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Abstract. In this paper, we introduce the concepts of T -syntopogenous
spaces and investigate some of their properties, where T stands for any
continuous triangular norm. Their definitions subsumes that of fuzzy syn-
topogenous spaces due to A. K. Katsaras ( Fuzzy Sets and Systems 36
(1990)), as our Min-syntopogenous spaces. In particular, we study the con-
tinuity of functions between T -syntopogenous spaces and the I-topological
space associated with a T -syntopogenous space. Moreover, we describe the
T -syntopogenous structures as fuzzy relations in (ordinary) power sets.
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1. Introduction

Katsaras and Petalas [5, 6, 7] introduced the fuzzy syntopogenous structures and
studied the unified theory of Chang I-topologies [2] and Lowen Fuzzy uniformities
[10]. In this manuscript, we introduce, for each continuous triangular norm T , a new
structure of T -syntopogenous spaces that conforms well with Lowen I-topological
spaces [9]. Our concept of T -syntopogenous structure generalizes, to arbitrary con-
tinuous triangular norm T , the fuzzy syntopogenous structure of A. K. Katsaras [7],
now becoming the special case corresponding to T = Min. Also we deduce the no-
tion of syntopogenous maps and here we show that the class of all T -syntopogenous
spaces together with syntopogenous maps as arrows forms a concrete category. The
basic idea is to introduce a degree of divergence between fuzzy subsets, which is a
real number in the unit interval I = [0, 1].

We proceed as follows: In Section 2, we state and supply some basic ideas and
lemmas on the T -residuated implication and on the α-cuts of fuzzy subsets, which
will be needed in the sequel. In the third section, we introduce our definition of
T -topogenous order, and hence T -syntopogenous structure on a set, also we define
the I-topology associated with a T -syntopogenous structure. We deduce the notions
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of image and inverse image of T -topogenous orders. Moreover, we give the examples
of T -topogenous orders and T -syntopogenous spaces together with the I-topology
generated by them. In Section 4, we deduce the notion of syntopogenous maps
(syntopogenously continuous functions) and we define a functor from category of
T -syntopogenous spaces into category of I-topological spaces. The fifth section
characterizes both T -topogenous orders and syntopogenous maps, uniquely, in terms
of fuzzy binary relations in power sets.

2. Preliminaries

A triangular norm T (cf. [12]) is a binary operation on the unit interval I = [0, 1]
that is associative, symmetric, monotone in each argument and has neutral element
1. The basic two (continuous) triangular norms are their simplest, namely Min (also
denoted by ∧ ) and product.

The triangular conorm of a triangular norm T is the binary operation T ∗ on the
unit interval I given by : αT ∗β = 1 − [(1 − α)T (1 − β)], α, β ∈ I. A continuous
triangular norm T is uniformly continuous, that is for every ε > 0 there is θ = θT,ε

such that for every (α, β) ∈ I × I, we have

(2.1) (αTβ)− ε ≤ (α− θ)T (β − θ) ≤ αTβ ≤ (α + θ)T (β + θ) ≤ (αTβ) + ε.

For a continuous triangular norm T , the following binary operation on I

J (α, γ) = sup{ε ∈ I : αTε ≤ γ}, α, γ ∈ I,

is called the residuation implication of T [11]. For this implication, we shall use the
following properties, ∀ α, ε, γ ∈ I:
By continuity of T ,

(2.2) α T J (α, ε) = α ∧ ε.

By the definition of I , we have :

(2.3) α ≤ ε iff J (α, ε) = 1, and αTγ ≤ ε iff α ≤ J (γ, ε).

A fuzzy set λ in a universe set X, introduced by Zadeh in [13], is a function
λ : X → I = [0, 1]. The height of a fuzzy set λ ∈ IX is the following real number :

hgt λ = sup{λ(x) : x ∈ X}.

We shall often need to consider a subset H ⊆ X as a fuzzy subset of X, said to be
a crisp fuzzy subset of X, which we shall denote by the symbol 1H . We do this by
identifying 1H with its characteristic function. We also denote the constant fuzzy
set of X with value α ∈ I by α.

Given a fuzzy set λ ∈ IX and a real number α ∈ I1 = [0, 1[, the strong α-cut of
λ is the following subset of X :

λα = {x ∈ X : λ(x) > α},

and for a real number α ∈ I, the weak α-cut of λ is the subset of X:

λα∗ = {x ∈ X : λ(x) ≥ α}.
26
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It is directly verified that every λ ∈ IX has the following formulations

(2.4) λ =
∨
α∈I

[α ∧ 1λα∗ ] =
∨
α∈I

[αT1λα∗ ].

(2.5) λ =
∧
α∈I

[
α ∨ 1λα∗

]
=
∧
α∈I

[
αT ∗1λα∗

]
.

Given two fuzzy sets µ, λ ∈ IX , we denote by µTλ the fuzzy subset of X given
by : (µTλ)(x) = µ(x)Tλ(x), x ∈ X. Hence for all ε > 0 and the above θ = θT,ε, we
find that for all µ, λ, ν, ρ ∈ IX :

‖µ− ν‖ ∨ ‖λ− ρ‖ ≤ θ ⇒ ‖µTλ− νTρ‖ ≤ ε,

where ‖ − ‖ denotes the L∞-distance on IX , given by

‖µ− ν‖ = sup{|µ(x)− ν(x)| : x ∈ X}, µ, ν ∈ IX ,

that is, the function T : IX × IX → IX is also uniformly continuous with respect to
the L∞-distance on IX .

Lemma 2.1 ([4]). For every µ, λ ∈ IX and ε ∈ I, we have

(i) (µTλ)ε∗ =
⋃

θTγ≥ε (µθ∗ ∩ λγ∗);
(ii) (µTα)ε∗ =

⋃
θTγ≥ε (µθ∗);

(iii) hgt (λT1H) ≤ ε ⇒ λε ∩H = ∅;
(iv) hgt f(µ) = hgt µ and f(µTλ) ≤ f(µ)Tf(λ);
(v) For all α ∈ [0, ε], let γα,ε = inf{θ ∈ I : θTε ≥ α}. Then γα,εTε = α and

consequently, (µTε)α∗ = µγ∗α,ε
.

Lemma 2.2. For every µ, λ ∈ IX and α, ε ∈ I, we have

(i) (µTλ)ε =
⋃

θTγ≥ε

(
µθ ∩ λγ

)
;

(ii)
(
(1− α)T ∗λ

)
(1−ε)∗

= λ(1−J (α,ε))∗ .

Proof. (i) Let µ, λ ∈ IX and ε ∈ I. Then for every x ∈ X, we get the equivalences:

x ∈ (µ Tλ)ε iff µ(x)Tλ(x) > ε

iff ∃ θ, γ ∈ I such that µ(x) > θ and λ(x) > γ with θTγ ≥ ε

iff ∃ θ, γ ∈ I such that x ∈ µθ ∩ λγ with θTγ ≥ ε

iff x ∈
⋃

θTγ≥ε

(
µθ ∩ λγ

)
.

This proves (i).
27
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(ii) Let λ ∈ IX and α, ε ∈ I. Then(
(1− α)T ∗λ

)
(1−ε)∗

= {x ∈ X : (1− α)T ∗λ(x) ≥ 1− ε}

= {x ∈ X : 1− [αT (1− λ)(x)] ≥ 1− ε}
= {x ∈ X : αT (1− λ)(x) ≤ ε}
= {x ∈ X : (1− λ)(x) ≤ J (α, ε)}, by (2.3)

= {x ∈ X : λ(x) ≥ 1−J (α, ε)}
= λ(1−J (α,ε))∗ .

Rendering (ii). �

Lemma 2.3 ([4]). Suppose γ, α, α′, ε ∈ I are such that α ≤ γ and εTα′ < εTα.
Then J (γ, εTα′) < εTJ (γ, α).

3. T -syntopogenous spaces

T -topogenous orders and T -syntopogenous spaces are introduced in this section,
and some of their properties are given. We generate an I-topological space from
a T -syntopogenous space. We introduce the discrete and indiscrete T -topogenous
orders, as special examples. Also, the image and inverse image of T -topogenous
orders are define.

Definition 3.1. A T -topogenous order on a set X is a function ζ : IX × IX → I,
that satisfies, for any µ, λ, ν ∈ IX and α ∈ I, the following:
(TT1) ζ(1, α) = α and ζ(α, 0) = 1− α;
(TT2) ζ(µ ∨ λ, ν) = ζ(µ, ν) ∧ ζ(λ, ν) and ζ(µ, λ ∧ ν) = ζ(µ, λ) ∧ ζ(µ, ν);
(TT3) If ζ(µ, λ) > 1− (θ T β) for some θ, β ∈ I0 =]0, 1], there is C ⊆ X such that

ζ(µ,1C) ≥ 1− θ and ζ(1C , λ) ≥ 1− β;
(TT4) ζ(µ, λ) ≤ 1− hgt[µT (1− λ)];
(TT5) ζ(αTµ, λ) = (1− α)T ∗ζ(µ, λ) = ζ(µ, (1− α)T ∗λ).

The real number ζ(µ, λ) can be interpreted as the degree of farness (divergence)
of the fuzzy sets µ and (1− λ).

Definition 3.2 ([7])). A T -topogenous order ζ on a set X is said to be :

(i) perfect if ζ
(∨

j∈J µj , λ
)

=
∧

j∈J ζ(µj , λ), µj , λ ∈ IX ;

(ii) biperfect if it is perfect and ζ
(
µ,
∧

j∈J λj

)
=
∧

j∈J ζ(µ, λj), µ, λj ∈ IX ;

(iii) symmetrical if ζ(µ, λ) = ζ(1− λ, 1− µ), µ, λ ∈ IX .

Definition 3.3. For T -topogenous orders ζ, η on X, we define the T -composition
of ζ and η by:

(ζ ◦T η)(µ, λ) = sup
C⊆X

[η(µ,1C)Tζ(1C , λ)], µ, λ ∈ IX .

Definition 3.4. (i) A T -syntopogenous structure on a set X is a family P of
T -topogenous orders on X satisfying the following conditions

28
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(TS1) P is directed in the sense that, given ζ, η ∈ P there is ξ ∈ P such that

ξ ≥ ζ ∨ η;

(TS2) for every ζ ∈ P and ε ∈ I0, there is ζε ∈ P such that

(ζε ◦T ζε) + ε ≥ ζ.

(ii) A T -syntopogenous structure P is called perfect (resp. biperfect, resp. sym-
metrical) if every member of P is perfect (resp. biperfect, resp. symmetrical). The
pair (X, P) is said to be a T -syntopogenous space.

First, we see how a T -syntopogenous structure can generate an I-topology. Take
a T -syntopogenous space (X, P), and for any µ ∈ IX and x ∈ X, we define a map
o : IX → IX by:

(3.1) µo(x) = sup
ζ∈P

ζ(1x, µ).

The following lemma and two propositions lead to the proof of Theorem 3.8,
below, which states that the mapping µ → µo is a fuzzy interior operator.

Given a real number 0 < γ < 1, we denote by n(γ) the unique positive integer n
satisfying n(γ) < 1 ≤ (n + 1)γ.

Lemma 3.5 (El-Rayes and Morsi [3]). For every µ ∈ IX and 0 < γ < 1,

µ ≤
n(γ)∨
j=0

[
jγT1(µjγ)

]
≤ µ + γ.

We use this lemma to establish :

Proposition 3.6. If ζ : IX × IX → I satisfies (TT2), then the following are
equivalent statements:

(i) ζ(αTµ, λ) = (1− α)T ∗ζ(µ, λ) = ζ(µ, (1− α)T ∗λ), ∀ α ∈ I, µ, λ ∈ IX ;
(ii) ζ(µ, λ) =

∧
θ∈I

[
θT ∗ζ(1µ(1−θ)∗ , λ)

]
=
∧

β∈I

[
βT ∗ζ(µ,1λβ∗

]
, ∀ µ, λ ∈ IX ;

(iii) ζ(µ, λ) =
∧

θ,β∈I

[
θT ∗βT ∗ζ(1µ(1−θ)∗ ,1λβ∗

]
, ∀ µ, λ ∈ IX .

Proof. (i) ⇒ (ii) : Suppose that (i) holds. Then for all µ, λ ∈ IX ,

ζ(µ, λ) ≤ ζ
(
(1− θ)T1µ(1−θ)∗ , λ

)
, ∀ θ ∈ I, by (2.4) and (TT2)

= θT ∗ζ
(
1µ(1−θ)∗ , λ

)
, ∀ θ ∈ I, by (i)

hence, ζ(µ, λ) ≤
∧

θ∈I

[
θT ∗ζ(1µ(1−θ)∗ , λ

]
.

For the converse inequality, since

µ ≤
n(γ)∨
j=0

[
jγT1(µjγ)

]
≤

n(γ)∨
j=0

[
jγT1µjγ∗

]
,
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we have

ζ(µ, λ) ≥ ζ

n(γ)∨
j=0

[
jγT1µjγ∗

]
, λ


=

n(γ)∧
j=0

[
(1− jγ)T ∗ζ

(
1µjγ∗ , λ

)]
, by (TT2) and (i)

≥
∧
θ∈I

[
θT ∗ζ

(
1µ(1−θ)∗ , λ

)]
Hence, we get the conclusion, which proves the first equality of (ii).

For the second equality, we have as above, by (2.5),

ζ(µ, λ) ≤
∧
β∈I

[
βT ∗ζ

(
µ,1λβ∗

)]
.

For the converse inequality, putting λ = 1− ν, for some ν ∈ IX , we have

ζ(µ, λ) = ζ(µ, 1− ν)

≥ ζ

µ, 1−

n(γ)∨
j=0

(
jγT1(νjγ)

) , by (TT2)

= ζ

µ,

n(γ)∧
j=0

[
(1− jγ)T ∗(1− 1(νjγ))

]
=

n(γ)∧
j=0

[
(1− jγ)T ∗ζ(µ,1(X−νjγ))

]
, by (TT2) and (i)

=
n(γ)∧
j=0

[
(1− jγ)T ∗ζ(µ,1(1−ν)(1−jγ)∗ )

]
, clear

≥
∧
β∈I

[
βT ∗ζ(µ,1λβ∗ )

]
.

Hence, we get the conclusion, which proves the second equality of (ii).

(ii)⇒(iii): Direct.

(iii)⇒(i): Suppose (iii) holds. Then for all µ, λ ∈ IX and all α ∈ I,

ζ(αTµ, λ) =
∧

θ,β∈I

[
θT ∗βT ∗ζ(1(αTµ)(1−θ)∗ ,1λβ∗ )

]
, by (iii)

=
∧

β ∈ I
θ ∈ [1− α, 1]

[
θT ∗βT ∗ζ

(
1µ(γ(1−θ),α)∗ ,1λβ∗

)]
, by Lemma 2.1 (v)

=
∧

ε,β∈I

[
(1− α)T ∗εT ∗βT ∗ζ(1µ(1−ε)∗ ,1λβ∗

]
,
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because θ ≥ 1 − α if and only if θ = (1 − α)T ∗ε for some ε ∈ I, equivalently
1− θ = αT (1− ε) (due to the continuity of T ), and such (1− ε) is greater or equal
to γ(1−θ),α, hence µ(1−ε)∗ ⊆ µ(γ(1−θ),α)∗ . Therefore,

ζ(αTµ, λ) = (1− α)T ∗ ∧ε,β∈I

[
εT ∗βT ∗ζ

(
1µ(1−ε)∗ ,1λβ∗

)]
= (1− α)T ∗ζ(µ, λ), by (iii).

Similarly, by using Lemma 2.2 (ii), we can show

ζ(µ, (1− α)T ∗λ) = (1− α)T ∗ζ(µ, λ),

which winds up the proof. �

Proposition 3.7. Let ζ be a T -topogenous order on a set X. Then for all µ,λ ∈ IX ,
we have

(i) λo ≤ λ;
(ii) ζ(µ, λo) = ζ(µ, λ).

Proof. (i) By (TT4), we have for all x ∈ X,

λo(x) = ζ(1x, λ) ≤ 1− hgt
[
1xT (1− λ)

]
= λ(x).

(ii) By the continuity of T , for every real number θ > 1 − ζ(µ, λ) and every ε > 0,
there is βθ > 0 such that

[1− ζ(µ, λ)] + ε > θTβθ > 1− ζ(µ, λ).

Hence, by (TT3) and the continuity of T , there is Cθ ⊆ X such that

(3.2) ζ(µ,1Cθ
) ≥ 1− βθ and ζ(1Cθ

, λ) ≥ 1− θ.

Consequently, for every z ∈ Cθ, we have

λo(z) = ζ(1z, λ) ≥ ζ(1Cθ
, λ), by (TT2)

≥ 1− θ, by (3.2)
= α, by putting 1− θ = α.

Therefore, z ∈ (λo)α∗ , that is

(3.3) Cθ ⊆ (λo)α∗ .
31
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Hence,

ζ(µ, λo) =
∧
α∈I

[
αT ∗ζµ,1(λo)α∗

]
, by Proposition 3.6

=

 ∧
α<ζ(µ,λ)

[
αT ∗ζ(µ,1(λo)α∗

] ∧

 ∧
α≥ζ(µ,λ)

[
αT ∗ζ(µ,1(λo)α∗

] , clear

≥

 ∧
α<ζ(µ,λ)

[
αT ∗ζ(µ,1(λo)α∗

] ∧

 ∧
α≥ζ(µ,λ)

α


≥

 ∧
θ>1−ζ(µ,λ)

[(1− θ)T ∗ζ(µ,1Cθ
)]

 ∧ ζ(µ, λ), by (3.3) and (TT2)

≥

 ∧
θ>1−ζ(µ,λ)

[(1− θ)T ∗(1− βθ)]

 ∧ ζ(µ, λ), by (3.2)

=

 ∧
θ>1−ζ(µ,λ)

[1− (θTβθ)]

 ∧ ζ(µ, λ)

≥ [ζ(µ, λ)− ε] ∧ ζ(µ, λ)

= ζ(µ, λ)− ε.

By the arbitrariness of ε, we get the inequality ζ(µ, λo) ≥ ζ(µ, λ). The opposite
inequality follows from (i) and (TT2). �

Theorem 3.8. The above mapping µ → µo is a fuzzy interior operator.

Proof. We have shown that o is a lower operator. Also, for every µ, λ ∈ IX , α ∈ I
and x ∈ X, we have

αo(x) = sup
ζ∈P

ζ(1x, αT ∗0)

= αT ∗ sup
ζ∈P

ζ(1x, 0), by (TT5)

= α, by (TT4)

= α(x).

By monotonicity of o, we have

(µo ∧ λo) ≥ (µ ∧ λ)o.

On the other hand, if ε > 0, then there are ζ, η ∈ P such that

µo(x)− ε < ζ(1x, µ) and λo(x)− ε < η(1x, λ).
32
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By (TS1), we can get ζ ∈ P such that ξ ≥ ζ, η, thus

(µo ∧ λo)(x)− ε = [µo(x)− ε] ∧ [λo(x)− ε]

< [ξ(1x, µ) ∧ ξ(1x, λ)]

= [ξ(1x, µ ∧ λ)] , by (TT2)

≤ (µ ∧ λ)o(x).

This proves that (µo ∧ λo) ≤ (µ ∧ λ)o and so (µ ∧ λ)o = µo ∧ λo. Moreover, by (ii)
of the preceding proposition, we get

(µo)o(x) = sup
ζ∈P

ζ(1x, µo) = sup
ζ∈P

ζ(1x, µ) = µo(x);

that is, o is idempotent. This proves that o is a fuzzy interior operator. �

As a consequence of this theorem we may define an I-topology in the usual way,
namely assuming a fuzzy set µ to be open if and only if µ = µo. We shall denote
this I-topology by τ(P), and we shall refer to it as the I-topology generated by P.

Obviously one can equip the set of all T -topogenous orders on a set X, with a
partial order by defining ζ1 is coarser than ζ2 (and ζ2 is finer than ζ1) if ζ1(µ, λ) ≤
ζ2(µ, λ) for every pair of fuzzy sets µ, λ ∈ IX . Consequently, the T -syntopogenous
structure P1 on X is said to be coarser than another one P2 (and P2 is finer than
P1) if for every ζ ∈ P1, there is ζ ′ ∈ P2 such that ζ ≤ ζ ′.

It clearly follows that if P1 and P2 are T -syntopogenous structures on a set X,
and P1 is coarser than P2, then τ(P1) ⊆ τ(P2).

Proposition 3.9. Let P be a T -syntopogenous structure on a set X and define
ζs : IX × IX → I, by :

ζs(µ, λ) = sup
ζ∈P

ζ(µ, λ), µ, λ ∈ IX .

Then ζs is a T -topogenous order on X, with τ({ζs}) = τ(P).

Proof. It is easy to see that ζs satisfies (TT1), (TT3),(TT4) and (TT5). To prove
(TT2), let µ, λ, ν ∈ IX . Then

ζs(µ ∨ λ, ν) = sup
ζ∈P

ζ(µ ∨ λ, ν)

= sup
ζ∈P

[ζ(µ, ν) ∧ ζ(λ, ν)] , by (TT2)

≤

[
sup
ζ∈P

ζ(µ, ν)

]
∧

[
sup
ζ∈P

ζ(λ, ν)

]
= ζs(µ, ν) ∧ ζs(λ, ν).

For the opposite inequality, let ε ∈ I0 be such that

ε < ζs(µ, ν) ∧ ζs(λ, ν).

Then there are ζ1, ζ2 ∈ P such that

ε ≤ ζ1(µ, ν) ∧ ζ2(λ, ν).
33
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Since P is directed, then there is η ∈ P such that η ≥ ζ1 ∨ ζ2. Hence

ε ≤ η(µ, ν) ∧ η(λ, ν)

= η(µ ∨ λ, ν), by (TT2)

≤ sup
ζ∈P

ζ(µ ∨ λ, ν)

= ζs(µ ∨ λ, ν).

This proves that

ζs(µ, ν) ∧ ζs(λ, ν) ≤ ζs(µ ∨ λ, ν).

So, ζs(µ ∨ λ, ν) = ζs(µ, ν) ∧ ζs(λ, ν). Analogously, we show that

ζs(µ, λ ∧ ν) = ζs(µ, λ) ∧ ζs(µ, ν).

Finally, we denote the fuzzy interior operators associated with τ({ζs}) and τ(P),
respectively by o1 and o2 . Let λ ∈ IX and x ∈ X. Then we have

λo1(x) = ζs(1x, λ) = sup
ζ∈P

ζ(1x, λ) = λo2(x).

That is, λo1 = λo2 , which implies that τ({ζs}) = τ(P). Hence, the result follows. �

We call ζs is the supremum of the T -syntopogeneous structure P.

Example 3.10. Let X be a set and define ζ1, ζ2 : IX × IX → I, by for every µ,
λ ∈ IX :

ζ1(µ, λ) = 1− hgt[µT (1− λ)],

ζ2(µ, λ) = 1− [(hgtµ)Thgt(1− λ)].

We verify that the function ζ1 is a biperfect symmetrical T -topogenous order. It
suffices to check (TT3), since the other axioms trivially hold. Let ζ1(µ, λ) > 1−(θTβ)
for some θ, β ∈ I. So for every x ∈ X,

[µT (1− λ)](x) ≤ hgt[µT (1− λ)] < θTβ,

hence
∅ = [µT (1− λ)](θTβ)∗

=
⋃

εTγ≥θTβ

[
µε∗ ∩ (1− λ)γ∗

]
, by Lemma 2.1(i)

⊇ µθ∗ ∩ (1− λ)β∗ .

By taking C = µθ∗ ⊆ X, we have

ζ1(µ,1C) = 1− hgt[µT (1− 1C)] = 1− hgt[µT (1− 1µθ∗ )] ≥ 1− θ,

ζ1(1C , λ) = 1− hgt[1CT (1− λ)] = 1− hgt[1µθ∗T (1− λ)]

≥ 1− hgt[(1− 1(1−λ)β∗ )T (1− λ)] ≥ 1− β.

This yields (TT3). Moreover, it follows immediately that ζ1 is a biperfect symmet-
rical.
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The I-topology generated by ζ1 is the discrete one (i.e. every fuzzy set is open),
since for every x ∈ X and µ ∈ IX , we have

µo(x) = ζ1(1x, µ)

= 1− hgt[(1x)T (1− µ)]

= 1− sup
z∈X

[(1x)T (1− µ)](z)

= 1− (1− µ)(x)

= µ(x).

Also, the function ζ1 is the finest (discrete) T -topogenous order on X, because for
every T -topogenous order ζ on X, we have by (TT4),

ζ(µ, λ) ≤ 1− hgt[µT (1− λ)] = ζ1(µ, λ).

To see that ζ2 is a T -topogenous order, we need only check (TT3). Let ζ2(µ, λ) >
1− (θTβ) for some θ, β ∈ I, therefore

(hgtµ)T (hgt(1− λ)) < θTβ.

Hence, if (hgtµ) < θ, then C = ∅ yields;

ζ2(µ,1C) = ζ2(µ, 0) = 1− [(hgtµ)Thgt(1− 0)] = 1− (hgtµ) > 1− θ,

ζ2(1C , λ) = ζ2(0, λ) = 1− [(hgt0)Thgt(1− λ)] = 1 > 1− β.

Whereas if (hgtµ) ≥ θ, then hgt(1− λ) < β, and hence C = X similarly yields

ζ2(µ,1C) > 1− θ and ζ2(1C , λ) > 1− β.

This establishes (TT3). Moreover, it is easy to see that ζ2 is a biperfect symmetrical.
The I-topology generated by ζ2 is the indiscrete one (exactly the constant fuzzy sets
are open) because, for every x ∈ X and µ ∈ IX , we have

µo(x) = ζ2(1x, µ) = 1− [hgt(1x)Thgt(1− µ)] = 1− hgt(1− µ).

Also, the function ζ2 is the coarsest (indiscrete) T -topogenous order on X, because
if hgtµ = α and hgt(1−λ) = γ , then for every T -topogenous order ζ on X, we have

ζ(µ, λ) ≥ ζ(α, 1− γ), clearly by (TT2)

= ζ(αT1, (1− γ)T ∗0)

= (1− α)T ∗(1− γ)T ∗ζ(1, 0), by (TT5)

= (1− α)T ∗(1− γ), by (TT1)

= 1− (αTγ)

= 1− [(hgtµ)Thgt(1− λ)]

= ζ2(µ, λ).

Example 3.11. Let X be a nonempty set and let T =Min, take P = {ζ1, ζ2},
where ζ1, ζ2 as in Example 3.10. We verify that (X, P) is a biperfect symmetrical
Min-syntopogenous space.
(TS1) It obviously holds because ζ1 ≥ ζ2.
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(TS2) Let µ, λ ∈ IX and ε ∈ I0. Then[
(ζ1 ◦T ζ1) + ε

]
(µ, λ) = sup

C⊆X
[ζ1(µ,1C) ∧ ζ1(1C , λ)] + ε

≥ [ζ1(µ,1X) ∧ ζ1(1X , λ)] + ε

=
{
[1− hgt(µ ∧ (1− 1))] ∧ [1− hgt(1 ∧ (1− λ))]

}
+ ε

= [1− hgt(1− λ)] + ε

=
[

inf
x∈X

λ(x)
]

+ ε

≥ λ(x0), for some x0 ∈ X.

Also,[
(ζ1 ◦T ζ1) + ε

]
(µ, λ) = sup

C⊆X
[ζ1(µ,1C) ∧ ζ1(1C , λ)] + ε

≥ [ζ1(µ,1∅) ∧ ζ1(1∅, λ)] + ε

=
{
[1− hgt(µ ∧ (1− 0)] ∧

[
1− hgt(0 ∧ (1− λ))

]}
+ ε

= [1− (hgtµ)] + ε

=
[

inf
x∈X

(1− µ)(x)
]

+ ε

≥ (1− µ)(y0), for some y0 ∈ X.

On the other hand,

ζ1(µ, λ) = 1− hgt[µ ∧ (1− λ)]

= inf
x∈X

[
(1− µ) ∨ λ

]
(x)

≤ (1− µ)(x) ∨ λ(x), ∀x ∈ X.

So, for every x ∈ X, we have

ζ1(µ, λ) ≤ (1− µ)(x) or ζ1(µ, λ) ≤ λ(x).

If ζ1(µ, λ) ≤ (1 − µ)(x), then ζ1(µ, λ) ≤ (1 − µ)(y0) ≤ [(ζ1 ◦T ζ1) + ε](µ, λ), and if
ζ1(µ, λ) ≤ λ(x), then ζ1(µ, λ) ≤ λ(x0) ≤ [(ζ1 ◦T ζ1)+ε](µ, λ). That is (ζ1 ◦T ζ1)+ε ≥
ζ1. Also, (ζ1 ◦T ζ1) + ε ≥ ζ2 since ζ1 ≥ ζ2. This renders (TS2) and shows that P
is a Min-syntopogenous structure on X. Moreover, the members ζ1, ζ2 of P are
biperfect symmetrical from Example 3.10. Also, obviously τ(P) = τ({ζ1}), where
ζ1 is the supremum of P.

Now, we clarify the relation between our T -syntopogenous structures and Kat-
saras’ fuzzy syntopogenous structures.

Proposition 3.12 ([3]). Let T be a continuous triangular norm. If Ω : IX → I
satisfies for all µ, λ ∈ IX , H ⊆ X and α ∈ I: Ω(µ ∨ λ) = Ω(µ) ∨ Ω(λ) and
Ω(α∧1H) = αTΩ(1H), then Ω(α) = Ω(1)Tα and Ω is uniformly continuous with
respect to the L∞-distance on IX . Specifically, for given ε > 0, let θ = θT,ε be as in
(2.1). Then for all µ, λ ∈ IX :

‖µ− λ‖ ≤ θ ⇒ |Ω(µ)−Ω(λ)| ≤ ε.
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Proposition 3.13. If ζ : IX × IX → I satisfies (TT2) and (TT5), then ζ is
uniformly continuous with respect to the L∞-distance on IX .

Proof. Let µ, λ, ν, ρ ∈ IX . For a given ε > 0, let θT,ε be as in (2.1). Put θ =
1
2 ( ε

2 ∧ θT,ε). Suppose that ‖(µ, 1− λ)− (ν, 1− ρ)‖ = ‖µ− ν‖ ∨ ‖ρ− λ‖ < θ. Then

|ζ(µ, 1− λ)− ζ(ν, 1− ρ)| ≤ |ζ(µ, 1− λ)− ζ(µ, 1− ρ)|+ |ζ(µ, 1− ρ)− ζ(ν, 1− ρ))|
≤ ε + ε = 2ε

because, for fixed fuzzy sets µ, ρ; Ω1(λ) = 1− ζ(µ, 1− λ), satisfies

Ω1(λ ∨ λ′) = 1− ζ(µ, 1− (λ ∨ λ′))

= 1− ζ(µ, (1− λ) ∧ (1− λ′)), λ, λ′ ∈ IX

= 1−
[
ζ(µ, (1− λ)) ∧ ζ(µ, (1− λ′))

]
, by (TT2)

=
[
1− ζ(µ, (1− λ))

]
∨
[
1− ζ(µ, (1− λ′))

]
= Ω1(λ) ∨Ω1(λ′),

and
Ω1(α ∧ 1H) = 1− ζ(µ, 1− (α ∧ 1H)), α ∈ I, H ∈ 2X

= 1− ζ(µ, (1− α) ∨ (1− 1H))

= 1− ζ(µ, (1− α)T ∗(1− 1H))

= 1−
[
(1− α)T ∗ζ(µ, (1− 1H))

]
, by (TT5)

= αT
[
1− ζ(µ, (1− 1H))

]
= αTΩ1(1H).

In an analogous way, we can show that Ω2(ν) = 1 − ζ(ν, 1 − ρ) also satisfies the
above two conditions in Proposition 3.12. This establishes the uniform continuity of
ζ. �

Remark 3.14. It follows from (TT1), (TT4) and Proposition 3.13 that ζ satisfies
the axioms (i)-(v) of Definition 3.1 in [7], when T =Min. That is, the T -topogenous
order (T -syntopogenous structure) is a generalization of Katsaras’ fuzzy topogenous
order (Katsaras’ fuzzy syntopogenous structure).

In the following, we deduce the notion of image and inverse image of T -topogenous
orders and T -syntopogenous structures.

Let f : X → Y be a function and η be a T -topogenous order on Y , we define the
mapping f←(η) : IX × IX → I, by:

(f←(η))(µ, λ) = η(f(µ), 1− f(1− λ)), µ, λ ∈ IX .

We call f←(η) the inverse image of η under the function f .

Proposition 3.15. For the mapping f←(η) defined above, one has the following:
(i) f←(η) is a T -topogenous order on X;
(ii) If η is a perfect (resp. biperfect, resp. symmetrical), then f←(η) is a perfect

(resp. biperfect, resp. symmetrical).
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Proof. (i) Let η be a T -topogenous order on Y . We verify that f←(η) is a T -
topogenous order on X. Let µ, λ, ν ∈ IX . Clearly, (TT1) holds.
(TT2)

(f←(η)(µ ∨ λ, ν) = η(f(µ ∨ λ), 1− f(1− ν))

= η(f(µ) ∨ f(λ), 1− f(1− ν))

= η(f(µ), 1− f(1− ν)) ∧ η(f(λ), 1− f(1− ν))

= (f←(η))(µ, ν) ∧ (f←(η))(λ, ν).

Similarly, we can show

(f←(η))(µ, λ ∧ ν) = (f←(η))(µ, λ) ∧ (f←(η))(µ, ν).

(TT3) Obviously, f(1−f←(1H)) = 1−1H , for all H ⊆ Y . Now, let (f←(η))(µ, λ) >
1 − (θTβ) for some θ, β ∈ I0. Then η(f(µ), 1 − f(1 − λ)) > 1 − (θTβ), so there is
H ⊆ Y such that η(f(µ),1H) ≥ 1−θ and η(1H , 1−f(1−λ)) ≥ 1−β, which implies
by taking C = f−1(H) ⊆ X, that

(f←(η))(µ,1C) = η(f(µ), 1− f(1− 1C))

= η(f(µ), 1− f(1− f−1(1H)))

= η(f(µ),1H)
≥ 1− θ,

and
(f←(η))(1C , λ) = η(f(1C), 1− f(1− λ))

= η(f(f←(1H)), 1− f(1− λ))

≥ η(1H , 1− f(1− λ)), by (TT2)
≥ 1− β.

(TT4)

(f←(η))(µ, λ) = η(f(µ), 1− f(1− λ))

≤ 1− hgt[f(µ)Tf(1− λ)]

≤ 1− hgt[f(µT (1− λ))], by Lemma 2.1(iv)

= 1− hgt[µT (1− λ)]. by Lemma 2.1(iv) again

(TT5)
(f←(η))(αTµ, λ) = η(f(αTµ), 1− f(1− λ))

= η(αTf(µ), 1− f(1− λ))

= (1− α)T ∗η(f(µ), 1− f(1− λ))

= (1− α)T ∗(f←(η))(µ, λ).

Analogously we can show

(f←(η))(µ, (1− α)T ∗λ) = (1− α)T ∗(f←(η))(µ, λ).

This proves that f←(η) is a T -topogenous order on X.
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(ii) The perfect (resp. biperfect) of f←(η) is immediately follows from the obviously
fact that f

(∨
j∈J µj

)
=
∨

j∈J f(µj) for any nonempty index set J . Now, we show
that f←(η) is symmetrical.

(f←(η))(µ, λ) = η(f(µ), 1− f(1− λ))

= η(f(1− λ), 1− f(µ)), by Definition 3.2

= (f←(η))(1− λ, 1− µ)

This completes the proof. �

From the above proposition, we arrive

Proposition 3.16. Let f : X → Y be a function and H be a T -syntopogenous
structure on Y . Then f←(H ) = {f←(η) : η ∈ H } is a T -syntopogenous structure
on X.

Proof. Let H be a T -syntopogenous structure on Y . We verify that f←(H ) is a
T -syntopogenous structure on X as:
(TS1) To show that f←(H ) is directed, given f←(η), f←(ζ) ∈ f←(H ), that is η,
ζ ∈ H . Since H is directed, then there is ξ ∈ H such that ξ ≥ η∨ζ. This meaning
that, there is f←(ξ) ∈ f←(H ), which satisfies f←(ξ) ≥ f←(η∨ζ) = f←(η)∨f←(ζ).
(TS2) Let f←(η) ∈ f←(H ) and ε ∈ I0. Then there is ηε ∈ H such that

η ≤ (ηε ◦T ηε) + ε.

Hence for every µ, λ ∈ IX , we have
(f←(η))(µ, λ)

= η(f(µ), 1− f(1− λ))

≤ (ηε ◦T ηε)(f(µ), 1− f(1− λ)) + ε

= sup
H⊆Y

[ηε(f(µ),1H)Tηε(1H , 1− f(1 = λ))] + ε

≤ sup
H⊆Y

{[ηε(f(µ), 1− f(1− f←(1H)))]T [ηε(f(f←(1H)), 1− f(1− λ))]}+ ε

= sup
H⊆Y

{[(f←(ηε))(µ, f←(1H))]T [(f←(ηε))(f←(1H), λ)]}+ ε

≤ sup
C⊆Y

{[(f←(ηε))(µ,1C)]T [(f←(ηε))(1C , λ)]}+ ε

= [f←(ηε) ◦T f←(ηε)](µ, λ) + ε.

Thus, there is f←(ηε) an element in f←(H ) satisfies

f←(η) ≤ [f←(ηε) ◦T f←(ηε)] + ε.

This completes the proof. �

Let f : X → Y be a function and ζ be a T -topogenous order on X, we define the
mapping f(ζ) : IY × IY → I by:

(f(ζ))(ν, ρ) = ζ(f←(ν), f←(ρ)), ν, ρ ∈ IY .

We call f(ζ) the image of ζ under the function f .

Proposition 3.17. For the mapping f(ζ) defined above, one has the following:
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(i) If f is a bijective, then f(ζ) is a T -topogenous order on Y ;
(ii) If ζ is a perfect (resp. biperfect, resp. symmetrical) and f is a bijective, then

f(ζ) is a perfect (resp. biperfect, resp. symmetrical).

Proof. (i) Let ζ be a T -topogenous order on X. Then obviously f(ζ) satisfies (TT1),
(TT2) and (TT5).
(TT3) Let ν, ρ ∈ IY and θ, β ∈ I0, be such that (f(ζ))(ν, ρ) > 1 − (θTβ). Then
ζ(f←(ν), f←(ρ)) ≥ 1 − (θTβ), so there is C ⊆ X such that ζ(f←(ν), 1C) ≥ 1 − θ
and ζ(1C , f←(ρ)) ≥ 1−β, which implies by putting H = f(C) ⊆ Y (i.e, f←(H) = C
because f is injective), that (f(ζ))(ν,1H) = ζ(f←(ν), f←(1H)) = ζ(f←(ν),1C) ≥
1− θ and (f(ζ))(1H , ρ)) = ζ(f←(1H), f←(ρ)) = ζ(1C , f←(ρ)) ≥ 1− β.
(TT4)

(f(ζ))(ν, ρ) = ζ(f←(ν), f←(ρ))

≤ 1− hgt[f←(ν)T (1− f←(ρ))]

= 1− hgt[f←(ν)Tf←(1− ρ)]

= 1− hgtf←(νT (1− ρ))

= 1− sup
x∈X

[f←(νT (1− ρ))](x)

= 1 sup
x∈X

[νT (1− ρ)](f(x))

= 1− sup
y∈Y

[νT (1− ρ)](y), because f is surjective

= 1− hgt[νT (1− ρ)].

This proves that f(ζ) is a T -topogenous order on Y .

(ii) The perfect(resp. biperfect) of f(ζ) is immediately follows from the obviously
facts that f←

(∨
j∈J νj

)
=
∨

j∈J f←(νj) and f←
(∧

j∈J νj

)
=
∧

j∈J f←(νj) for any
index set J . Also, the symmetrical of f(ζ) is trivially hold. �

Proposition 3.18. Let f : X → Y be a bijective function and P a T -syntopogenous
structure on X. Then f(P) = {f(ζ) : ζ ∈ P} is a T -syntopogenous structure on
Y .

Proof. The proof can be along similar lines of Proposition 3.16. �

4. Syntopogenously continuous functions

The aim of this section is to study the continuity of functions between T -syntopogenous
spaces.

Definition 4.1. Let (X, P) and (Y,H ) be T -syntopogenous spaces. A function
f : X → Y is called syntopogenous map, or syntopogenously continuous, if for every
η ∈ H there is ζ ∈ P such that

(4.1) η(ν, ρ) ≤ ζ(f←(ν), f←(ρ)), ν, ρ ∈ IY .

Equivalently, if for every η ∈ H there is ζ ∈ P such that

(4.2) η(f(µ), 1− f(λ)) ≤ ζ(µ, 1− λ), µ, λ ∈ IX .
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We can see that the conditions (4.1) and (4.2) above are equivalent as follows:
Suppose (4.1) holds. Then for every µ, λ ∈ IX ,

η(f(µ), 1− f(λ)) ≤ ζ(f←(f(µ)), f←(1− f(λ)))

≤ ζ(µ, 1− f←(f(λ))), by (TT2), for f←(f(µ)) ≥ µ

≤ ζ(µ, 1− λ), by (TT2) again

Rendering (4.2).
Suppose (4.2) holds. Then for every ν, ρ ∈ IY ,

η(ν, ρ) ≤ η(f(f←(ν)), 1− f(f←(1− ρ))), by (TT2), for f(f←(ν) ≤ ν

= η(f(f←(ν)), 1− f(1− f←(ρ)))

≤ ζ(f←(ν), 1− (1− f←(ρ))), by (4.2)

= ζ(f←(ν), f←(ρ)),

which yields (4.1).
The next two theorems follow immediately from definitions (cf. [8]).

Theorem 4.2. Let f : (X, P) → (Y,H ) and g : (Y,H ) → (Z,C ) be syntopogenous
maps. Then the composition g ◦ f is also a syntopogenous map.

Theorem 4.3. If f : (X, P) → (Y,H ) is a syntopogenous map, then f : (X, τ(P)) →
(Y, τ(H )) is continuous.

The above shows that the class of all T -syntopogenous spaces, forms a concrete
category; together with syntopogenous maps as arrows [1]. We denote this category
by T -SS. Also, a functor zT is defined from this category to the category FTS of
Lowen I-topological spaces by zT (X, P) = (X, τ(P)), on objects, and by leaving
arrows unchanged.

5. Characterization of a T -topogenous order
in terms of crisp fuzzy subsets

We provide axioms for a function ζ : 2X×2X → I to be a restriction of a (unique)
T -topogenous order on X.

Theorem 5.1. A function ζ : IX × IX → I is a T -topogenous order on X if and
only if it satisfies the following five axioms, the first four of which are properties of
its restriction ζ : 2X × 2X → I. For all H, M , N ∈ 2X :
(TT1’) ζ(1X ,1X) = ζ(1∅,1∅) = 1 and ζ(1X ,1∅) = 0;
(TT2’) ζ(1(H∪M),1N ) = ζ(1H ,1N )∧ζ(1M ,1N ), and ζ(1H ,1(M∩N)) = ζ(1H ,1M )∧

ζ(1H ,1N );
(TT3’) If ζ(1H ,1M ) > 1 − (θTβ) for some θ, β ∈ I0, there is C ⊆ X such that

ζ(1H ,1C) ≥ 1− θ and ζ(1C ,1M ) ≥ 1− β;
(TT4’) If H 6⊂ M , then ζ(1H ,1M ) = 0;
(TT5’) ζ(µ, λ) =

∧
θ,β∈I [θT

∗βT ∗ζ(1µ(1−θ)∗ ,1λβ∗ )].

We need the next two propositions and two definitions, in the course of proving
this theorem.

41



Khaled A. Hashem/Ann. Fuzzy Math. Inform. 4 (2012), No. 1, 25–48

Proposition 5.2. Let ζ : 2X × 2X → I be a function satisfies the five conditions
(TT1’)-(TT5’). Let H, M1, M2, . . . , Mn ⊆ X, γ1, . . . , γn ∈ I and put

λ =
n∧

k=1

(
γk ∨ 1Mk

)
∈ IX .

If ζ(1H , λ) > 1 − (θTβ) for some θ, β ∈ I0, then there is C ⊆ X such that
ζ(1H ,1C) ≥ 1− θ and ζ(1C , λ) ≥ 1− β.

Proof. First, we notice that ζ satisfies (TT2), by repeated application of (TT2’) and
(TT5’). Also, by continuity of T , there is β′ ∈ I such that

1− (θTβ) < 1− (θTβ′)

< ζ(1H , λ)

= ζ

(
1H ,

n∧
k=1

(γk ∨ 1Mk
)

)

=
n∧

k=1

ζ(1H , (γkT ∗1Mk
)), by (TT2) which yields above

=
n∧

k=1

[γkT ∗ζ(1H ,1Mk
)], by Proposition 3.6(i),

that is θTβ > θTβ′ >
∨n

k=1{(1 − γk)T [1 − ζ(1H ,1Mk
)]}. Hence, for every k =

1, . . . , n such that 1− γk > β,

θTβ′ > (1− γk)T [1− ζ(1H ,1Mk
)].

Thus, by (2.3) then Lemma 2.3,

1− ζ(1H ,1Mk
) ≤ J (1− γk, θTβ′) < θTJ (1− γk, β),

that is

ζ(1H ,1Mk
) > 1− [θTJ (1− γk, β))].

Then from (TT3’) there is Ck ⊆ X such that

(5.1) ζ(1H ,1Ck
) > 1− θ and ζ(1Ck

,1Mk
) ≥ 1−J (1− γk, β).

For every k = 1, . . . , n such that 1− γk ≤ β, we take Ck = X, Then

ζ(1H ,1Ck
) = ζ(1H ,1X) ≥ ζ(1X ,1X), by (TT2’)

= 1 ≥ 1− θ

and
ζ(1Ck

,1Mk
) = ζ(1X ,1Mk

) ≥ ζ(1X ,1∅), by (TT2’)

= 0 = 1− 1 = 1−J (1− γk, β), by (2.3)
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which again yields (5.1). By taking C =
⋃n

i=1 Ci ⊆ X, we get

ζ(1H ,1C) = ζ

(
1H ,

n∨
i=1

1Ci

)
=

n∨
i=1

ζ(1H ,1Ci
) ≥ 1− θ, by (5.1)

ζ(1C , λ) = ζ

(
n∨

i=1

1Ci
,

n∧
k=1

(γkT ∗1Mk
)

)

=
n∧

k=1

[γkT ∗ζ(1Ck
,1Mk

)], by (TT2) and Proposition 3.6

≥
n∧

k=1

{γkT ∗[1−J (1− γk, β)]}, by (5.1)

= 1−

{
n∨

k=1

[(1− γk)TJ (1− γk, β)]

}

= 1−

{
n∨

k=1

[(1− γk) ∧ β]

}
, by (2.2)

≥ 1− β,

which proves our assertion. �

Proposition 5.3. Let ζ : 2X × 2X → I be a function satisfies the five conditions
(TT1’)-(TT5’). Let H1,. . . , Hr, M1, . . . , Mn ⊆ X, α1, . . . , αr, γ1, . . . , γn ∈ I,
and write µ =

∨r
i=1(αi∧1Hi

), λ =
∧n

k=1(γk∨1Mk
) ∈ IX . If ζ(µ, λ) > 1− (θTβ) for

some θ, β ∈ I0, then there is C ⊆ X such that ζ(µ,1C) ≥ 1−β and ζ(1C , λ) ≥ 1−θ.

Proof. By continuity of T , there is β′ ∈ I such that

1− (θTβ) < 1− (θTβ′) < ζ(µ, λ) = ζ

(
r∨

i=1

(αi ∧ 1Hi
), λ

)

=
r∧

i=1

ζ(αiT1Hi
, λ)

=
r∧

i=1

[(1− αi)T ∗ζ(1Hi , λ)], by Proposition 3.6

That is, θTβ > θTβ′ >
∨r

i=1{αiT [1− ζ(1Hi , λ)]}. Therefore, by (2.3) then Lemma
2.3, we get for every i = 1, . . . , r such that αi > β:

1− ζ(1Hi
, λ) ≤ J (αi, θTβ′) < θTJ (αi, β) = J (αi, β)Tθ,

that is,
ζ(1H , λ) > 1− [J (αi, β)Tθ].

Consequently, from Proposition 5.2, there is Ci ⊆ X such that

(5.2) ζ(1Hi ,1Ci) ≥ 1−J (αi, β) and ζ(1Ci , λ) ≥ 1− θ.
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For every i = 1, . . . , r with αi ≤ β, we take Ci = X. Then (as shown for (5.1)) Ci

will also satisfy (5.2). By taking C =
⋂r

t=1 Ct ⊆ X, we get

ζ(µ,1C) = ζ

(
r∨

i=1

(αi ∧ 1Hi),
r∧

t=1

1Ct

)

=
r∧

i=1

ζ(αiT1Hi ,1Ci), by (TT2) which yields above

=
r∧

i=1

[(1− αi)T ∗ζ(1Hi
,1Ci

)], by Proposition 3.6

≥
r∧

i=1

{(1− αi)T ∗[1−J (αi, β)]}, by (5.2)

= 1−

{
r∨

i=1

[αiTJ (αi, β)]

}

= 1−

[
r∨

i=1

(αi ∧ β)

]
, by (2.2)

≥ 1− β

and ζ(1C , λ) = ζ (
∧r

t=1 1Ct , λ) =
∨r

t=1 ζ(1Ct , λ) ≥ 1− θ by (TT2’) and (5.2), which
completes the proof. �

A possibility distribution on a nonempty set X [12], is an assignment of possibility
values in [0, 1] to the elements of X, such that those values have supremum 1. Such
a function is numerically equal to a normalized fuzzy subset of X (i.e. one with
height 1).

Definition 5.4 ([3]). A generalized possibility measure, GPM, on a set X is a
function f : 2X → I which satisfies the following three axioms:

(GPM1) f (X) = 1;
(GPM2) f (∅) = 0;
(GPM3) f (

⋃n
i=1 Hi) = max{f (Hi) : i = 1, 2, . . . , n} for every nonempty, finitely

indexed family {Hi}n
i=1 of subsets of X.

Definition 5.5 ([3]). An extended generalized possibility measure, (extended GPM)
on X is a function Ω : IX → I that satisfies:

(E-GPM1) Ω(X) = 1;
(E-GPM2) Ω(∅) = 0;
(E-GPM3) Ω(µ ∨ λ) = Ω(µ) ∨Ω(λ), for every µ, λ ∈ IX .

It is evident that the restriction of an extended GPM to 2X is a GPM on X.

Proof. (Proof of Theorem 5.1) Suppose that ζ : IX × IX → I is a T -topogenous
order on X. Then (TT1’)-(TT4’) immediately follow from the corresponding ax-
ioms in Definition 3.1, and (TT5’) follows from Proposition 3.6. Conversely, let
ζ : IX × IX → I be satisfies (TT1’)-(TT5’). Then (TT1), (TT2) are satisfied by
(TT1’), (TT2’) and repeated applications of (TT5’), and then (TT5) follows from
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Proposition 3.6. To prove (TT3), let ζ(µ, λ) > 1 − (θTβ) for some µ, λ ∈ IX and
θ, β ∈ I0. Then on one hand, by continuity of T , there is ε > 0 in such a way that
ζ(µ, λ) > 1− [(θ − ε)T (β − ε)] + ε.

On the other hand, (TT2) and (TT5) (proved above) imply, by Proposition 3.13,
that such ζ is uniformly continuous on IX × IX with respect to the L∞-distance,
and so there is γ = γT,ε > 0 such that for every λ, λ′, ρ, ρ′ ∈ IX ,

(5.3) ‖λ− λ′‖ ∨ ‖ρ− ρ′‖ < γ ⇒ |ζ(λ, ρ)− ζ(λ′, ρ′)| ≤ ε.

But there exist µ1, λ1 ∈ IX with finite ranges such that

‖µ1 − µ‖ ∨ ‖λ1 − λ‖ < γ,

hence
|ζ(µ1, λ1)− ζ(µ, λ)| ≤ ε,

i.e.,
ζ(µ1, λ1) ≥ ζ(µ, λ)− ε > 1− [(θ − ε)T (β − ε)].

So, by Proposition 5.3, there is C ⊆ X such that

ζ(µ1,1C) ≥ 1− (θ − ε) and ζ(1C , λ1) ≥ 1− (β − ε).

Consequently, by (5.3),

ζ(µ,1C) ≥ ζ(µ1,1C)− ε ≥ 1− (θ − ε)− ε = 1− θ,

and also,
ζ(1C , λ) ≥ ζ(1C , λ1)− ε ≥ 1− (β − ε)− ε = 1− β

which renders (TT3).
We next prove (TT4). For every real number ε > 1− hgt[µT (1− λ)], we have

∅ 6= [µT (1− λ)](1−ε)

=
⋃

θTβ≥1−ε

[µθ ∩ (1− λβ)], by Lemma 2.2 (i)

⊆
⋃

θTβ≥1−ε

[µθ∗ ∩ (X − λ(1−β)∗)], clear, since µθ ⊆ µθ∗ .

Consequently, there exist θ, β ∈ I with ε ≥ 1 − (θTβ) = (1 − θ)T ∗(1 − β) such
that µθ∗ ∩ (X − λ(1−β)∗) 6= ∅, that is µθ∗ 6⊂ λ(1−β)∗ and so by (TT4’), we have
ζ(1µθ∗ ,1λ(1−β)∗ ) = 0. Hence,

ε ≥ (1− θ)T ∗(1− β) = [(1− θ)T ∗(1− β)T ∗ζ(1µθ∗ ,1λ(1−β)∗ ] ≥ ζ(µ, λ).

This establishes that ζ(µ, λ) ≤ 1− hgt[µT (1− λ)], which completes the proof. �

Theorem 5.6. For a T -topogenous order ζ on a set X, we have

(i) If ζ is a perfect, then ζ
(⋃

j∈J 1Hj ,1M ) =
∧

j∈J ζ(1Hj ,1M

)
, Hj , M ∈ 2X ;

(ii) ζ is a biperfect if and only if it is a perfect and

(5.4) ζ

1H ,
⋂
j∈J

1Mj

 =
∧
j∈J

ζ(1H ,1Mj
), H, Mj ∈ 2X .
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(iii) ζ is a symmetrical if and only if ζ(1H ,1M ) = ζ(1(X−M),1(X−H)), H, M ∈
2X . Also, the order relation on the set of T -topogenous orders on X, is
completely determined by the order on their restrictions to pairs of crisp
fuzzy subsets of X.

Proof. (i) Obviously holds.
(ii) Suppose that ζ is a biperfect. Then it is a perfect and

ζ

1H ,
⋂
j∈J

1Mj

 =
∧
j∈J

ζ(1H ,1Mj
), for all H, Mj ∈ 2X .

Conversely, let ζ be a perfect and satisfies (5.4). Then by (TT5’), we have

ζ

µ,
∧
j∈J

λj

 =
∧

θ,β∈I

[
θT ∗βT ∗ζ(1µ(1−θ)∗ ,1(

∧
j∈J λj)β∗ )

]

=
∧

θ,β∈I

θT ∗βT ∗ζ

1µ(1−θ)∗ ,
⋂
j∈J

1(λj)β∗

 , clear

=
∧

θ,β∈I

θT ∗βT ∗
∧
j∈J

ζ
(
1µ(1−θ)∗ ,1(λj)β∗

) , by hypothesis

=
∧
j∈J

 ∧
θ,β∈I

[
θT ∗βT ∗ζ

(
1µ(1−θ)∗ ,1(λj)β∗

)
)
]

=
∧
j∈J

ζ(µ, λj),

which proves that ζ is a biperfect.
(iii) can be proved analogously in similar lines. Now, let ζ1(1H ,1M ) ≤ ζ2(1H ,1M )

for every H, M ∈ 2X , where ζ1, ζ2 are T -topogenous orders on X. Then for every
µ, λ ∈ IX we have, by (TT5’) that

ζ1(µ, λ) =
∧

θ,β∈I

[
θT ∗βT ∗ζ1

(
1µ(1−θ)∗ ,1λβ∗

)]
≤
∧

θ,β∈I

[
θT ∗βT ∗ζ2

(
1µ(1−θ)∗ ,1λβ∗

)]
= ζ2(µ, λ),

which establishes that ζ1 ≤ ζ2. The converse is immediate. �

Theorem 5.7. Let (X, P) and (Y,H ) be T -syntopogenous spaces. A function
f : X → Y is a syntopogenous map, if and only if for every η ∈ H there is ζ ∈ P
such that

η(1H ,1M ) ≤ ζ(f←(1H), f←(1M )), H, M ∈ 2Y .
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Proof. The “ only if ” part, obviously follows. For the “ if ” part , suppose f satisfies
the stated condition and η ∈ H . Then by (TT5’), we have for every ν, ρ ∈ IY ,

η(ν, ρ) =
∧

θ,β∈I

[
θT ∗βT ∗η(1ν(1−θ)∗ ,1ρβ∗ )

]
≤
∧

θ,β∈I

[
θT ∗βT ∗ζ(f←(1ν(1−θ)∗ ), f

←(1ρβ∗ ))
]
, by hypothesis

=
∧

θ,β∈I

[
θT ∗βT ∗ζ(1f←(ν(1−θ)∗ ),1f←(ρβ∗ )

]
, obvious

=
∧

θ,β∈I

[
θT ∗βT ∗ζ(1[f←(ν)](1−θ)∗ ,1[f←(ρ)]β∗ )

]
, clear

= ζ(f←(ν), f←(ρ)).

This proves that f is a syntopogenous map. �

Theorem 5.8. Let (X, P) and (Y,H ) be T -syntopogenous spaces. A function
f : X → Y is a syntopogenous map, if and only if for every η ∈ H there is ζ ∈ P
such that

η(f(1E), 1− f(1G)) ≤ ζ(1E ,1(X−G)), E, G ∈ 2X .

Proof. The proof is analogous to the above one. �

6. Conclusion

This manuscript introduces a new structure of T -syntopogenous spaces which is
interpreted as enlarge of fuzzy syntopogenous spaces introduced by A. K. Katsaras
(1990). It gives express the concept of T -syntopogenous spaces in terms of fuzzy
binary relations in power sets. The motivation of this study is to will lead us and
contribute, in future research, to show that the T -syntopogenous structures com-
patible with fuzzy T -uniform structures (1998), T -proximity and T -neighbourhood
structures (2002).
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