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1. Introduction

Most of the problems in engineering, medical science, economics, environments
etc. have various uncertainties. To exceed these uncertainties, some kinds of theories
were given like theory of fuzzy sets [10], intuitionistic fuzzy sets [2], rough sets [9],
i.e., which can be used as mathematical tools for dealing with uncertainties. As
was mentioned [7], these theories have their own difficulties. In 1999, Molodsov [7]
initiated a novel concept of soft set theory, which is a completely new approach for
modeling vagueness and uncertainty.

A soft set is a parameterized family of subsets of the universal set. We can say
that soft sets are neighborhood systems, and that they are a special case of context-
dependent fuzzy sets. In soft set theory the problem of setting the membership
function, among other related problems, simply does not arise. This makes the the-
ory very convenient and easy to apply in practice. Soft set theory has potential
applications in many different fields, including the game theory, operations research,
Fiemann integration, Perron integration, probability theory, and measurement the-
ory. After Molodsov’s work, some different applications of soft sets were studied in
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[3] and [6]. Furthermore Maji, Biswas and Roy worked on soft set theory in [5].
Some corrections were given by M. Irfan at el in [4].

In this paper, we extend the idea of soft groups introduced by Aktas and Cagman
in [1] and develop the soft group theory.

This paper is organized as follows. In the preliminaries, we give the concept of
soft set and discuss the binary operations on soft sets. In section three, we introduce
the definition of restricted and extended intersection, restricted and extended union
of soft groups and give some fundamental properties of of soft groups. In the forth
and fifth sections, we define normal soft groups, Abelian soft groups and Abelian
soft Subgroups of a soft group and check out their properties. In the six and seventh
sections, we define restricted product of soft groups, inverse of a soft group, identity
soft group and prove some results by using cartesian product of soft groups. In the
eight and ninth sections, we define cyclic soft groups, cyclic soft subgroups, soft coset
of a soft subgroup of a soft group, order of a soft group, soft index, partition of a
soft set over a group and prove their related results. In the second last section, we
introduce soft maximal normal subgroups, simple soft groups and factor soft groups.
We establish some results as well.

2. Preliminaries

In this section as a beginning, the concept of soft set introduced by Molodsov
[7], binary operations on soft sets by Maji et al. [5] and corrections on these binary
operations by M. Irfan et al. [4], will be presented.

Definition 2.1 ([7]). Let U be an initial universe and E be a set of parameters.
For A ⊆ E, the pair (F,A) is called a soft set (over U) if and only if F is a mapping
of A into the set of all subsets of U .

It has been interpreted that a soft set is indeed a parameterized family of subsets
of U , and thus E is referred to as a set of parameters. Clearly, a soft set is not a set.
For illustration, Molodtsov considered several examples in [7] and [8], one of which
we present below.

Example 2.2 ([7]). Suppose the following:
U is the set of houses under consideration.
E is the set of parameters. Each parameter is a word or a sentence.
E = {expensive, beautiful, wooden, cheap, in the green surroundings, modern, in

good repair, in bad repair}.
In this case, to define a soft set means to point out expensive houses and so on.

Let the soft set (F,A) describes the ”attractiveness of the houses” which Mr. X
(say) is going to buy.

Suppose that there are six houses in the universe U given by
U = {h1, h2, h3, h4, h5, h6} and A = {e1, e2, e3, e4, e5} where
e1 stands for the parameter ’expensive’,
e2 stands for the parameter ’beautiful’,
e3 stands for the parameter ’wooden’,
e4 stands for the parameter ’cheap’,
e5 stands for the parameter ’in the green surroundings’,
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Suppose that

F (e1) = {h2, h4},
F (e2) = {h1, h3},
F (e3) = {h3, h4, h5},
F (e4) = {h2, h4, h5},
F (e5) = {h1}.

The soft set (F,A) is a parametrized family {F (ei), i = 1,2, 3...,5} of subsets of the
set U and gives us a collection of approximate description of an object. Thus, we
can view the soft set (F,A) as a collection of approximations as below:

(F,A) = {expensive = {h2, h4}, beautiful = {h1, h3}, wooden = {h3, h4, h5},
cheap = {h2, h4, h5}, in the green surroundings = {h1}}.
Example 2.3 ([7]). For a topological space (X, τ), if F (x) is the family of all open
neighbourhoods of a point x ∈ X, i.e., F (x) = {v ∈ τ : x ∈ v}, then the ordered pair
(F,X) indeed a soft set over X.

Definition 2.4 ([7]). Let (F,A) and (H,B) be two soft sets over a common universe
U , then we say that (H,B) is a soft subset of (F,A) if

1. B ⊆ A and
2. H(e) ⊆ F (e) for all e ∈ B.
We write (H,B) ⊂̃ (F ,B), and (H,B) is said to be a soft super set of (F,A), if

(F,A) is a soft subset of (H,B). We denote it by (H,B) ⊃̃ (F ,B).

Definition 2.5 ([7]). Two soft sets (F,A) and (H,B) over a common universe U
are said to be soft equal if (F,A) is a soft subset of (H,B) and (H ,B) is a soft
subset of (F,A).

Definition 2.6 ([7]). A soft set (F,A) over U is said to be a NULL soft set denoted
by Φ if for all e ∈ A, F (e) = ∅(empty set).

Definition 2.7 ([7]). A soft set (F,A) over U is said to be an absolute soft set
denoted by Ã if for all e ∈ A, F (e) = U .

Definition 2.8 ([5]). Let (F,A) and (G, B) be two soft sets over a common universe
U such that A ∩ B 6= φ. Then their restricted intersection is denoted by (F,A) e
(G, B) = (H,C) where (H,C) is defined as H(c) = F (c) ∩G(c) for all c ∈ C.

Definition 2.9 ([5]). The extended intersection of two soft sets (F,A) and (G,B)
over a common universe U is the soft set (H,C), where C = A ∪B, and for all e ∈
C, H(e) is defined as

H(e) =

 F (e) if e ∈ A−B
G(e) if e ∈ B −A

F (e) ∩G(e) if e ∈ A ∩B.

We write (F,A) uE (G, B) = (H,C).

Definition 2.10 ([5]). The restricted union (H,C) of two soft sets (F,A) and (G, B)
over the common universe U is defined as the soft set (H,C) = (F,A) ∪R (G, B),
where C = A ∩B and H(c) = F (c) ∪G(c) for all c ∈ C.
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Definition 2.11 ([5]). Let (F,A) and (G, B) be any two soft sets over a common
universe U . Then extended union (H,C) of two soft sets (F,A) and (G, B) is denoted
as the soft set (H,C) = (F,A) ∪E (G, B) where C = A ∪B and H is defined as

H(e) =

 F (e) if e ∈ A−B
G(e) if e ∈ B −A

F (e) ∪G(e) if e ∈ A ∩B.

We write (F,A) ∪E (G, B) = (G, B).

3. Soft groups

H. Aktas and N. Cagman [1] introduced the notion of soft groups, which extends
the notion of group to include the algebraic structures of soft sets. A soft group is a
parameterized family of subgroups. Now in this section we introduce the definition
of restricted and extended intersection, restricted and extended union of soft groups
and give some fundamental properties of of soft groups.

Definition 3.1 ([1]). Let G be a group and E be a set of parameters. For A ⊆ E,
the pair (F,A) is called a soft group over G if and only if F (a) 6 G for all a ∈ A,
where F is a mapping of A into the set of all subsets of G.

Definition 3.2 ([4]). Let (F,A) and (G, B) be two soft groups over a group G such
that A ∩B 6= φ. Then their restricted intersection is denoted by (F,A) e (G, B) =
(H,C) where (H,C) is defined as H(c) = F (c) ∩G(c) for all c ∈ A ∩B.

Theorem 3.3. Let (F,A) and (H,B) be two soft groups over G. Then their re-
stricted intersection (F,A) e (H,B) is a soft group over G.

Proof. Since (F,A) and (H,B) are soft groups over G, their restricted intersection
over G is a soft set (L,C), where C = A ∩B 6= φ and is defined as

L(c) = F (c) ∩H(c) for all c ∈ C.

We show that for each c ∈ C, L(c) is a subgroup of G. Since F (c) and H(c) are
subgroups of G for all c ∈ C. This implies that L(c) = F (c)∩H(c) is a subgroup of
G for all c ∈ C. Hence (L,C) = (F,A) e (H,B) is a soft group over G. �

Definition 3.4. The extended intersection of two soft groups (F,A) and (G, B)
over a group G is the soft set (H,C), where C = A ∪B, and for all e ∈ C.

H(e) =

 F (e) if e ∈ A−B
G(e) if e ∈ B −A

F (e) ∩G(e) if e ∈ A ∩B.

We write (H,C) = (F,A) uE (G, B).

Theorem 3.5. Let (F,A) and (H,B) be two soft groups over G. Then their extended
intersection (F,A) uE (H,B) is a soft group over G.
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Proof. Since (F,A) and (H,B) are soft groups over G, their extended intersection
over G is a soft set (L,C), where C = A ∪B and for all c ∈ C, it is defined as

L(c) =

 F (c) if c ∈ A−B
H(c) if c ∈ B −A

F (c) ∩H(c) if c ∈ A ∩B.

From here we have, F (c) is a subgroup of G for all c ∈ A\B. This implies that L(c)
is a subgroup of G for all c ∈ A\B. Similarly, L(c) = H(c) is a subgroup of G for all
c ∈ B\A and L(c) = F (c)∩H(c) is a subgroup of G for all c ∈ A∩B. Thus (L,C)
= (F,A) uE (H,B) is a soft group over G. �

Definition 3.6. The restricted union (H,C) of two soft groups (F,A) and (G, B)
over G is defined as the soft set (H,C) = (F,A) ∪R (G, B), where C = A ∩ B and
H(c) = F (c) ∪G(c) for all c ∈ C.

Theorem 3.7. Let (F,A) and (H,B) be two soft groups over G. Then their re-
stricted union is a soft group over G if and only if either F (x) ⊂ H(x) or H(x) ⊂
F (x) for all x ∈ A ∩B.

Proof. Let (F,A) ∪R (H,B) = (L, C) be restricted union of two soft sets over G
where A∩B = C and L is defined as L(x) = F (x)∪H(x) for all x ∈ C. Let (F,A)
and (H,B) be two soft groups over G. Suppose either F (x) ⊂ H(x) or H(x) ⊂ F (x)
for all x ∈ C. Then F (x)∪H(x) = H(x) or F (x)∪H(x) = F (x) for all x ∈ C. Since
H(x) and F (x) are subgroups of G for all x ∈ C, this implies that F (x)∪H(x) is a
subgroup of G for all x ∈ C. Thus L(x) = F (x)∪H(x) is a subgroup of G for all x
∈ C. Hence (L,C) = (F,A) ∪R (H,A) is a soft group over G.

Conversely suppose that (F,A) ∪R (H,A) is a soft group over G and also that
F (x) * H(x) and H(x) * F (x) for some x ∈ C. Then there are elements a ∈
H(x)\F (x), b ∈ F (x)\H(x) for some x ∈ C and both a , b ∈ H(x) ∪ F (x). As
H(x) ∪ F (x) is a subgroup of G, hence ab ∈ H(x) ∪ F (x). But then ab ∈ H(x) or
ab ∈ F (x). If ab ∈ F (x) then a = (ab)b−1 ∈ F (x). If ab ∈ H(x) then b = a−1(ab)
∈ H(x). It is a contradiction in both the cases by the choice of a and b. Hence
either H(x)\F (x) = φ or F (x)\H(x) = φ for all x ∈ C. That is either H(x) ⊂ F (x)
or F (x) ⊂ H(x) for all x ∈ C. �

Definition 3.8. Let (F,A) and (G, B) be any two soft groups over a group G. Then
extended union (H,C) of two soft groups (F,A) and (G, B) is denoted as the soft
set (H,C) = (F,A) ∪E (G, B) where C = A ∪B and H is defined as

H(e) =

 F (e) if e ∈ A−B
G(e) if e ∈ B −A

F (e) ∪G(e) if e ∈ A ∩B.

Theorem 3.9. Let (F,A) and (H,B) be two soft groups over G. Then their extended
union is a soft group over G if and only if either F (x) ⊂ H(x) or H(x) ⊂ F (x) for
all x ∈ A ∩B.

Proof. Let (F,A) and (H,B) be any two soft groups over G. Then their extended
union (L,C) is denoted as the soft set (L,C) = (F ,A) ∪E (H,B) where C = A ∪B
and is defined as, for all x ∈ C
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L(x) =

 F (x) if x ∈ A−B
H(x) if x ∈ B −A

F (x) ∪H(x) if x ∈ A ∩B.

Suppose either H(x) ⊂ F (x) or F (x) ⊂ H(x) for all x ∈ A ∩B. Then F (x) ∪H(x)
= L(x) for all x ∈ A∩B. Since each F (x) is a subgroup of G for all x ∈ A and each
H(x) is a subgroup of G for all x ∈ B. Hence, F (x)∪H(x) is a subgroup of G for all
x ∈ A ∩B. Thus, L(x) = F (x) ∪H(x) is a subgroup of G for all x ∈ A ∩B. If x ∈
A−B then L(x) = F (x) is a subgroup of G. Similarly, L(x) = G(x) is a subgroup
of G for all x ∈ B − A. So (L,C) = (F,A) ∪E (H,B) is a soft group over G for all
x ∈ C.

Conversely, suppose (F,A) ∪E (H,B) be the soft group over G and also that
F (x) * H(x) and H(x) * F (x) for some x ∈ A ∩ B, then there are elements a
∈ H(x)\F (x), b ∈ F (x)\H(x) and both a, b ∈ F (x) ∪ H(x). As F (x) ∪ H(x) is
a subgroup of G. This implies that ab ∈ H(x) ∪ F (x). But then ab ∈ H(x) or ab
∈ F (x). If ab ∈ F (x) then a = (ab)b−1 ∈ F (x). If ab ∈ H(x) then b = a−1(ab) ∈
H(x). It is a contradiction in both the cases by the choice of a and b. Hence, either
H(x)\F (x) = φ or F (x)\H(x) = φ for all x ∈ A ∩ B. That is either H(x) ⊂ F (x)
or F (x) ⊂ H(x) for all x ∈ A ∩B. �

Definition 3.10 ([1]). Let (F,A) and (H,K) be two soft groups over G. Then
(H,K) is a soft subgroup of (F,A) written as (H,K) <̃ (F ,A), if

1. K ⊆ A,
2. H(x) 6 F (x) for all x ∈ K.

Two soft groups are equal if (F,A) <̃ (H,K) and (H,K) <̃ (F,A).

Theorem 3.11. Let (F,A) be a soft group over G and {(Hi, Bi) : i ∈ I} be a family
of soft subgroups of (F,A), where I is an indexing set. Then restricted intersection
e(Hi,Bi) is a soft subgroup of (F,A) over G.

Proof. Straightforward. �

Theorem 3.12. Let (F,A) be a soft group over G and {(Hi,Ai) : i ∈ I} be a
family of soft subgroups of (F,A) then their extended intersection uE(Hi,Ki) is a
soft subgroup of (F,A) over G.

Proof. Straightforward. �

4. Normal soft groups

In this section, we define normal soft group and prove some of their related results.

Definition 4.1. A soft group (F,A) over G is called a normal soft group over G if
F (x) is a normal subgroup of G for all x ∈ A.

Example 4.2. Consider the group D4 =
{
e, a, a2, a3, b, ab, a2b, a3b

}
which is gen-

erated by two elements a and b satisfying the relations ◦(a) = 4, ◦(b) = 2 and ba =
a3b. Consider the set of parameters A = {t1, t2, t3}. A mapping F : A→ P (D4) such
that F (t1) =

{
e, a, a2, a3

}
, F (t2) =

{
e, a2, b, a2b

}
and F (t3) =

{
e, ab, a2, a3b

}
.

For each parameter, F (t) is a normal subgroup of D4. This implies that the pair
(F,A) is a normal soft group over G.
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Corollary 4.3. Let (F,A) be a normal soft group over G. Then (F,A) is commu-
tative with every soft set over G.

Proof. It is straightforward. �

Theorem 4.4. Let (F,A) and (H,B) be two normal soft groups over G. Then their
restricted intersection (F,A) e (H,B) is a normal soft group over G .

Proof. It is straightforward. �

Theorem 4.5. Let (F,A) and (H,B) be two normal soft groups over G. Then their
extended intersection (F,A) uE (H,B) is a normal soft group over G.

Corollary 4.6. Let {(Fi, Ai) : i ∈ I} be a family of the normal soft groups over G.
Then their extended intersection uE(Fi, Ai) is a normal soft group over G.

Proof. It is straightforward. �

Theorem 4.7. Let (F,A) be a soft group over G. If (H,B) is a soft subgroup of
(F,A) and (K, B) is a normal soft subgroup of (F,A). Then (H,B) e (K, B) is a
normal soft subgroup of (H,B).

Proof. Let (H,B) e (K, B) = (L,B) be the restricted intersection of (H,B) and
(K, B). Since (L,B) is a soft subgroup of (F,A) and obviously (L,B) ⊂̃ (H,B).
From this, we imply that (L,B) is a soft subgroup of (H,B). Now we show that
(L,B)C̃(H,B), for this we show that H(b) ∩K(b) C H(b) for all b ∈ B. It is well
known result that H(b) ∩K(b) is a normal subgroup of H(b). This is hold for all b
∈ B. Hence (H,B) e (K, B) = (L,B) is a normal soft subgroup of (H,B). �

Definition 4.8 ([1]). Let (F,A) be a soft group over G and (H,B) be a soft subgroup
of (F,A). Then we say that (H,B) is a normal soft subgroup of (F,A), written
(H,B)C̃(F,A), if H(x) is a normal subgroup of F (x), for all x ∈ B.

Theorem 4.9. Let (F,A) be a soft group over G and {(Hi, Bi) : i ∈ I} be a family
of the normal soft subgroups of (F ,A). Then their restricted intersection e(Hi,Ki)
is a normal soft subgroup of (F,A).

Proof. It is straightforward. �

Theorem 4.10. Let (F,A) be soft group over G and let {(Hi, Ai) : i ∈ I} be a family
of normal soft subgroups of (F,A). Then extended intersection uE(Hi,Ai)i ∈I is a
normal soft subgroup of (F,A).

Proof. Since {(Hi,Ai) : i ∈ I} be a family of the normal soft subgroup of (F,A).
Then their extended intersection uE(Hi,Ai)i ∈I is denoted by uE(Hi,Ai)i ∈I =
(H,C) where C = ∪Ai and for all i ∈ I, it is defined as

H(e) =
{

Hi(e) if e ∈ Ai −Aj for all i, j ∈ I
∩Hi(e) if e ∈ ∩Ai for all i, j ∈ I

Each Hi(e) is a normal subgroup of F (e) for all e ∈ Ai −Aj , for all i, j ∈ I and
i 6= j. Also ∩Hi(e) is a normal subgroup of F (e) for all e ∈ ∩Ai. This implies that
H(e) is a normal subgroup of F (e) for all e ∈ C. Thus (H,C)C̃(F,A). �
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5. Abelian soft groups and Abelian soft subgroups

In this section, we define Abelian soft groups and Abelian soft Subgroups of a
soft group and check out their properties.

Definition 5.1. A soft group (F , A) over G is said to be abelian soft group over G
if each F (α) is an abelian subgroup of G for all α ∈ A.

Example 5.2. Consider the group S3 =
{
e, x, y, y2, xy, xy2

}
which is generated

by two elements x and y satisfying the relation ◦(x) = 2, ◦(y) = 3, ◦(xy) = 2, xy
= y2x and yx = xy2. Consider the set of parameters A = {α, β, γ}. A mapping F
: A → P (S3) such that F (α) = {e, x}, F (β) =

{
e, y, y 2

}
, F (γ) = {e, xy}. Then

(F,A) is a soft group over S3 . Since for each parameter α ∈ A, F (α) is an abelian
subgroup of S3. Hence (F,A) is an abelian soft group over S3. It is interesting to
note that S3 is not abelian.

Definition 5.3. Let (F,A) be a soft group over G and (H,B) be a soft subgroup
of (F,A). Then we say that (H,B) is an abelian soft subgroup of (F ,A) if H(x) is
an abelian subgroup of F (x) for all x ∈ B.

Example 5.4. Consider the group S3 =
{
e, x, y, y2, xy, xy2

}
which is generated

by two elements x and y satisfying the relation ◦(x) = 2, ◦(y) = 3, ◦(xy) = 2, xy
= y2x and yx = xy2. Consider the set of parameters A = {α, β ,γ, λ}. A mapping
F : A → P (S3) such that F (λ) = {e, x}, F (β) =

{
e, y, y 2

}
, F (γ) = {e, xy} and

F (α) =
{
e, x, y, y2, xy, xy2

}
. Then (F,A) is a soft group over S3. Let (H,B) be

a soft subgroup of (F,A) such that H(α) = {e}, H(β) =
{
e, y, y 2

}
and H(γ) =

{e, xy}. Since for each parameter α ∈ B, H(α) is an abelian subgroup of F (α).
Hence, (H,B) is an abelian soft subgroup of (F,A).

Theorem 5.5. Every soft subgroup (H,B) of an abelian soft group (F,A) over G
is a normal soft subgroup of (F,A).

Proof. Since each F (α) for all α ∈ A is an abelian subgroup of G and each H(α) is
a subgroup of F (α) for all α ∈ B. It is well known that a subgroup of an abelian
group is a normal subgroup. This implies that H(α) is a normal subgroup F (α) for
all α ∈ B. Hence (H,B)C̃(F,A). �

6. Restricted soft product of soft groups

In this section we define restricted product of two soft groups, inverse of a soft
group and prove some results.

Definition 6.1. The restricted product (H,C) of two soft groups (F,A) and (K, B)
over G is denoted by the soft set (H,C) = (F,A)◦̂(K, B) where C = A ∩B and H
is a set valued function from C to P (G) and is defined as H(c) = F (c)K(c) for all
c ∈ C. The soft set (H,C) is called the restricted soft product of (F,A) and (K, B)
over G.

Definition 6.2. Let (F,A) be a soft set over a group G. Then inverse of (F,A) is
denoted by (F,A)−1 and is defined as follows (F,A)−1 =

{
(F (a))−1 : a ∈ A

}
, where

(F (a))−1 is called the inverse of F (a) and is defined as

(F (a))−1 =
{
x−1 : x ∈ F (a)

}
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Theorem 6.3. Let (F,A) and (K, B) be any two soft sets over G. Then

((F,A)◦̂(K, B))−1 = (K, B)−1◦̂(F,A)−1.

Proof. Suppose that the inverse of restricted soft product of (F,A) and (K,B) de-
noted by ((F,A)◦̂(K, B))−1 = (H,C) is defined as H(c) = (F (c)K(c))−1 for all c ∈
C and (K, B)−1◦̂(F,A)−1 = (L,C) and is defined as L(c) = (K(c))−1(F (c))−1 for
all c ∈ C. But then (F (c)K(c))−1 = (K(c))−1(F (c))−1 for all c ∈ C. This implies
that L(c) = H(c) for all c ∈ C. Thus ((F,A)◦̂(K, B))−1 = (K, B)−1◦̂(F,A)−1. �

Theorem 6.4. If (F,A) is a soft group over G, then (F,A)−1 = (F,A) but the
converse is not true.

Proof. By definition (F,A)−1 =
{
(F (a))−1 : a ∈ A

}
. For each parameter, F (α) is a

subgroup of G, this implies that F (α) = (F (α))−1 for all α ∈ A. Hence (F,A)−1 =
(F,A). But converse is not true. This is proved by the following example. �

Example 6.5. Let G = {1, − 1, i, − i} be a group under consideration and A =
{x, y, z} be the set of parameters. Let F : A → P (G) be a mapping such that

F (x) = {1}
F (y) = {−1}
F (z) = {−1} .

Then we have the pair (F,A) = (F,A)−1. But (F,A) is not a soft group over G.

Theorem 6.6. Let (H,A) and (K, B) be two soft groups over G. Then their
restricted product (F ,C) = (H,A)◦̂(K, B) is a soft group over G if and only if
H(c)K(c) = K(c)H(c) for all c ∈ C.

Proof. Suppose H(c)K(c) = K(c)H(c) for all c ∈ C. We show that (F ,C) =
(H,A)◦̂(K, B), which is defined as F (c) = H(c)K(c) for all c ∈ C, is a soft group
over G. To prove this, it is sufficient to prove that (H(c)K(c))(H(c)K(c))−1 =
H(c)K(c) for all c ∈ C. We have

(H(c)K(c)).(H(c)(K(c))−1 = (H(c)K(c))((K(c))−1(H(c))−1)
= H(c)(K(c)(K(c))−1)(H(c))−1)
= (H(c)K(c))H(c)
= (K(c)H(c))H(c))
= (K(c)H(c))H(c)
= K(c)(H(c)H(c))
= K(c)(H(c)
= H(c)K(c)

This is hold for all c ∈ C. Hence, F (c) = H(c)K(c) for all c ∈ C is a subgroup of
G. This implies that (H,A)◦̂(K, B) is a soft group over G.
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Conversely suppose that (H,A)◦̂(K, B) is a soft group over G . Then F (c) =
H(c)K(c) is a subgroup of G for all c ∈ C. Consider

(H(c)K(c))−1 = H(c)K(c)
(K(c))−1(H(c))−1 = H(c)K(c)

K(c)H(c) = H(c)K(c)

This holds for all c ∈ C. Hence, H(c)K(c) = K(c)H(c) for all c ∈ C. �

Theorem 6.7. Let (F,A) and (K, B) be two soft groups over an abelian group G.
Then their restricted product (L,C) = (F,A)◦̂(K, B) is a soft group over G.

Proof. Let the restricted soft product of (F,A) and (K, B) be denoted by(H,C) =
(F,A)◦̂(K, B) and is defined as H(c) = F (c)K(c) for all c ∈ C. Since G is abelian,
we have F (c)K(c) = K(c)F (c) for all c ∈ C. This implies that (F,A) ◦̂ (K, B) is a
soft group over G. �

Corollary 6.8. Let (H,A) be a soft group over G and (K, B) be a normal soft group
over G. Then (H,A) ◦̂ (K, B) is a soft group over G.

Proof. Let the restricted soft product of (H,A) and (K, B) be denoted by (H
,A)◦̂(K, B) = (F ,C) and it is defined as F (c) = H(c)K(c) for all c ∈ C. But
we have K(c) is a normal subgroup of G for all c ∈ C, this implies that H(c)K(c)
= K(c)H(c) for all c ∈ C. Hence, (H,A)◦̂(K, B) is a soft group over G. �

Corollary 6.9. If (F,A) is any soft group over G, then (F,A) ◦̂ (F ,A) = (F,A).

Proof. It is straightforward. �

Corollary 6.10. Let (N ,A) and (M ,B) be two normal soft groups over G. Then
(N ,A)◦̂(M ,B) is also a normal soft group over G.

Proof. It is straightforward. �

7. Cartesian product of soft groups

In this section, we define the identity soft group and prove some results by using
cartesian product of soft groups.

Definition 7.1 ([1]). Let (F,A) and (H,B) be two soft sets over G and K, respec-
tively, and let f : G → K and g : A → B be two functions. Then we say that (f ,g)
is a soft homomorphism, if the following conditions are satisfied:

1. f is a homomorphism from G onto K;
2. g is mapping from A onto B;
3. f(F (x)) = H(g(x)).

In this definition, if f is an isomorphism G to K and g is a one-to-one mapping
from A on to B, then we say that (f ,g) is a soft isomorphism and that (F,A) is soft
isomorphic to (H,B). The latter is denoted by (F,A) ' (H,B)

Definition 7.2 ([1]). Let (F,A) and (H,B) be two soft groups over G and K,
respectively. Then the cartesian product of soft groups (F,A) and (H,B) is denoted
by (F,A) ×̃ (H,B) = (U ,A × B) and U is defined as U(a, b) = F (a)×̃H(b) for all
(a,b) ∈ A×B.
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Theorem 7.3. Let (F,A) and (H,B) be two soft groups over G and K, respec-
tively. Then the cartesian product (F,A)×̃(H,B) is a soft group over G × K and
(F,A)×̃(H,B) is soft isomorphic to (H,B) ×̃ (F,A).

Proof. First had proved in [1]. We will prove next part. Now we show that (f, g) :
(F,A)×̃(H,B) → (H,B)×̃(F,A) is a soft isomorphism That is (f , g) : (U,A × B)
→ (W,B × A) is a soft isomorphism where W (b, a) is defined as W (b, a) = H(b) ×
F (a). Actually, we prove three conditions.

1. We show that f : G ×K → K × G is an isomorphism. Let f be a function
defined by f(g, k) = (k, g) . Then obviously f is an isomorphism.

2. Now we show that g : A×B → B ×A is a bijective mapping. The mapping g
is defined by g(a, b) = (b, a) then obviously g is a bijective mapping.

3.

f(U(a, b)) = f(F (a)×H(b))
= f({(g, k) : g ∈ F (a), k ∈ H(b)})
= {(k, g) : k ∈ H(b), g ∈ F (a)}
= H(b)× F (a)
= W (b, a)
= W (g(a, b)) for all (a, b) ∈ A×B.

This implies that (f , g) : (F,A)×̃(H,B) → (H,B)×̃(F,A) is a soft isomorphism.
Hence, (F,A)×̃(H,B) ' (H,B)× (F ,A). �

Corollary 7.4. Let (F,A) and (H,B) be two normal soft groups over G and K
respectively. Then the cartesian product (F,A)×̃(H,B) is a normal soft group over
G×K and (F,A)× (H,B) is soft isomorphic to (H,B) ×̃ (F,A).

Definition 7.5 ([1]). Let (F,A) be a soft group over G. Then (F,A) is said to be
an identity soft group over G if F (x) = {e} for all x ∈ A, where e is the identity
element of G. Identity soft group is represented by (I,A).

Theorem 7.6. Let (F,A) and (H,B) be two normal soft groups over G and K. Let
(I,A) and (I,B) be the identity soft groups over G and K, respectively. Then

1. (F,A) ×̃ (I,B) is a normal soft group over G× K and (I,A) ×̃ (H,B) is a
normal soft group over G×K.

2. Every element of (F,A) ×̃ (I,B) commutes with every element of (I,A) ×
(H,B).

Proof. 1. The cartesian product of soft groups (F,A) and (I,B) denoted by

(F,A)×̃(I,B) = (U,A×B),

and U is defined as U(a, b) = F (a)× I(b) for all (a, b) ∈ A×B. For each parameter,
I(b) is identity subgroup of K. Hence, U(a, b) = F (a)× {e2} for all (a, b) ∈ A×B.
We show that U(a, b) is a normal subgroup of G × K for all (a,b) ∈ A × B. By
Theorem 7.3, U(a, b) is a normal subgroup of G × K for all (a, b) ∈ A × B. This
implies that (F,A) ×̃ (I,B) is a normal soft group over G × K. Similarly, we can
prove that (I,A) ×̃ (H,B) is a normal soft group over G×K.
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2. Let the product of soft groups (F,A) and (I, B) be denoted by (U , A × B)
= (F,A) × (I,B) and it is defined as U(a, b) = F (a) × I(b) = F (a) × {e2} for all
(a, b) ∈ A × B, where e2 ∈ K. Also, (W , A × B) be the cartesian product of soft
groups (I,A) and (H,B) denoted by (W ,A×B) = (I,A)× (H,B) and it is defined
as W (a, b) = I(a)×H(b) = {e1} × H(b) for all (a, b) ∈ A×B, where e1 ∈ G. Let
(g, e2) ∈ F (a)× {e2} for all (a,b) ∈ A×B and (e1, k) ∈ {e1} × H(b) for all (a, b)
∈ A × B. Then (g, e2)(e1, k) = (ge1, e2k) = (e1g, ke2) = (e1, k)(g, e2) for all (a,
b) ∈ A × B. Hence, every element of (F , A)×̃(I, B) commutes with every element
of (I, A) ×̃ (H, B). �

8. Cyclic soft groups

In this section, we define cyclic soft groups, cyclic soft subgroups and check out
their properties.

Definition 8.1. A soft group (F,A) over G is called a cyclic soft group over G if
each F (α) is a cyclic subgroup of G for all α ∈ A .

Example 8.2. Consider the group D4 =
{
e, a, a2, a3, b, ab, a2b, a3b

}
which is gen-

erated by two elements a and b satisfying the relations ◦(a) = 4, ◦(b) = 2, ba = a3b.
Consider the set of parameters A = {t1, t2, t3, t4, t5, t6}. A mapping F : A→ P (D4)
such that F (t1) =

{
e, a2

}
, F (t2) = {e, b}, F (t3) = {e, ab}, F (t4) =

{
e, a2b

}
, F (t5)

=
{
e, a3b

}
, F (t6) =

{
e, a, a2, a3

}
then (F,A) is a soft group over D4. Since for

each parameter α ∈ A, F (α) is a cyclic subgroup of D4 hence (F,A) is a cyclic soft
group over D4.

Definition 8.3. Let (F,A) be a soft group over G. Then a soft subgroup (H,B) of
(F,A) is called a cyclic soft subgroup of (F,A) if H(α) is a cyclic subgroup of F (α)
for all α ∈ A.

Example 8.4. Consider the group S3 =
{
e, x, y, y2, xy, xy2

}
which is generated

by two elements x and y satisfying the relation ◦(x) = 2, ◦(y) = 3, ◦(xy) = 2, xy
= y2x and yx = xy2. Consider the set of parameters A = {α, β ,γ, λ}. A mapping
F : A → P (S3) such that F (α) = {e, x}, F (β) =

{
e, y, y 2

}
, F (γ) = {e, xy} and

F (λ) =
{
e, x, y, y2, xy, xy2

}
. Then (F,A) is a soft group over S3. Let (H,B) be

a soft subgroup of (F,A) such that H(α) = {e}, H(β) =
{
e, y, y 2

}
and H(γ) =

{e, xy}. Since for each parameter α ∈ B, H(α) is a cyclic subgroup of F (α), hence
(H,B) is a cyclic soft subgroup of (F,A). It is important to note that (F,A) is not
a cyclic soft group over G.

Theorem 8.5. Every cyclic soft group (F,A) over G is an abelian soft group over
G.

Proof. Let (F,A) be a cyclic soft group over G. Then each F (α) is a cyclic subgroup
of G for all α ∈ A, but then each cyclic subgroup is abelian subgroup of G. Hence
each F (α) is an abelian subgroup of G for all α ∈ A. This implies that (F ,A) is an
abelian soft group over G. �

Theorem 8.6. Let (F,A) be a soft group over G. If a cyclic soft subgroup (H,B)
of (F,A) is a normal soft subgroup of (F,A), then every soft subgroup of (H,B) is
a normal soft subgroup of (F,A).
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Proof. Suppose cyclic soft subgroup (H,B) of (F,A) is a normal soft subgroup of
(F,A). Let (K,C) be a soft subgroup of (H,B), this implies that (K,C) is a cyclic
subgroup of (H,B) and hence a cyclic subgroup of (F,A). We show that (K, B) is
a normal soft subgroup of (F,A). We have H(α) is a cyclic subgroup of F (α) for
all α ∈ B. But, H(α) is a normal subgroup of F (α) for all α ∈ B. Hence, (K,C), a
soft subgroup of (H,B) is a normal soft subgroup of (F,A). �

9. Soft coset of a soft group

In this section, we define the soft coset of a soft subgroup of a soft group, order
of a soft group, soft index, partition of a soft group and prove their related results.

Definition 9.1. Let (F,A) be a soft group over G and (H,B) is any soft subgroup
of (F,A). Let a ∈ ∩F (x). Then the soft set (Ha,B) defined as (Ha(b) = (H(b))a for
all b ∈ B is called a soft right coset of (H,B) in (F,A) generated by a. Similarly,
the soft set (aH,B) is called a soft left coset of (H,B) in (F,A) generated by a.

Example 9.2. Consider the group D8 =
{
e, a, a2, a3, b, ab, a2b, a3b

}
which is gen-

erated by two elements a, b satisfying the relation ◦(a) = 4, a2 = b2 and ba = a3b.
Consider the set of parameters A = {t1, t2, t3, t4}. A mapping F : A → P (D8)
such that F (t1) =

{
e, a2

}
, F (t2) =

{
e, a, a2, a3

}
, F (t3) =

{
e, ab, a2, a3b

}
, F (t4)

=
{
e, b, a2, a2b

}
. For each parameter, F (t) is subgroup of D8. Hence, (F,A) is a

soft group over D8. Since ∩F (ti) =
{
e, a2

}
for all ti ∈ A. Let B = {t2, t3, t4} and

consider (H,B) be any soft subgroup of (F,A) such that H(t2) =
{
e, a2

}
, H(t3) ={

e, ab, a2, a3b
}
, H(t4) =

{
e, b, a2, a2b

}
. Now we find soft left coset as follows: For

identity element we have,
(eH,B) = (H,B)

and
(a2H,B) =

{
a2(H(t)) : ∀t ∈ B

}
Now we find a2H(t) for all t ∈ B as follows a2(H(t2)) = H(t2), a2(H(t3)) =

H(t3), a2(H(t4)) = H(t4). This implies that a2(H,B) = (H,B). Hence, the only
soft left coset of (H,B) in (F,A) is itself (H,B). Similarly, we can find soft right
coset which is (H,B) itself.

Definition 9.3. Let (F,A) be a soft group over G. Then the order of a soft group
(F,A) is the number of distinct subgroups of G.

Definition 9.4. The number of distinct soft left (or right) cosets of a soft subgroup
(H,B) of a soft group (F,A) over G is called the soft index of (H,B) in (F,A) and
is denoted by [(F,A) : (H,B)].

Theorem 9.5. A soft subgroup (H,B) of a soft group (F,A) over G is a normal
soft subgroup of (F,A) if and only if each soft left coset of (H,B) in (F,A) is a soft
right coset of (H,B) in (F,A).

Proof. Let (H,B) be a normal soft subgroup of (F,A). Then obviously (xH,B) =
(Hx,B) for all x ∈ ∩F (a). Thus, each soft left coset of (H,B) in (F,A) is a soft
right cost of (H,B) in (F ,A).
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Conversely, suppose that each soft left coset of (H,B) is a soft right coset. Then
we have (xH,B) = (Hx,B) for some x ∈ ∩F (a). This implies that x(H(b)) =
(H(b))y for all b ∈ B. Since e ∈ H(b) for all b ∈ B, so xe = x ∈ x(H(b)). Therefore,
we have x ∈ (H(b))x for all b ∈ B. This implies that x ∈ (H(b))x and hence we
have x(H(b)) = (H(b))x for all b ∈ B. This shows that (xH,B) = (Hx,B). Hence,
(H,B) is a normal and obviously, normal soft subgroup of (F ,A). This completes
the proof. �

Theorem 9.6. A soft subgroup (H,B) of a soft group (F,A) over G is a normal
soft subgroup of (F,A) if and only if the product of two soft right cosets of (H,B)
in (F,A) is again a soft right coset of (H,B) in (F,A).

Proof. Let (H,B) be a normal soft subgroup of (F,A). Let (Hx,B) and (Hy,B) be
two soft right cosets of (H,B) in (F,A), where x, y ∈ ∩F (a). We denote the product
of two soft right coset of (H,B) by (L,B) = (Hx,B)◦̂(Hy,B) and L is defined as
L(b) = ((H(b))x)((H(b))y) = H(b)(x(H(b))y = (H(b)H(b))xy = (H(b))xy. Since
x, y ∈ ∩F (a) ⇒ xy ∈ ∩F (a). Therefore, (H(b))xy is also a right coset. This is hold
for all b ∈ B. Hence, (L,B), the product of two soft right coset is again a soft right
coset.

Conversely, suppose that (H,B) a soft subgroup of a soft group (F,A) such that
the product of two soft right coset of (H,B) in (F,A) is again a soft right coset
of (H,B) in (F,A). Let x ∈ ∩F (a). Then x−1 ∈ ∩F (a). Therefore, (Hx,B) and
(Hx−1 ,B) are two soft right cosets of (H,B) in (F,A). Consequently, by hypoth-
esis (Hx,B)◦̂(Hx−1 ,B) = (H ,B) is a soft right coset, which is defined by H(b) =
(H(b))x(H(b))x−1. We show that H(b) is a normal subgroup of G. Since e ∈ H(b)
for all b ∈ B. Therefore, exex−1 ∈ (H(b))x(H(b))x−1 for all b ∈ B. But H(b) itself
is a right coset of G. This implies that

(H(b))x(H(b))x−1 = H(b) for all b ∈ B

=⇒ h1xhx−1 ∈ H(b)

=⇒ h−1
1 (h1xhx−1) ∈ h−1

1 (H(b)) for all b ∈ B

=⇒ xhx−1 ∈ H(b) for all b ∈ B.

This implies that H(b) is a normal subgroup of G for all b ∈ B. Hence, (H,B) is a
normal soft subgroup of (F,A). �

Theorem 9.7. Let (F,A) be a soft group over G and (H,B) be a soft subgroup of
(F,A). Then there is one one correspondence between any two soft right(left) cosets
of (H,B).

Proof. Let (Hx,B) and (Hy,B) be any two soft right cosets of a soft subgroup
(H,B), where x, y ∈ ∩F (b). Let f : (Hx,B) → (Hy,B) be a function defined
by f((H(b))x) = (H(b))y for all x ∈ B. Let

H(b1)x = H(b2)x for all b1, b2 ∈ B

⇐⇒ H(b1) = H(b2)
⇐⇒ H(b1)y = H(b2)y
⇐⇒ f(H(b1)x) = f(H(b2)y).
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Thus, f is well defined and injective. Now, we show that f is onto. Let (H(b))x
be an arbitrary element of (Hx,B). Then there exists (H(b))y ∈ (Hy,B) such that
f(H(b))x = (H(b))y for all b ∈ B. Hence, f is onto. �

Corollary 9.8. Let (F,A) be a soft group over G and (H,B) be a soft subgroup of
(F,A). Then for all x ∈ ∩F (a), |(xH,B)| = |(Hx, B)| = |(H,B)|.

Proof. It is straightforward. �

Theorem 9.9. Let (F,A) be a soft group over G and (H,B) be a soft subgroup of
(F,A). Then for all x, y ∈ ∩ F (a) and for all a ∈ A

(1). (xH,B) = (yH,B) if and only if y−1x ∈ H(b) for all b ∈ B.
(2). (Hx,B) = (Hy,B) if and only if xy−1 ∈ H(x) for all b ∈ B.

Proof. (1). Suppose (xH,B) = (yH,B). This implies that x(H(b)) = y(H(b)) for
all b ∈ B. Hence, y−1x(H(b)) = H(b), this implies that y−1x ∈ H(b) for all b ∈ B.

Conversely, suppose that y−1x ∈ H(b) for all b ∈ B. Tthen, y−1x(H(b)) = H(b)
for all b ∈ B, this shows that x(H(b)) = y(H(b)) for all x ∈ B. Hence, (xH,B) =
(yH,B).

(2). Similarly, we can prove part (2). �

Theorem 9.10. Let (F,A) be a soft group over G and (H,B) be a soft subgroup of
(F,A). Then the elements of (H,B) are in one one correspondence with the elements
of any soft left(right) coset of (H,B).

Proof. It is straightforward. �

Theorem 9.11. Let (F,A) be a soft group over G and (H,B) be a soft subgroup of
(F,A). Then there is one to one correspondence between the set of all soft left cosets
of (H,B) and the set of all soft right cosets of (H,B).

Proof. Let L = {(xH,B) : x ∈ ∩F (a)} and T = {(Hx, B) : x ∈ ∩ F (a)} be the set
of all soft left and soft right cosets of (H,B). We show that there exists a bijective
mapping between L and T . Define a function f : L → T by f((xH,B)) = (Hx−1 ,B)
for all x ∈ ∩F (a). For x, y ∈ ∩ F (a), we suppose that

(xH,B) = (yH,B)
=⇒ x(H(b)) = y(H(b)) for all b ∈ B

=⇒ y−1x ∈ H(b) for all b ∈ B

=⇒ y−1(x−1)−1 ∈ H(b) for all b ∈ B

=⇒ (H(b))x−1 = (H(b))y−1 for all b ∈ B

=⇒ (Hx−1 , B) = (Hy−1 , B).
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This implies that f ((xH, B)) = f((yH, B) for all x, y ∈ ∩F (a). Hence, f is well
defined. Let f((xH,B)) = f((yH,B)). Then

(Hx−1 , B) = (Hy−1 , B)

=⇒ (H(b))x−1 = (H(b))y−1 for all b ∈ B

=⇒ H(b)x−1y = H(b) for all b ∈ B

=⇒ x−1y ∈ H(b) for all b ∈ B

=⇒ x−1(y−1)−1 ∈ H(b) for all b ∈ B

=⇒ x−1y(H(b)) = H(b) for all b ∈ B

=⇒ y(H(b)) = x(H(b)) for all b ∈ B

=⇒ x(H(b)) = y(H(b)) for all b ∈ B

=⇒ (xH,B) = (yH,B).

Hence, f is injective. To show that f is onto, let (Hx,B) ∈ T be any soft right coset.
Then (x−1H,B) is a soft left coset of (H,B). Also, f((x−1H,B)) = (H(x−1)−1 ,B)
= (Hx,B). Thus, each right coset of (H,B) is the image of some left coset (H,B).
Hence, f is surjective. �

Definition 9.12. Let (F,A) be a soft set over U . Then by partition of (F,A) we
mean a collection of all such soft subsets of (F,A), that is {(Fi, Ai) : i ∈ I} such that
(F,A) = tE(Fi,Ai) and (Fi,Ai) uE (Fj ,Aj) = Φ for i 6= j and Φ is a null soft set.

Theorem 9.13. Let (F,A) be a soft group over G and (H,B) be a soft subgroup of
(F,A). Then for all x, y ∈ ∩F (a) either (xH,B) = (yH,B) or (xH,B)uE (yH,B)
= Φ.

Proof. Let x, y ∈ ∩F (a). Suppose that (xH,B)uE (yH,B) 6= Φ (null soft set). Then
(xH,B) uE (yH,B) = (L,B) and L is defined as L(b) = x(H(b)) ∩ y(H(b)) for all b
∈ B. Let t ∈ L(b) = x(H(b)) ∩ y(H(b)) for all b ∈ B. Then t ∈ x(H(b)) ∩ y(H(b))
for all b ∈ B. This implies that t ∈ x(H(b)) and t ∈ y(H(b)) for all b ∈ B. Thus, t
= xyi such that yi ∈ H(x) and t = yyj such that yj ∈ H(b), this implies that xyi

= yyj for yi, yj ∈ H(b). This implies that y−1x = yjy
−1
i ∈ H(b)H(b), this implies

that y−1x ∈ H(b) for all b ∈ B. Then we have y(H(b)) = x(H(b)) for all b ∈ B,
that is x(H(b)) = y(H(b)) for all b ∈ B. Hence, (xH,B) = (yH,B). Thus, for all x,
y ∈ ∩F (b) either (xH,B) = (yH,B) or (xH,B) uE (yH,B) = Φ. �

Theorem 9.14. Let (F,A) be a soft group over G and (H,A) be a soft subgroup of
(F,A). Then {(xH,B) : x ∈ ∩F (a)} forms a partition of (F,A) over G.

Proof. Let S = {(xH,B) : x ∈ ∩F (a)} be the set of all soft left cosets of (H,B).
Then for all x, y ∈ ∩F (a) and (xH,B), (yH,B) ∈ S either (xH,B) = (yH ,B) or
(xH,B)uE (yH,B) = Φ by Theorem 9.13. Now, we show that (F,A) = tE(xH,B).
Since (xH,B) ⊂̃ (F,A) for all x ∈ ∩F (a) . So, tE(xH,B) ⊂̃ (F,A). Also, x ∈ F (a)
for some a ∈ A and x ∈ ∪x(H(b)) for all b ∈ B. This implies that F (a) ⊂ ∪x(H(b))
for all a ∈ A and hence (F,A) ⊂̃ tE(xH,B). Thus, (F,A) = tE(xH,B). �

Theorem 9.15. Let (H,B) be a soft subgroup of a soft group (F,A) over a finite
group G. Then the order of (H,B) divides the order of (F,A) over G. In particular
|(F,A)| = [(F,A) : (H,B)] |(H,B)|.
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Proof. Since G is finite so collection of subgroups of G is finite. Hence, the order
of (F,A) is finite and the number of soft left cosets of (H,B) in (F,A) is finite.
Let {(x1H,B), (x2H,B), (x3H,B)..., (xr

H,B)}be the set of all distinct left cosets
of (H,B), where xi ∈ ∩F (x) i=1,2...r. Then by Theorem 9.14, we have (F,A) =
tE(xi

H,B) and (xi
H,B) uE (yj

H,B) = Φ for all i 6= j, 1 ≤ i , j ≤ r. Hence,
[(F,A) : (H,B)] = r and

|(F,A)| = |(x1H,B)|+ |(x2H,B)|+ |(x3H,B)|+ ....... + |(xrH,B)|

By the Corollary 9.8, we have |(H,A)| = |(xi
H,B)| for all 1 ≤ i ≤ r. Thus |(F,A)|

= |(H,B)| + |(H,B)| + ... + |(H,B)|, r times, that is, |(F,A)| = r |(H,B)|. This
implies that |(F,A)| = [(F,A) : (H,B)] |(H,B)|. Thus, the order of (H,B) divides
the order of (F,A). �

10. Factor of a soft group

In this section, we introduce soft maximal normal subgroups, simple soft groups
and factor soft groups. We establish some results as well.

Definition 10.1. Let (F,A) be a soft group over G. Then a normal soft subgroup
(H,B) of (F,A) is said to be a soft maximal normal subgroup of (F,A) if there exists
no proper normal soft subgroup (K, B) of (F,A), which properly contains (H,B).
Thus, a normal soft subgroup (H,B) of (F ,A) is soft maximal if and only if there
exists no normal soft subgroup (K, B) of (F,A) such that (H,B) ⊂̃ (K, B) ⊂̃ (F,A).

Example 10.2. Let G =
{
e, a, a2, a3, b, ab, a2b, a3b

}
be a dihedral group of degree

4 generated by the elements a and b such that ◦(a) = 4, ◦(b) = 2 and ba = a3b.
Consider the set of parameters A = {t1, t2, t3, t4, t5, t6, t7, t8}. A mapping F : A
→ P (G) defined by

F (t1) = {e} , F (t2) =
{
e, a2

}
, F (t3) = {e, b} , F (t4) =

{
e, a2b

}
F (t5) =

{
e, a, a2, a3, b, ab, a2b, a3b

}
, F (t6) =

{
e, a, a2, a3

}
F (t7) =

{
e, a2, b, a2b

}
, F (t8) =

{
e, ab, a2, a3b

}
.

For each parameter t ∈ A, we have subgroups of G. This implies that (F,A)
is a soft group over G. Let (H,B) be an other soft group over G such that B =
{t5, t6, t7, t8} and

H(t5) =
{
e, a, a2, a3, b, ab, a2b, a3b

}
, H(t6) =

{
e, a, a2, a3

}
H(t7) =

{
e, a2, b, a2b

}
, H(t8) =

{
e, ab, a2, a3b

}
.

This implies that (H,B) is a normal soft subgroup of (F,A). This is a soft maximal
normal subgroup of (F,A).

Definition 10.3. Let (F,A) be a soft group over G. Then (F,A) is called a simple
soft group over G if for any normal soft subgroup (H,B) of (F,A) we have either
(H,B) = (I,B) or (H,B) = (F,A).

Example 10.4. Consider the group S3 =
{
e, x, y, y2, xy, xy2

}
which is generated

by two elements x and y satisfying the relations ◦(x) = 2, ◦(y) = 3, ◦(xy) = 2, xy
= y2x and yx = xy2. Consider the set of parameters A = {α, β ,γ}. A mapping F
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: A → P (S3) such that F (α) = {e, x}, F (β) =
{
e, y, y 2

}
, F (γ) = {e, xy}. Then

(F,A) is a soft group over S3. This is a simple soft group over S3.

Definition 10.5. Let (F,A) be a soft group over G and (H,B) be a normal soft
subgroup of (F,A). Then quotient or factor of (F,A) by (H ,B) is denoted
by (F,A)/(H,B) = (L,B) and L is defined as L(b) = F (b)/H(b) for all b ∈ B.
Since each F (b)/H(b) is a group under coset multiplication and is written as L(b) =
{x(H(b)) : x ∈ F (b) ∀ b ∈ B}. Then (L, B) is called a factor soft group of (F,A)
by (H,B).

Theorem 10.6. Let (F,A) be a soft group over G and (H,B) a normal soft sub-
group of (F,A). If (K, B) is a normal soft subgroup of (F ,A) containing (H,B), then
the factor soft group (K, A)/(H,B) is a normal soft subgroup of the factor soft group
(F,A)/(H,B). Conversely, if (K, A)/(H,B) is a normal soft subgroup of the factor
soft group (F ,A)/(H,B), then (K, A) is a normal soft subgroup of (F,A) containing
(H,B).

Proof. It is given that (H,B) is a normal soft subgroup of (F,A) and (H,B) ⊂̃ (K, B),
where (K, B) is itself a normal soft subgroup of (F,A). Therefore, (H,B) is also
a normal soft subgroup of (K, B) and consequently (K, A)/(H,B) is a factor soft
group. Let (K, B)/(H,B) = (L,B) and L(x) = {tH(x) : t ∈ K(x) } for all x ∈ B.
Also, suppose that (F,A)/(H,B) = (M ,B) and M(x) = {rH(x) : r ∈ F (x)} for all
x ∈ B. We show that (K, A)/(H,B) is a normal soft subgroup of the factor soft
group (F,A)/(H,B). First we show that L(x) is a subgroup of M(x) for all x ∈ B.
Let a ∈ L(x). Then a = tH(x), since t ∈ K(x) and K(x) ⊆ F (x) for all x ∈ B.
This implies that t ∈ F (x) for all x ∈ B. Hence, a = tH(x) ∈ M(x) for all x ∈ B.
That is L(x) is a subgroup of M(x) for all x ∈ B. Thus, (L,B) <̃ (M ,B). Now, we
show that (L,B)C̃(M ,B). We show that L(x) is a normal subgroup of M(x) for all
x ∈ B. Let q ∈ L(x) and p ∈ M(x), where q = t(H(x)) such that t ∈ K(x) and p
= r(H(x)) such that r ∈ F (x). Consider

pqp−1 = r(H(x))t(H(x))(r(H(x)))−1 = r(H(x))t(H(x))r−1(H(x)) = (rtr−1)(H(x)).

Since K(x) is a normal subgroup of F (x). This implies that t1 = rtr−1 ∈ K(x).
Hence, pqp−1 = t1H(x). This implies that pqp−1 ∈ L(x). That is L(x) is a normal
subgroup of M(x) for all x ∈ B. Hence, (K, A)/(H,B) is a normal soft subgroup of
the factor soft group (F,A)/(H,B).

Conversely, if (K, A)/(H,B) is a normal soft subgroup of the factor soft group
(F,A)/(H,B). We show that (K, A) is a normal soft subgroup of (F,A) containing
(H,B). We have (K, A)/(H,B) is a normal soft subgroup of (F,A)/(H,B). Consider
t(H(x)) ∈ K(x)/H(x) and r(H(x)) ∈ F (x)/H(x). Then by supposition

r(H(x))t(H(x))r(H(x))−1 ∈ K(x)/H(x)
=⇒ r(H(x))t(H(x))r−1(H(x)) ∈ K(x)/H(x)
=⇒ rtr−1(H(x)) ∈ K(x)/H(x)
=⇒ rtr−1 ∈ K(x) for all x ∈ B.

Hence, K(x) is a normal subgroup of F (x) for all x ∈ B. Thus, (K, A)C̃(F,A).
Now, we show that (H,B) ⊂̃ (K, B). Since (K, B)/(H,B) is a factor soft group.
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This implies that (H,B)C̃(K, A) and hence (H,B) ⊂̃ (K, A). This completes the
proof. �

Theorem 10.7. Let (F,A) be a soft group over G. A normal soft subgroup (H,B)
of (F,A) is soft maximal if and only if the factor soft group (F,A)/(H,B) is soft
simple group.

Proof. Suppose (H,B) is soft maximal and (F,A)/(H,B) is not soft simple group
that is (F,A)/(H,B) possesses proper normal soft subgroups. Let (K, B)/(H,B) be
a proper normal soft subgroup of (F,A)/(H,B). Then (K, B) will be a normal soft
subgroup of (F,A) containing (H,B). Since (K, B)/(H,B) is a proper soft subgroup
of (F,A)/(H,B), therefore (H,B) ⊂̃ (K, B) ⊂̃ (F,A). Thus (K, B)is a normal soft
subgroup of (F,A) and (H,B) ⊂̃ (K, B) ⊂̃ (F,A). Therefore (H,B) is not soft
maximal. This contradicts the hypothesis that (H,B) is maximal in (F,A). Hence
(F,A)/(H,B) must be soft simple.

Conversely, let (F,A)/(H,B) be a soft simple and let (H,B) be not soft maximal.
Since (H,B) is not soft maximal, therefore there exists a normal soft subgroup (K, B)
of (F,A) such that (H,B) ⊂̃ (K, B) ⊂̃ (F,A). Then by Theorem 10.6, (K, B)/(H,B)
is a normal soft subgroup of (F,A)/(H,B). This contradicts the hypothesis, hence
(H,B) must be soft maximum. �
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