3.18. Let $f : X \to Y$ be a bijective function and \mathscr{P} a *T*-syntopogenous structure on *X*. Then $f(\mathscr{P}) = \{f(\zeta) : \zeta \in \mathscr{P}\}$ is a *T*-syntopogenous structure on *Y*.

Proof. The proof can be along similar lines of Proposition 3.16.

4. Syntopogenously continuous functions

The aim of this section is to study the continuity of functions between T-syntopogenous spaces.

Definition 4.1. Let (X, \mathscr{P}) and (Y, \mathscr{H}) be *T*-syntopogenous spaces. A function $f: X \to Y$ is called syntopogenous map, or syntopogenously continuous, if for every $\eta \in \mathscr{H}$ there is $\zeta \in \mathscr{P}$ such that

(4.1)
$$\eta(\nu,\rho) \le \zeta(f^{\leftarrow}(\nu), f^{\leftarrow}(\rho)), \qquad \nu, \ \rho \in I^{Y}.$$

Equivalently, if for every $\eta \in \mathscr{H}$ there is $\zeta \in \mathscr{P}$ such that

(4.2)
$$\eta(f(\mu), \underline{1} - f(\lambda)) \le \zeta(\mu, \underline{1} - \lambda), \qquad \mu, \ \lambda \in I^X.$$

We can see that the conditions (4.1) and (4.2) above are equivalent as follows: Suppose (4.1) holds. Then for every μ , $\lambda \in I^X$,

$$\begin{split} \eta(f(\mu),\underline{1} - f(\lambda)) &\leq \zeta(f^{\leftarrow}(f(\mu)), f^{\leftarrow}(\underline{1} - f(\lambda))) \\ &\leq \zeta(\mu,\underline{1} - f^{\leftarrow}(f(\lambda))), \quad \text{ by (TT2), for } f^{\leftarrow}(f(\mu)) \geq \mu \\ &\leq \zeta(\mu,\underline{1} - \lambda), \quad \text{ by (TT2) again} \end{split}$$

Rendering (4.2).

Suppose (4.2) holds. Then for every $\nu, \rho \in I^Y$,

$$\begin{split} \eta(\nu,\rho) &\leq \eta(f(f^{\leftarrow}(\nu)), \underline{1} - f(f^{\leftarrow}(\underline{1} - \rho))), \quad \text{by (TT2), for } f(f^{\leftarrow}(\nu) \leq \nu \\ &= \eta(f(f^{\leftarrow}(\nu)), \underline{1} - f(\underline{1} - f^{\leftarrow}(\rho))) \\ &\leq \zeta(f^{\leftarrow}(\nu), \underline{1} - (\underline{1} - f^{\leftarrow}(\rho))), \quad \text{by (4.2)} \\ &= \zeta(f^{\leftarrow}(\nu), f^{\leftarrow}(\rho)), \end{split}$$

which yields (4.1).

The next two theorems follow immediately from definitions (cf. [8]).

Theorem 4.2. Let $f : (X, \mathscr{P}) \to (Y, \mathscr{H})$ and $g : (Y, \mathscr{H}) \to (Z, \mathscr{C})$ be syntopogenous maps. Then the composition $g \circ f$ is also a syntopogenous map.

Theorem 4.3. If $f : (X, \mathscr{P}) \to (Y, \mathscr{H})$ is a syntopogenous map, then $f : (X, \tau(\mathscr{P})) \to (Y, \tau(\mathscr{H}))$ is continuous.

The above shows that the class of all *T*-syntopogenous spaces, forms a concrete category; together with syntopogenous maps as arrows [1]. We denote this category by *T*-SS. Also, a functor F_T is defined from this category to the category FTS of Lowen *I*-topological spaces by $F_T(X, \mathscr{P}) = (X, \tau(\mathscr{P}))$, on objects, and by leaving arrows unchanged.

5. Characterization of a T-topogenous order in terms of crisp fuzzy subsets

We provide axioms for a function $\zeta : 2^X \times 2^X \to I$ to be a restriction of a (unique) *T*-topogenous order on *X*.

Theorem 5.1. A function $\zeta : I^X \times I^X \to I$ is a *T*-topogenous order on *X* if and only if it satisfies the following five axioms, the first four of which are properties of its restriction $\zeta : 2^X \times 2^X \to I$. For all $H, M, N \in 2^X$:

(TT1') $\zeta(\mathbf{1}_X, \mathbf{1}_X) = \zeta(\mathbf{1}_{\varnothing}, \mathbf{1}_{\varnothing}) = 1$ and $\zeta(\mathbf{1}_X, \mathbf{1}_{\varnothing}) = 0$;

- (TT2') $\zeta(\mathbf{1}_{(H\cup M)}, \mathbf{1}_N) = \zeta(\mathbf{1}_H, \mathbf{1}_N) \land \zeta(\mathbf{1}_M, \mathbf{1}_N), and \zeta(\mathbf{1}_H, \mathbf{1}_{(M\cap N)}) = \zeta(\mathbf{1}_H, \mathbf{1}_M) \land \zeta(\mathbf{1}_H, \mathbf{1}_N);$
- (TT3') If $\zeta(\mathbf{1}_H, \mathbf{1}_M) > 1 (\theta T \beta)$ for some $\theta, \beta \in I_0$, there is $C \subseteq X$ such that $\zeta(\mathbf{1}_H, \mathbf{1}_C) \geq 1 \theta$ and $\zeta(\mathbf{1}_C, \mathbf{1}_M) \geq 1 \beta$;

(TT4') If $H \not\subset M$, then $\zeta(\mathbf{1}_H, \mathbf{1}_M) = 0$;

(TT5') $\zeta(\mu, \lambda) = \bigwedge_{\theta, \beta \in I} [\theta T^* \beta T^* \zeta(\mathbf{1}_{\mu_{(1-\theta)^*}}, \mathbf{1}_{\lambda_{\beta^*}})].$

We need the next two propositions and two definitions, in the course of proving this theorem.

Proposition 5.2. Let $\zeta : 2^X \times 2^X \to I$ be a function satisfies the five conditions (TT1')-(TT5'). Let $H, M_1, M_2, \ldots, M_n \subseteq X, \gamma_1, \ldots, \gamma_n \in I$ and put

$$\lambda = \bigwedge_{k=1}^{n} \left(\underline{\underline{\gamma_k}} \vee \mathbf{1}_{M_k} \right) \in I^X.$$

If $\zeta(\mathbf{1}_H, \lambda) > 1 - (\theta T \beta)$ for some $\theta, \beta \in I_0$, then there is $C \subseteq X$ such that $\zeta(\mathbf{1}_H, \mathbf{1}_C) \ge 1 - \theta$ and $\zeta(\mathbf{1}_C, \lambda) \ge 1 - \beta$.

Proof. First, we notice that ζ satisfies (TT2), by repeated application of (TT2') and (TT5'). Also, by continuity of T, there is $\beta' \in I$ such that

$$\begin{split} -\left(\theta T\beta\right) &< 1 - \left(\theta T\beta'\right) \\ &< \zeta(\mathbf{1}_{H}, \lambda) \\ &= \zeta \left(\mathbf{1}_{H}, \bigwedge_{k=1}^{n} (\underline{\gamma_{k}} \lor \mathbf{1}_{M_{k}})\right) \\ &= \bigwedge_{k=1}^{n} \zeta(\mathbf{1}_{H}, (\underline{\gamma_{k}} T^{*} \mathbf{1}_{M_{k}})), \qquad \text{by (TT2) which yields above} \\ &= \bigwedge_{k=1}^{n} [\gamma_{k} T^{*} \zeta(\mathbf{1}_{H}, \mathbf{1}_{M_{k}})], \qquad \text{by Proposition 3.6}(i), \end{split}$$

that is $\theta T\beta > \theta T\beta' > \bigvee_{k=1}^{n} \{(1 - \gamma_k)T[1 - \zeta(\mathbf{1}_H, \mathbf{1}_{M_k})]\}$. Hence, for every $k = 1, \ldots, n$ such that $1 - \gamma_k > \beta$,

$$\theta T\beta' > (1 - \gamma_k)T[1 - \zeta(\mathbf{1}_H, \mathbf{1}_{M_k})].$$

Thus, by (2.3) then Lemma 2.3,

$$1-\zeta(\mathbf{1}_H,\mathbf{1}_{M_k}) \leq \mathscr{J}(1-\gamma_k,\theta T\beta') < \theta T \mathscr{J}(1-\gamma_k,\beta),$$

that is

1

$$\zeta(\mathbf{1}_H, \mathbf{1}_{M_k}) > 1 - [\theta T \mathscr{J}(1 - \gamma_k, \beta))].$$

Then from (TT3') there is $C_k \subseteq X$ such that

(5.1)
$$\zeta(\mathbf{1}_H, \mathbf{1}_{C_k}) > 1 - \theta \text{ and } \zeta(\mathbf{1}_{C_k}, \mathbf{1}_{M_k}) \ge 1 - \mathscr{J}(1 - \gamma_k, \beta).$$

For every k = 1, ..., n such that $1 - \gamma_k \leq \beta$, we take $C_k = X$, Then

$$\begin{aligned} \zeta(\mathbf{1}_H, \mathbf{1}_{C_k}) &= \zeta(\mathbf{1}_H, \mathbf{1}_X) \ge \zeta(\mathbf{1}_X, \mathbf{1}_X), \quad \text{by (TT2')} \\ &= 1 \ge 1 - \theta \end{aligned}$$

and

$$\zeta(\mathbf{1}_{C_k}, \mathbf{1}_{M_k}) = \zeta(\mathbf{1}_X, \mathbf{1}_{M_k}) \ge \zeta(\mathbf{1}_X, \mathbf{1}_{\varnothing}), \qquad \text{by (TT2')}$$
$$= \underline{0} = 1 - 1 = 1 - \mathscr{J}(1 - \gamma_k, \beta), \qquad \text{by (2.3)}$$
$$42$$

which again yields (5.1). By taking $C = \bigcup_{i=1}^{n} C_i \subseteq X$, we get

$$\begin{split} \zeta(\mathbf{1}_{H},\mathbf{1}_{C}) &= \zeta \left(\mathbf{1}_{H},\bigvee_{i=1}^{n}\mathbf{1}_{C_{i}} \right) = \bigvee_{i=1}^{n}\zeta(\mathbf{1}_{H},\mathbf{1}_{C_{i}}) \geq 1-\theta, \text{ by (5.1)} \\ \zeta(\mathbf{1}_{C},\lambda) &= \zeta \left(\bigvee_{i=1}^{n}\mathbf{1}_{C_{i}},\bigwedge_{k=1}^{n}(\underline{\gamma_{k}}T^{*}\mathbf{1}_{M_{k}})\right) \\ &= \bigwedge_{k=1}^{n}[\gamma_{k}T^{*}\zeta(\mathbf{1}_{C_{k}},\mathbf{1}_{M_{k}})], \text{ by (TT2) and Proposition 3.6} \\ &\geq \bigwedge_{k=1}^{n}\{\gamma_{k}T^{*}[1-\mathscr{J}(1-\gamma_{k},\beta)]\}, \text{ by (5.1)} \\ &= 1-\left\{\bigvee_{k=1}^{n}[(1-\gamma_{k})T\mathscr{J}(1-\gamma_{k},\beta)]\right\} \\ &= 1-\left\{\bigvee_{k=1}^{n}[(1-\gamma_{k})\wedge\beta]\right\}, \text{ by (2.2)} \\ &\geq 1-\beta, \end{split}$$

which proves our assertion.

Proposition 5.3. Let $\zeta : 2^X \times 2^X \to I$ be a function satisfies the five conditions (TT1')-(TT5'). Let $H_1, \ldots, H_r, M_1, \ldots, M_n \subseteq X, \alpha_1, \ldots, \alpha_r, \gamma_1, \ldots, \gamma_n \in I$, and write $\mu = \bigvee_{i=1}^r (\underline{\alpha_i} \wedge \mathbf{1}_{H_i}), \lambda = \bigwedge_{k=1}^n (\underline{\gamma_k} \vee \mathbf{1}_{M_k}) \in I^X$. If $\zeta(\mu, \lambda) > 1 - (\theta T\beta)$ for some $\theta, \beta \in I_0$, then there is $C \subseteq X$ such that $\zeta(\mu, \mathbf{1}_C) \geq 1 - \beta$ and $\zeta(\mathbf{1}_C, \lambda) \geq 1 - \theta$.

Proof. By continuity of T, there is $\beta' \in I$ such that

$$1 - (\theta T \beta) < 1 - (\theta T \beta') < \zeta(\mu, \lambda) = \zeta \left(\bigvee_{i=1}^{r} (\underline{\alpha_{i}} \wedge \mathbf{1}_{H_{i}}), \lambda \right)$$
$$= \bigwedge_{i=1}^{r} \zeta(\underline{\alpha_{i}} T \mathbf{1}_{H_{i}}, \lambda)$$
$$= \bigwedge_{i=1}^{r} [(1 - \alpha_{i}) T^{*} \zeta(\mathbf{1}_{H_{i}}, \lambda)], \text{ by Proposition 3.6}$$

That is, $\theta T \beta > \theta T \beta' > \bigvee_{i=1}^{r} \{ \alpha_i T [1 - \zeta(\mathbf{1}_{H_i}, \lambda)] \}$. Therefore, by (2.3) then Lemma 2.3, we get for every $i = 1, \ldots, r$ such that $\alpha_i > \beta$:

$$1 - \zeta(\mathbf{1}_{H_i}, \lambda) \leq \mathscr{J}(\alpha_i, \theta T \beta') < \theta T \mathscr{J}(\alpha_i, \beta) = \mathscr{J}(\alpha_i, \beta) T \theta,$$

that is,

$$\zeta(\mathbf{1}_H, \lambda) > 1 - [\mathscr{J}(\alpha_i, \beta)T\theta].$$

Consequently, from Proposition 5.2, there is $C_i \subseteq X$ such that

(5.2)
$$\zeta(\mathbf{1}_{H_i}, \mathbf{1}_{C_i}) \ge 1 - \mathscr{J}(\alpha_i, \beta) \text{ and } \zeta(\mathbf{1}_{C_i}, \lambda) \ge 1 - \theta.$$
43

For every i = 1, ..., r with $\alpha_i \leq \beta$, we take $C_i = X$. Then (as shown for (5.1)) C_i will also satisfy (5.2). By taking $C = \bigcap_{t=1}^r C_t \subseteq X$, we get

$$\begin{aligned} \zeta(\mu, \mathbf{1}_{C}) &= \zeta \left(\bigvee_{i=1}^{r} (\underline{\alpha_{i}} \wedge \mathbf{1}_{H_{i}}), \bigwedge_{t=1}^{r} \mathbf{1}_{C_{t}} \right) \\ &= \bigwedge_{i=1}^{r} \zeta(\underline{\alpha_{i}} T \mathbf{1}_{H_{i}}, \mathbf{1}_{C_{i}}), \quad \text{by (TT2) which yields above} \\ &= \bigwedge_{i=1}^{r} [(1 - \alpha_{i}) T^{*} \zeta(\mathbf{1}_{H_{i}}, \mathbf{1}_{C_{i}})], \quad \text{by Proposition 3.6} \\ &\geq \bigwedge_{i=1}^{r} \{(1 - \alpha_{i}) T^{*} [1 - \mathscr{J}(\alpha_{i}, \beta)]\}, \quad \text{by (5.2)} \\ &= 1 - \left\{ \bigvee_{i=1}^{r} [\alpha_{i} T \mathscr{J}(\alpha_{i}, \beta)] \right\} \\ &= 1 - \left[\bigvee_{i=1}^{r} (\alpha_{i} \wedge \beta) \right], \quad \text{by (2.2)} \\ &\geq 1 - \beta \end{aligned}$$

and $\zeta(\mathbf{1}_{C}, \lambda) = \zeta(\bigwedge_{t=1}^{r} \mathbf{1}_{C_{t}}, \lambda) = \bigvee_{t=1}^{r} \zeta(\mathbf{1}_{C_{t}}, \lambda) \ge 1 - \theta$ by (TT2') and (5.2), which completes the proof.

A possibility distribution on a nonempty set X [12], is an assignment of possibility values in [0, 1] to the elements of X, such that those values have supremum 1. Such a function is numerically equal to a normalized fuzzy subset of X (i.e. one with height 1).

Definition 5.4 ([3]). A generalized possibility measure, GPM, on a set X is a function $f: 2^X \to I$ which satisfies the following three axioms:

$$(\text{GPM1}) \boldsymbol{f}(X) = 1;$$

(GPM2) $\boldsymbol{f}(\emptyset) = 0;$

(GPM3) $\mathbf{f}(\bigcup_{i=1}^{n} H_i) = \max{\mathbf{f}(H_i) : i = 1, 2, ..., n}$ for every nonempty, finitely indexed family ${H_i}_{i=1}^{n}$ of subsets of X.

Definition 5.5 ([3]). An extended generalized possibility measure, (extended GPM) on X is a function $\Omega: I^X \to I$ that satisfies:

(E-GPM1) $\boldsymbol{\Omega}(X) = 1;$ (E-GPM2) $\boldsymbol{\Omega}(\emptyset) = 0;$ (E-GPM3) $\boldsymbol{\Omega}(\mu \lor \lambda) = \boldsymbol{\Omega}(\mu) \lor \boldsymbol{\Omega}(\lambda),$ for every $\mu, \lambda \in I^X.$

It is evident that the restriction of an extended GPM to 2^X is a GPM on X.

Proof. (**Proof of Theorem 5.1**) Suppose that $\zeta : I^X \times I^X \to I$ is a *T*-topogenous order on *X*. Then (TT1')-(TT4') immediately follow from the corresponding axioms in Definition 3.1, and (TT5') follows from Proposition 3.6. Conversely, let $\zeta : I^X \times I^X \to I$ be satisfies (TT1')-(TT5'). Then (TT1), (TT2) are satisfied by (TT1'), (TT2') and repeated applications of (TT5'), and then (TT5) follows from

Proposition 3.6. To prove (TT3), let $\zeta(\mu, \lambda) > 1 - (\theta T \beta)$ for some $\mu, \lambda \in I^X$ and $\theta, \beta \in I_0$. Then on one hand, by continuity of T, there is $\epsilon > 0$ in such a way that $\zeta(\mu, \lambda) > 1 - \left[(\theta - \epsilon) T(\beta - \epsilon) \right] + \epsilon.$

On the other hand, (TT2) and (TT5) (proved above) imply, by Proposition 3.13, that such ζ is uniformly continuous on $I^X \times I^X$ with respect to the L_{∞} -distance, and so there is $\gamma = \gamma_{T,\epsilon} > 0$ such that for every $\lambda, \lambda', \rho, \rho' \in I^X$,

(5.3)
$$\|\lambda - \lambda'\| \vee \|\rho - \rho'\| < \gamma \implies |\zeta(\lambda, \rho) - \zeta(\lambda', \rho')| \le \epsilon.$$

But there exist $\mu_1, \lambda_1 \in I^X$ with finite ranges such that

$$\|\mu_1 - \mu\| \vee \|\lambda_1 - \lambda\| < \gamma,$$

hence

$$|\zeta(\mu_1,\lambda_1)-\zeta(\mu,\lambda)|\leq\epsilon,$$

i.e.,

$$(\mu_1, \lambda_1) \ge \zeta(\mu, \lambda) - \epsilon > 1 - [(\theta - \epsilon)T(\beta - \epsilon)]$$

So, by Proposition 5.3, there is $C \subseteq X$ such that

ζ

$$\zeta(\mu_1, \mathbf{1}_C) \ge 1 - (\theta - \epsilon) \text{ and } \zeta(\mathbf{1}_C, \lambda_1) \ge 1 - (\beta - \epsilon).$$

Consequently, by (5.3),

$$\zeta(\mu, \mathbf{1}_C) \ge \zeta(\mu_1, \mathbf{1}_C) - \epsilon \ge 1 - (\theta - \epsilon) - \epsilon = 1 - \theta,$$

and also,

$$\zeta(\mathbf{1}_C, \lambda) \ge \zeta(\mathbf{1}_C, \lambda_1) - \epsilon \ge 1 - (\beta - \epsilon) - \epsilon = 1 - \beta$$
(TT2)

which renders (TT3).

We next prove (TT4). For every real number $\epsilon > 1 - \text{hgt}[\mu T(\underline{1} - \lambda)]$, we have

$$\begin{split} & \varnothing \neq [\mu T(\underline{1} - \lambda)]^{(1-\epsilon)} \\ &= \bigcup_{\theta T \beta \geq 1-\epsilon} [\mu^{\theta} \cap (\underline{1} - \lambda^{\beta})], \\ & \subseteq \bigcup_{\theta T \beta \geq 1-\epsilon} [\mu_{\theta^*} \cap (X - \lambda_{(1-\beta)^*})], \end{split}$$
 by Lemma 2.2 (i)

Consequently, there exist $\theta, \beta \in I$ with $\epsilon \geq 1 - (\theta T \beta) = (1 - \theta)T^*(1 - \beta)$ such that $\mu_{\theta^*} \cap (X - \lambda_{(1-\beta)^*}) \neq \emptyset$, that is $\mu_{\theta^*} \not\subset \lambda_{(1-\beta)^*}$ and so by (TT4'), we have $\zeta(\mathbf{1}_{\mu_{\theta^*}}, \mathbf{1}_{\lambda_{(1-\beta)^*}}) = 0$. Hence,

$$\epsilon \ge (1-\theta)T^*(1-\beta) = [(1-\theta)T^*(1-\beta)T^*\zeta(\mathbf{1}_{\mu_{\theta^*}},\mathbf{1}_{\lambda_{(1-\beta)^*}}] \ge \zeta(\mu,\lambda).$$

This establishes that $\zeta(\mu, \lambda) \leq 1 - hgt[\mu T(\underline{1} - \lambda)]$, which completes the proof.

Theorem 5.6. For a T-topogenous order ζ on a set X, we have

- (i) If ζ is a perfect, then $\zeta \left(\bigcup_{j \in J} \mathbf{1}_{H_j}, \mathbf{1}_M \right) = \bigwedge_{j \in J} \zeta(\mathbf{1}_{H_j}, \mathbf{1}_M)$, H_j , $M \in 2^X$; (ii) ζ is a biperfect if and only if it is a perfect and

(5.4)
$$\zeta\left(\mathbf{1}_{H},\bigcap_{j\in J}\mathbf{1}_{M_{j}}\right)=\bigwedge_{j\in J}\zeta(\mathbf{1}_{H},\mathbf{1}_{M_{j}}), \quad H, \ M_{j}\in 2^{X}.$$

(iii) ζ is a symmetrical if and only if $\zeta(\mathbf{1}_H, \mathbf{1}_M) = \zeta(\mathbf{1}_{(X-M)}, \mathbf{1}_{(X-H)}), H, M \in \mathcal{C}$ 2^X . Also, the order relation on the set of T-topogenous orders on X, is completely determined by the order on their restrictions to pairs of crisp fuzzy subsets of X.

Proof. (i) Obviously holds.

(ii) Suppose that ζ is a biperfect. Then it is a perfect and

,

$$\zeta\left(\mathbf{1}_{H},\bigcap_{j\in J}\mathbf{1}_{M_{j}}\right) = \bigwedge_{j\in J}\zeta(\mathbf{1}_{H},\mathbf{1}_{M_{j}}), \text{ for all } H, M_{j}\in 2^{X}.$$

Conversely, let ζ be a perfect and satisfies (5.4). Then by (TT5'), we have

$$\begin{split} \zeta \left(\mu, \bigwedge_{j \in J} \lambda_j \right) &= \bigwedge_{\theta, \beta \in I} \left[\theta T^* \beta T^* \zeta (\mathbf{1}_{\mu_{(1-\theta)^*}}, \mathbf{1}_{(\bigwedge_{j \in J} \lambda_j)_{\beta^*}}) \right] \\ &= \bigwedge_{\theta, \beta \in I} \left[\theta T^* \beta T^* \zeta \left(\mathbf{1}_{\mu_{(1-\theta)^*}}, \bigcap_{j \in J} \mathbf{1}_{(\lambda_j)_{\beta^*}} \right) \right], \quad \text{clear} \\ &= \bigwedge_{\theta, \beta \in I} \left[\theta T^* \beta T^* \bigwedge_{j \in J} \zeta \left(\mathbf{1}_{\mu_{(1-\theta)^*}}, \mathbf{1}_{(\lambda_j)_{\beta^*}} \right) \right], \quad \text{by hypothesis} \\ &= \bigwedge_{j \in J} \left\{ \bigwedge_{\theta, \beta \in I} \left[\theta T^* \beta T^* \zeta \left(\mathbf{1}_{\mu_{(1-\theta)^*}}, \mathbf{1}_{(\lambda_j)_{\beta^*}} \right) \right) \right] \right\} \\ &= \bigwedge_{j \in J} \zeta(\mu, \lambda_j), \end{split}$$

which proves that ζ is a biperfect.

(iii) can be proved analogously in similar lines. Now, let $\zeta_1(\mathbf{1}_H, \mathbf{1}_M) \leq \zeta_2(\mathbf{1}_H, \mathbf{1}_M)$ for every $H, M \in 2^X$, where ζ_1, ζ_2 are T-topogenous orders on X. Then for every $\mu, \lambda \in I^X$ we have, by (TT5') that

$$\begin{aligned} \zeta_{1}(\mu,\lambda) &= \bigwedge_{\theta,\beta\in I} \left[\theta T^{*}\beta T^{*}\zeta_{1}\left(\mathbf{1}_{\mu_{(1-\theta)^{*}}},\mathbf{1}_{\lambda_{\beta^{*}}}\right)\right] \\ &\leq \bigwedge_{\theta,\beta\in I} \left[\theta T^{*}\beta T^{*}\zeta_{2}\left(\mathbf{1}_{\mu_{(1-\theta)^{*}}},\mathbf{1}_{\lambda_{\beta^{*}}}\right)\right] \\ &= \zeta_{2}(\mu,\lambda), \end{aligned}$$

which establishes that $\zeta_1 \leq \zeta_2$. The converse is immediate.

Theorem 5.7. Let (X, \mathscr{P}) and (Y, \mathscr{H}) be T-syntopogenous spaces. A function $f: X \to Y$ is a syntopogenous map, if and only if for every $\eta \in \mathscr{H}$ there is $\zeta \in \mathscr{P}$ such that

$$\eta(\mathbf{1}_H, \mathbf{1}_M) \le \zeta(\boldsymbol{f}^{\leftarrow}(\mathbf{1}_H), f^{\leftarrow}(\mathbf{1}_M)), \qquad H, \ M \in 2^Y.$$
46

Proof. The "only if " part, obviously follows. For the " if " part, suppose f satisfies the stated condition and $\eta \in \mathscr{H}$. Then by (TT5'), we have for every $\nu, \rho \in I^Y$,

$$\begin{split} \eta(\nu,\rho) &= \bigwedge_{\theta,\beta\in I} \left[\theta T^*\beta T^*\eta(\mathbf{1}_{\nu_{(1-\theta)^*}},\mathbf{1}_{\rho_{\beta^*}})\right] \\ &\leq \bigwedge_{\theta,\beta\in I} \left[\theta T^*\beta T^*\zeta(f^{\leftarrow}(\mathbf{1}_{\nu_{(1-\theta)^*}}),f^{\leftarrow}(\mathbf{1}_{\rho_{\beta^*}}))\right], \quad \text{by hypothesis} \\ &= \bigwedge_{\theta,\beta\in I} \left[\theta T^*\beta T^*\zeta(\mathbf{1}_{f^{\leftarrow}(\nu_{(1-\theta)^*})},\mathbf{1}_{f^{\leftarrow}(\rho_{\beta^*})}\right], \quad \text{obvious} \\ &= \bigwedge_{\theta,\beta\in I} \left[\theta T^*\beta T^*\zeta(\mathbf{1}_{[f^{\leftarrow}(\nu)]_{(1-\theta)^*}},\mathbf{1}_{[f^{\leftarrow}(\rho)]_{\beta^*}})\right], \quad \text{clear} \\ &= \zeta(f^{\leftarrow}(\nu),f^{\leftarrow}(\rho)). \end{split}$$

This proves that f is a syntopogenous map.

Theorem 5.8. Let (X, \mathscr{P}) and (Y, \mathscr{H}) be *T*-syntopogenous spaces. A function $f: X \to Y$ is a syntopogenous map, if and only if for every $\eta \in \mathscr{H}$ there is $\zeta \in \mathscr{P}$ such that

$$\eta(f(\mathbf{1}_E), \underline{1} - f(\mathbf{1}_G)) \le \zeta(\mathbf{1}_E, \mathbf{1}_{(X-G)}), \quad E, \ G \in 2^X.$$

Proof. The proof is analogous to the above one.

6. CONCLUSION

This manuscript introduces a new structure of T-syntopogenous spaces which is interpreted as enlarge of fuzzy syntopogenous spaces introduced by A. K. Katsaras (1990). It gives express the concept of T-syntopogenous spaces in terms of fuzzy binary relations in power sets. The motivation of this study is to will lead us and contribute, in future research, to show that the T-syntopogenous structures compatible with fuzzy T-uniform structures (1998), T-proximity and T-neighbourhood structures (2002).

References

- [1] J. Adamek, H. Herrlich and G. Strecker, Abstract and Concrete Categories, Wiley, New York 1990.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [3] A. B. El-Rayes and N. N. Morsi, Generalized possibility measures, Inform. Sci. 79 (1994) 201–222.
- K. A. Hashem and N. N. Morsi, Fuzzy T-neighbourhood spaces : Part 1-T-Proximities, Fuzzy Sets and Systems 127 (2002) 247–264.
- [5] A. K. Katsaras and C. G. Petalas, A unified theory of fuzzy topologies, fuzzy proximities and fuzzy uniformities, Rev. Roumaine Math. Pures Appl. 28 (1983) 845–856.
- [6] A. K. Katsaras and C. G. Petalas, On fuzzy syntopogenous structures, J. Math. Anal. Appl. 99 (1984) 219–236.
- [7] A. K. Katsaras, Fuzzy syntopogenous structures compatible with Lowen fuzzy uniformities and Artico-Moresco fuzzy proximities, Fuzzy Sets and Systems 36 (1990) 375–393.
- [8] A. K. Katsaras, Operations on fuzzy syntopogenous structures, Fuzzy Sets and Systems 43 (1991) 199–217.
- [9] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976) 621–633.

- [10] R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981) 370–385.
- [11] N. N. Morsi, Hyberspace fuzzy binary relations, Fuzzy Sets and Systems 67 (1994) 221–237.
- [12] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.
- [13] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1 (1978) 3–28.

KHALED A. HASHEM (Khaledahashem@yahoo.com)

Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt