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1. Introduction

Three years after Zadeh introduced the notion of a fuzzy set in his seminal
paper in 1965 [40], the first paper of fuzzy topology appeared in 1968 [8]. Since
then, more than thousand research papers have been published so far in the field of
fuzzy topology. The first few years, were formative years for fuzzy topology. During
this period, Azad, Chang, Gouguen, Hutton, Lowen, Pu and Liu, Pascali, Wang,
Wong, Warren, etc. [4, 5, 8, 15, 18, 19, 20, 21, 36, 37, 38], among others, investigated
different aspects of fuzzy topology and gave it a sound footing. The following years
were marked by justification for and experiments in fuzzy topology. Why do we need
fuzzy topology? What is the best definition of a fuzzy topology? Which extension
of a topological notion is to be treated as superior to its competitors? L-fuzzy
topology–fixed and variable basis, intuitionistic fuzzy topology etc. may be ascribed
to this phase. Extensive use of category theory substantiated the superiority of
FTOP over TOP: that fuzzy topology has been able to provide solutions to the
hitherto unsolved problems of general topology [22, 23, 25, 26, 34]. The other line
of justification came through exploring and establishing the intrinsic fuzziness of
several topological notions [1, 2, 3, 13, 21, 24, 26, 35, 39].

The present phase of fuzzy topology may be termed as its expanding phase. At
this stage, many existing notions of fuzzy topology are being revisited for further
investigations and improvement [6, 7, 9, 12, 14, 16, 26, 28, 29]. Presently, topological
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ideas are being tried and tested in several areas beyond the domain of pure mathe-
matics. In some of these applications, generalized form of open sets are being used
[10, 11, 17, 31, 33]. This enhances the scope as well as acts as motivation for further
study of fuzzy topology. As a result, one is naturally prompted to study the general-
ized form of open sets in fuzzy settings with new perspective. With this background
behind, we have introduced and investigated a class of generalized open fuzzy sets in
[30, 32]. These weaker forms of open fuzzy sets, under different sets of conditions are
found to represent different generalized forms of open fuzzy sets already existing in
the literature. Also, there it was found that these generalized open fuzzy sets form a
structure which is a generalized form of a fuzzy topology. In fact, these generalized
fuzzy topological spaces along with generalized fuzzy continuous mappings form a
category which accommodates FTOP as a subcategory. The present paper is a se-
quel to our ongoing investigations in this direction. Here, we investigate the theory
of convergence for the generalized fuzzy topologies. For this purpose, in section 3,
we have introduced g-net, a generalized notion for a fuzzy net. We have constructed
the convergence classes for the generalized fuzzy topological spaces. It is found that
there is a one-to-one correspondence between the convergence classes generated by
the g-nets and the generalized fuzzy topologies on a given set X. In the last section,
we discuss some important properties of monotonic mappings which generate γ-open
fuzzy sets, a special case of generalized open fuzzy sets. We have also discussed few
interesting results of some subclasses of these monotonic mappings.

2. Preliminaries

Throughout this paper, fuzzy sets are denoted by A, B, C etc and X, Y , Z etc.
denote the ordinary sets. A fuzzy set A on a set X is a mapping A : X → [0, 1]. The
constant fuzzy sets which take each member of X to zero and to one respectively
are denoted by 0 and 1 respectively. The union and intersection of a family of fuzzy
sets {Ai}, denoted by ∨Ai and ∧Ai respectively, are defined by(

∨
i∈∆

Ai

)
(x) = sup{Ai(x) : i ∈ ∆} and(

∧
i∈∆

Ai

)
(x) = inf{Ai(x) : i ∈ ∆} respectively.

The complement of a fuzzy set A, denoted by Ac, is defined by

Ac(x) = 1−A(x) for all x ∈ X.

A fuzzy point xα, with support x and value α, 0 < α ≤ 1, is a fuzzy set which
takes value α at x and 0 at every other point of X. While xα ≤ A implies α ≤ A(x);
xα ∈ A implies α < A(x). For fuzzy sets A and B, A ≤ B implies A(x) ≤ B(x) for
each x. The dual fuzzy point of a fuzzy point xα, where 0 < α < 1, is defined to be
the fuzzy point x1−α and is denoted by xα′ .

Definition 2.1. Two fuzzy sets A and B are said to overlap, denoted by AqB, if
there exists x in X such that A(x) + B(x) > 1.

For other notations and definitions used in this paper, please refer to [3, 21].
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3. Convergence Classes for Generalized Fuzzy Topological Spaces

A generalized fuzzy topological space on a set X has been defined in the following
way [30, 32]:

Definition 3.1. Let X be a nonempty set. Let ζ be a collection of fuzzy sets on X
such that

(1) 0 ∈ ζ;
(2) For Gi ∈ ζ, i ∈ ∆, ∨

i∈∆
Gi ∈ ζ.

Then ζ is called a generalized fuzzy topology (GFT, in short) on X and (X, ζ) is
called a generalized fuzzy topological space (GFTS, in brief). The collection of all
GFT’s on X is denoted by ζ(X). Members of ζ are called generalized open fuzzy
sets and their complements are called generalized closed fuzzy sets on X.

Example 3.2. Consider X = {a, b, c} and let

ζ = {0, a1/2 ∨ b3/4, b3/4 ∨ c1/4, a1/2 ∨ b3/4 ∨ c1/4}.

Then ζ is a GFT on X.

Further, let (X, ζ) and (Y, ζ ′) be two GFTS’s. A mapping f : X → Y is called
generalized fuzzy continuous if f brings back generalized open fuzzy sets of Y to
generalized open fuzzy sets of X. It can be verified that the families of all generalized
fuzzy topological spaces as objects along with generalized fuzzy continuous mappings
as morphisms form a category. The category FTOP of fuzzy topological spaces and
fuzzy continuous mappings turns out to be a full subcategory of this new category.

Lemma 3.3. For a fuzzy set A, A = ∨
xα≤A

xα = ∨
xα∈A

xα.

The closure and interior of a fuzzy set in a GFT may be defined as in a fuzzy
topological space. A fuzzy set A is called generalized Quasi-neighbourhood (g-Qnbhd,
in short) of a fuzzy point xα if there exists a generalized open fuzzy set G such that
xαqG ≤ A.

Proposition 3.4. For a GFT ζ on X, A ∈ IX and a fuzzy point xα, xα ≤ cl(A)
iff every g-Qnbhd of xα overlaps with A.

Since net theory is a very important tool for investigating the topological struc-
tures, in the following, we develop the theory of convergence for generalized fuzzy
topological spaces. We also construct the convergence class for a generalized fuzzy
topology.

Definition 3.5. (i) A pre-ordered set is a pair (D,≥), where D is a non-empty set
and ≥ is a binary relation in D which is reflexive and transitive.

(ii) Let X be a nonempty set and (D,≥) be a pre-ordered set. A mapping
S : D → FP (x), where FP (x) is the collection of all fuzzy points of X, is called a
generalized fuzzy net (g-net, in brief) in X. A g-net is usually denoted by {xn

αn
}n∈D,

where xn is the support and αn is the value of its nth member. If A is a fuzzy set
of Xand xn

αn
≤ A for each n ∈ D, then we say that the g-net {xn

αn
}n∈D is in A.
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Remark 3.6. Let D denote the collection of all fuzzy sets on X. Then D is a
pre-ordered set under the ordering of inverse set inclusion, that is, under ≥ where
U ≥ V iff U is contained in V .

Definition 3.7. Let {xn
αn
}n∈D be a g-net in X and A be a fuzzy set of X. We say,

{xn
αn
}n∈D is eventually overlapping with A (eventually contained in A, respectively)

if there exists m ∈ D such that xn
αn

qA (xn
αn
≤ A, respectively) for every n ≥ m in D.

On the other hand, {xn
αn
}n∈D is said to be frequently overlapping with A (frequently

in A, respectively) if for each m ∈ D, there exists n ≥ m in D such that xn
αn

qA
(xn

αn
≤ A, respectively).

Definition 3.8. A g-net S = {xn
αn
}n∈D is said to converge to a fuzzy point xα if S

eventually overlaps with every g-Qnbhd of xα.

Example 3.9. Let X be a GFTS and xα be any fuzzy point in X. Let U be the
collection of all g-Qnbhds of xα. Then (U ≥) is a pre-ordered set under inverse set
inclusion. For U ∈ U , we have U(x) + α > 1, so that there exists a positive real
number, say ε(U), such that U(x) + α− ε(U) > 1. We write α− ε(U) = αU . Then
{xU

αU
}U∈U is a g-net, where xU = x for each U ∈ U . Since U(x) + αV > 1 for each

V ≥ U , this g-net converges to xα .

A subnet of a g-net may be defined in the same way as it is done in case of a
fuzzy net in a fuzzy topology [21, 24].

The closure of a fuzzy set can be characterized in a GFT using g-net in the
following way:

Proposition 3.10. Let X be a nonempty set and ζ be a GFT on X. Then for a
fuzzy set A and a fuzzy point xα in X, xα ≤ cl(A) iff there is a g-net in A converging
to xα.

Proof. Let xα ≤ cl(A). Then for each g-Qnbhd U of xα, we have UqA. Suppose U
and A overlap at xU . Let D denote the collection of all g-Qnbhd of xα. We define
‘≥’ in D by U ≥ V iff U is contained in V . Then D is a pre-ordered set and hence
{xU

αU
}U∈D, where αU = A(xU ), is a g-net in A. We show that this g-net converges

to xα. Let U0 be any g-Qnbhd of xα. Then for any g-Qnbhd U of xα such that
U ≥ U0, U(xU ) + αU > 1 so that U0(xU ) + αU > 1. Hence {xU

αU
}U∈D eventually

overlaps with U0. Hence {xU
αU
}U∈D converges to xα. The converse part follows

trivially. �

Proposition 3.11. Let S be a g-net and F be a family of fuzzy sets such that S is
frequently in each member of F . Then there is a subnet of S which is eventually in
each member of F .

Proof. In F , we introduce a relation ≥ by A ≥ B iff A is contained in B. Then
F is a pre-ordered set under this relation. Let S = {xn

αn
}n∈D be a g-net which is

frequently in each member of F . Let E be the set of all ordered pairs of the type
(m,A) such that m ∈ D, A ∈ F and xm

αm
≤ A. We introduce a relation ‘≥’ in

E by (m1, A1) ≥ (m2, A2) iff m1 ≥ m2 and A1 ≤ A2. Then E = {(m,A)} is a
pre-ordered set. Let N : E → D be defined by N((m,A)) = m. Now for n ∈ D,
there exists m ≥ n such that xm

αm
≤ A, as {xn

αn
}n∈D is frequently in F . For this m
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and (p, A1) ≥ (m,A), we have N((p, A1)) = p and p ≥ n. Hence S ◦N is a subnet
of S. Finally for A ∈ F , let m ∈ D such that xm

αm
≤ A. Now, for (n, B) ≥ (m,A),

we have n ≥ m and B ≤ A. Hence (S ◦N) ((n, B)) = S(n) = xn
αn
≤ B ≤ A. Thus

S ◦N is eventually in A. �

For iterated limit of g-nets, we have the following result:

Proposition 3.12. Let X be a GFT and D be a pre-ordered set and En be a pre-
ordered set for each n ∈ D. Let x

(n,m)
α(n,m) be defined for each n ∈ D, m ∈ En.

Let {x(n,m)
α(n,m)}m∈En

converge to xn
αn

for each n and {xn
αn
}n∈D converge to xα. Let

D×
∏
{Em : m ∈ D} be ordered by (n, g) ≥ (p, f) iff n ≥ p and g(m) ≥ f(m) for

each m ∈ D. Then the g-net {x(n,g(n))
α(n,g(n))} converges to xα.

Proof. Let U be any g-Qnbhd of xα. Then, there exists p ∈ D such that xn
αn

qU for all
n ≥ p. As {x(n,m)

α(n,m)} converges to xn
αn

, there exists f(n) ∈ En such that x
(n,m)
α(n,m)qU

for all (n, m) ≥ (p, f(n)). Now, for (n, g) ≥ (p, f), we have n ≥ p, g(n) ≥ f(n) and
hence {x(n,g(n))

α(n,g(n))}qU . Consequently, {x(n,g(n))
α(n,g(n))} converges to xα. �

The development so far suggests that the theory of convergence for generalized
fuzzy topological spaces may be developed by using g-nets. We further establish this
point by showing below that g-nets indeed give rise to the convergence classes for
the generalized fuzzy topologies.

Definition 3.13. Let C be the class consisting of ordered pairs (S, xα) where S is a
g-net in X and xα is a fuzzy point in X. We say that C is a generalized convergence
class for X iff it satisfies the conditions listed below: For convenience, we write S
C-converges to xα whenever (S, xα) ∈ C.

(1) If S = {xn
αn
}n∈D is a g-net such that xn

αn
= xα for each n, then (S, xα) ∈ C;

(2) If (S, xα) ∈ C, then for every subnet T of S, (T, xα) ∈ C;
(3) If (S, xα) /∈ C, then there exists a subnet T of S such that for no subnet R

of T , (R, xα) ∈ C;
(4) Let D be a pre-ordered set. Let En be a pre-ordered set for each n ∈ D

and S = {x(n,m)
α(n,m)} n∈D

m∈En

be an iterated g-net in X. For each n ∈ D,

let {x(n,m)
α(n,m)}m∈En

be a g-net which C-converges to xn
αn

. Let the g-net
{xn

αn
}n∈D C-converge to xα. Further, let D ×

∏
{Em : m ∈ D} be or-

dered by (n, g) ≥ (p, f) iff n ≥ p and g(m) ≥ f(m) for each m ∈ D. Then
the g-net {x(n,g(n))

α(n,g(n))} n∈D
g(n)∈ΠEn

C-converges to xα.

It can be verified that convergence of g-nets in a GFT satisfies all the above con-
ditions. Thus every generalized fuzzy topology generates a generalized convergence
class C in the sense that (S, xα) ∈ C iff S converges to xα in the generalized fuzzy
topology. For the converse part, we proceed in the following way:

Proposition 3.14. Let C be a generalized convergence class in a nonempty set X.
For each A ∈ IX , let A denote the union of all fuzzy points xα such that, for some
g-net S in A, S C-converges to xα. Let ζ = {G : G = (A)C , A ∈ IX}. Then ζ is a
generalized fuzzy topology and (S, xα) ∈ C iff S converges to xα relative to ζ.
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Proof. As (1) = 1, hence 0 ∈ ζ. Let Gi ∈ ζ, i ∈ Λ. We show that ∨Gi ∈ ζ. Now,

∨Gi = ∨{(Ai)c : Ai ∈ IX} = (∧Ai)c.

Claim: ∧Ai = (∧Ai):
The inequality ∧Ai ≤ (∧Ai) is obvious. For the reverse inequality, let xα ≤ (∧Ai).

Then there exists a g-net S = {xn
αn
}n∈D in ∧Ai such that S C-converges to xα. For

any fixed i ∈ Λ, xm
αm

≤ Ai for each m ∈ D. Hence for each m ∈ D, there is a
pre-ordered set Em such that {x(m,n)

α(m,n)}n∈Em
is a g-net in Ai which C-converge to

xm
αm

. Hence by part (iv) of Definition 3.13, the g-net {x(ng(n))
α(n,g(n))}n∈D C-converges to

xα. Since the g-net is in Ai, we get, xα ≤ Ai. Hence, (∧Ai) ≤ ∧Ai. Consequently,
∧Ai = (∧Ai). Thus we get, ∨Gi = (∧Ai)c ∈ ζ. Consequently ζ is a generalized
fuzzy topology. The remaining part can be proved the way it is done for a fuzzy
topology. This completes the proof. �

The above study suggests that the net theoretic results of generalized fuzzy topo-
logical spaces should be parallel to their counterparts in Chang’s and Lowen’s cate-
gory [21, 27].

4. Some special subclasses of generalized open fuzzy sets

In our earlier study, it was found that a class of mappings, called the monotonic
mappings, can be used for generating generalized open fuzzy sets on a set X [30, 32].
These generalized open fuzzy sets, called γ-open fuzzy sets, are found to represent
various already existing weaker forms of open fuzzy sets of fuzzy topology. In this
section, we further investigate some interesting subclasses of the family of γ-open
fuzzy sets on X.

Let X be a non empty set and I = [0, 1]. A mapping γ : IX → IX is called a
monotonic mapping if γ(A) ≤ γ(B), whenever A ≤ B. The collection of all such
monotonic mappings on IX is denoted by Γ(X).

Clearly, a fuzzy interior operator on X is an example of a monotonic mapping.
This motivates us to define a generalized form of open fuzzy sets, using a monotonic
mappings, as follows:

Definition 4.1. Let γ ∈ Γ(X). A fuzzy set A on X is γ-open if A ≤ γ(A). The
complement of a γ-open fuzzy set is called a γ-closed fuzzy set. It is evident that 0
is always γ-open, on the other hand, 1 is γ-open iff 1 = γ(1).

Below we provide an example which shows that the monotonic mappings are quite
abundant.

Example 4.2. Let X be any nonempty set and A be any fuzzy set on X. For
α, β ∈ (0, 1], define γα and γβ on IX by

γα(A)(x) =

{
A(x), if A(x) < α

1, if A(x) ≥ α;
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and

γβ(A)(x) =

{
β, if A(x) < β

A(x), if A(x) ≥ β.

Then γα and γβ are monotonic mappings for every value of α and β. Also every
fuzzy set on X is γα-open as well as γβ-open.

We have the following result:

Proposition 4.3. An arbitrary union of γ-open fuzzy sets on X is γ-open. On the
other hand, arbitrary intersection of γ-closed fuzzy sets is γ-closed.

Definition 4.4. The union of all γ-open fuzzy sets contained in a fuzzy set A in X
is called the γ-interior of A and is denoted by intγ(A). Similarly, the intersection
of all γ-closed fuzzy sets containing a fuzzy set A is called the γ-closure of A and is
denoted by clγ(A).

Like the interior of a fuzzy set in a fuzzy topological space, γ-interior of A is also
the largest γ-open fuzzy set contained in A. We have,

Proposition 4.5. For a fuzzy set A on X, intγ(A) is the largest γ-open fuzzy set
contained in A and clγ(A) is the smallest γ-closed fuzzy set containing A.

Corollary 4.6. A fuzzy set A is γ-open iff A = intγ A; similarly A is γ-closed iff
A = clγ(A).

Remark 4.7. (1) If X is a fuzzy topological space, the operators int(cl), cl(int),
int(cl(int)), cl(int(cl)) all belong to Γ(X). For γ = int(cl), γ-open fuzzy sets coincide
with pre-open fuzzy sets. Similarly, we obtain the semi open fuzzy sets for γ =
cl(int), the α-open fuzzy sets for γ = int(cl(int)), the β-open fuzzy sets for γ =
cl(int(cl)). The corresponding closed sets are pre-closed, semi-closed, α-closed and
β-closed respectively.

(2) It may be mentioned that in [9], an operator Lω : LX → LX has been defined
to generalize closure operator. The operator γ defined above is more general in
nature. The operator Lω becomes a particular case of γ under certain restrictions.
Also motivation and further development of this paper is entirely different from that
of [9] and is, in fact, sequel to our papers [30, 32].

(3) We have observed that the γ-open fuzzy sets are closed under arbitrary union
and 0 is always γ-open. Hence they form a generalized fuzzy topology on X. Thus
the monotonic mappings on a set X are a readily available source for generalized
fuzzy topologies on X. In fact, one can establish a one to one correspondence
between the members of Γ(X) and the generalized fuzzy topological spaces on X.

It is found that monotonic mappings are quite abundant. Also under specified
conditions, they generate γ-open fuzzy sets which have interesting properties. In
the following, we investigate few mappings of such types. The subclass of Γ(X)
consisting of the monotonic mappings with the property γ(0) = 0 is denoted by Γ0.
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Few other subclasses, denoted in the following way, are

Γ1 : γ(1) = 1

Γ2 : γ2(A) = γ(A)

Γ+ : A ≤ γ(A)

Γ− : A ≥ γ(A),

where A ∈ IX . Thus if γ ∈ Γ+, then every fuzzy set on X is γ-open. If γ ∈ Γ−,
then a fuzzy set A is γ-open iff A= γ(A). If X is a fuzzy topological space, then the
interior operator ‘int’ belongs to Γ(X) and the int-open fuzzy sets are precisely the
open fuzzy sets of X. In general, we have the following result:

Proposition 4.8. For any γ ∈ Γ, intγ ∈ Γ2∩Γ−∩Γ0. Further, intγ ∈ Γ1 iff γ ∈ Γ1.
On the other hand, if γ ∈ Γ2 ∩ Γ− ∩ Γ0, then γ = intγ .

Proof. It is obvious that intγ ∈ Γ, intγ(0) = 0, and intγ(A) ≤ A. Also, intγ(A)
being the largest γ-open fuzzy set contained in A is γ-open and hence, intγ(intγ A) =
intγ(A). This implies that intγ ∈ Γ2 and hence, intγ ∈ Γ2 ∩ Γ− ∩ Γ0. Further, if
γ ∈ Γ1, then 1 ≤ γ(1) so that 1 is γ-open; whence intγ(1) = 1. Hence, intγ ∈ Γ1.
On the other hand, if intγ ∈ Γ1, then intγ(1) = 1, that is, the largest γ-open fuzzy
set contained in 1 is 1 itself. Therefore, 1 is open. But then 1 ≤ γ(1), so that
1 = γ(1), and hence γ ∈ Γ1. Also, if γ ∈ Γ2 ∩ Γ− ∩ Γ0, then γ(A) ≤ γ(γ(A)),
γ(A) ≤ A. Hence, γ(A) is open and is contained in A. If B is another γ-open fuzzy
set contained in A then, B ≤ γ(B) ≤ γ(A). Thus γ(A) is the largest open fuzzy set
in A. Consequently, γ(A) = intγ(A). �

Corollary 4.9. A fuzzy set A is γ-open iff A = intγ A iff A is intγ-open.

We now define a special type of monotonic mappings denoted by γ∗.

Definition 4.10. For a given mapping γ ∈ Γ(X) and A ∈ IX , γ∗ is defined by

γ∗(A) = 1− γ(1−A) = (γ(Ac))c.

Remark 4.11. It is clear that for γ ∈ Γ(X), γ(A) = 1− γ∗(1−A).

In what follows, we prove the interrelationship between the mappings γ and γ∗:

Proposition 4.12. (i) If γ ∈ Γ, then γ∗ ∈ Γ and (γ∗)∗ = γ. Further,
(ii) γ ∈ Γ0 iff γ∗ ∈ Γ1;
(iii) γ ∈ Γ1 iff γ∗ ∈ Γ0;
(iv) γ ∈ Γ2 iff γ∗ ∈ Γ2;
(v) γ ∈ Γ+ iff γ∗ ∈ Γ−;
(vi) (intγ)∗ = clγ .

Proof. (i) As γ ∈ Γ, for A ≤ B ≤ 1, we have

1−A ≥ 1−B

⇒ γ(1−B) ≤ γ(1−A)

⇒ 1− γ(1−A) ≤ 1− γ(1−B).
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Thus, γ∗(A) ≤ γ∗(B) and consequently, γ∗ ∈ Γ. Also,

(γ∗)∗(A) = 1− γ∗(1−A)

= γ(A)

⇒ (γ∗)∗ = γ .

The proofs of (ii) and (iii) are obvious. Since (γ∗)∗ = γ, we have

γ(γ(A)) = (γ∗)∗(γ(A)) = 1− γ∗(1− γ(A)).

To prove (iv), let γ ∈ Γ2. Then

(γ∗)2(A) = γ∗(γ∗(A)) = γ(A) = γ2(A) = γ(γ(A))

= 1− γ∗(1− γ(A)) = 1− γ∗(γ∗(1−A))

= 1− γ∗
2
(1−A) = 1− γ(1−A) = γ∗(A) .

Thus, γ ∈ Γ2 ⇒ γ∗ ∈ Γ2.
Conversely, let γ∗ ∈ Γ2. Then,

γ2(A) = γ(γ(A)) = γ(1− γ∗(1−A))

= 1− γ∗(γ∗(1−A)) = 1− (γ∗)2(1−A)

= 1− γ∗(1−A) = γ(A)

Thus γ ∈ Γ2 ⇒ γ∗ ∈ Γ2. Hence, γ ∈ Γ2 iff γ∗ ∈ Γ2. To prove (v), let γ ∈ Γ+. Then

γ∗(A) = 1− γ(1−A)

≤ 1− (1−A) = A

Therefore, γ∗ ∈ Γ−.
Conversely, if γ∗ ∈ Γ−, then

γ(A) = 1− γ∗(1−A) ≥ 1− (1−A) = A ⇒ γ ∈ Γ+

Finally, since intγ(1 − A) is the largest γ-open fuzzy set contained in 1 − A, its
complement coincides with the smallest γ-closed fuzzy set containing A, that is,
1− intγ(1−A) = clγ A. Thus (intγ)∗ = clγ . �

It may be easily verified that in a fuzzy topological space, (int)∗ = cl. Moreover,
for such γ∗ defined above, a fuzzy set A in X is γ∗-closed iff γ(A) ≤ A that is, iff A
is γ-closed.

Proposition 4.13. clγ ∈ Γ1 ∩ Γ2 ∩ Γ+, for any γ ∈ Γ. On the other hand, if
γ ∈ Γ1 ∩ Γ2 ∩ Γ+ then, γ = clγ . Further clγ ∈ Γ0 iff γ ∈ Γ1.

Proof. For A ≤ B, we have clγ(A) ≤ clγ(B). Thus clγ ∈ Γ. Since 0 is γ-open,
its complement 1 is γ-closed, that is, clγ(1) = 1. Again, clγ(clγ(A)) is the smallest
γ-closed fuzzy set containing clγ(A) and since clγ(A) is itself closed, we get clγ ∈ Γ2.
Then using the fact that A ≤ clγ(A), we get that, clγ ∈ Γ1 ∩ Γ2 ∩ Γ+. Also, let
γ ∈ Γ1 ∩ Γ2 ∩ Γ+, then γ(γ(A)) ≤ γ(A) as γ ∈ Γ2. Hence, γ(A) is γ∗-closed. Also,
A ≤ γ(A) as γ ∈ Γ+. Now if B is γ∗-closed and A ≤ B then γ(A) ≤ γ(B) as well
as γ(B) ≤ B. Thus γ(A) is the smallest γ∗-closed fuzzy set containing A. Hence,
γ(A) = clγ∗(A). We have that clγ(0) = 1−intγ(1). Now intγ ∈ Γ1 iff γ ∈ Γ1 (in view
of Proposition 4.8). Therefore clγ(0) = 0 iff γ ∈ Γ1. Thus, clγ ∈ Γ0 iff γ ∈ Γ1. �
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The following result is straight forward:

Proposition 4.14. A fuzzy set A is γ-closed iff A = clγ(A) iff A is intγ-closed.

The classes Γ and Γn, n = 0, 1, 2, + and −, are found to be closed under compo-
sition of mappings. Here is the result:

Proposition 4.15. The classes Γ and Γn, n = 0, 1, 2, + and −, are closed under
composition of mappings. Further, for γ1, γ2 ∈ Γn, we have, (γ2γ1)∗ = γ∗2γ∗1 . Here
γ2γ1 denotes the composition of γ1 and γ2.

Proof. For any fuzzy sets A, B on X

A ≤ B ⇒ γ1(A) ≤ γ1(B) (as γ1 ∈ Γ)

⇒ γ2 (γ1 (A)) ≤ γ2 (γ1 (B))

⇒ γ2γ1 (A) ≤ γ2γ1 (B)

Therefore, γ2γ1 ∈ Γ. Now, let γ1, γ2 ∈ Γ0. Then

γ2γ1(0) = γ2(γ1(0)) = γ2(0) = 0

and hence, γ2γ1 ∈ Γ0. Similarly, we can prove that γ2γ1 ∈ Γn for γ1, γ2 ∈ Γn when
n = 1, 2,+ and −. Further,

(γ2γ1)
∗
A = 1− γ2γ1 (1−A)

= 1− γ2 (γ1 (1−A))

= 1− γ2 (1− γ∗1A)

= 1− (1− γ∗2 (γ∗1 (A))) = γ∗2γ∗1 (A)

which proves the result. �

Remark 4.16. In a fuzzy topological space the operators int cl, cl int, int cl int,
cl int cl all belong to Γ0 ∩ Γ1.

The development so far demands for further studies of generalized fuzzy topo-
logical spaces, particularly, with respect to their topological properties. Further
investigations in this direction are being taken up in our subsequent papers.
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