
Annals of Fuzzy Mathematics and Informatics

Volume 4, No. 1, (July 2012), pp. 123- 129

ISSN 2093–9310

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

(λ, µ)-fuzzy ideals of ordered semigroups

Yuming Feng, Piergiulio Corsini

Received 11 October 2011; Revised 3 December 2011; Accepted 8 December 2011

Abstract. Definitions of (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior
ideals of an ordered semigroup were introduced. One obtained that in reg-
ular and in intra-regular ordered semigroups, the (λ, µ)-fuzzy ideals and
the (λ, µ)-fuzzy interior ideals coincide. The concept of a (λ, µ)-fuzzy sim-
ple ordered semigroup was also introduced and one proved that an ordered
semigroup is simple if and only if it is (λ, µ)-fuzzy simple.
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1. Introduction and preliminaries

The concept of fuzzy sets was first introduced by Zadeh [10] in 1965 and then the
fuzzy sets have been used in the reconsideration of classical mathematics. Recently,
Yuan et al. [9] introduced the concept of fuzzy subfield with thresholds. A fuzzy
subfield with thresholds λ and µ is also called a (λ, µ)-fuzzy subfield. Yao continued
to research (λ, µ)-fuzzy normal subfields, (λ, µ)-fuzzy quotient subfields , (λ, µ)-fuzzy
subrings and (λ, µ)-fuzzy ideals in [5, 6, 7, 8]. Feng et al. researched (λ, µ)-fuzzy
sublattices and (λ, µ)-fuzzy subhyperlattices in [1].

In this paper, we studied (λ, µ)-fuzzy ideals of ordered semigroups. This can be
seen as an application of [8] and as a generalization of [3]. We first introduced defi-
nitions of (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior ideals of an ordered semigroup.
Then we proved that in regular and in intra-regular ordered semigroups the (λ, µ)-
fuzzy ideals and the (λ, µ)-fuzzy interior ideals coincide. Lastly, we introduced the
concept of a (λ, µ)-fuzzy simple ordered semigroup, proved that an ordered semi-
group is simple if and only if it is (λ, µ)-fuzzy simple and characterized the simple
ordered semigroups in terms of (λ, µ)-fuzzy interior ideal.

An ordered semigroup (S, ◦,≤) is a poset (S,≤) equipped with a binary operation
“◦” such that
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(1) (S, ◦) is a semigroup, and

(2) If x, a, b ∈ S, then a ≤ b ⇒
{

a ◦ x ≤ b ◦ x
x ◦ a ≤ x ◦ b.

If (S, ◦,≤) is an ordered semigroup, and A is a subset of S, we denote by (A] the
subset of S defined as follows:

(A] = {t ∈ S|t ≤ a for some a ∈ A}.
Given an ordered semigroup S, a fuzzy subset of S (or a fuzzy set in S) is an

arbitrary mapping f : S → [0, 1], where [0, 1] is the usual closed interval of real
numbers. For any α ∈ [0, 1], fα is defined by fα = {x ∈ S|f(x) ≥ α}.

For each subset A of S, the characteristic function fA is a fuzzy subset of S
defined by

fA(x) =
{

1, if x ∈ A
0, if x 6∈ A.

In the following, we will use S or (S, ◦,≤) to denote an ordered semigroup and
the multiplication of x, y will be xy instead of x ◦ y.

In the rest of this paper, we will always assume that 0 ≤ λ < µ ≤ 1.

2. (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior ideals

In this section, we first introduce the concepts of (λ, µ)-fuzzy ideals and (λ, µ)-
fuzzy interior ideals of an ordered semigroup. And then show that every (λ, µ)-fuzzy
ideal is a (λ, µ)-fuzzy interior ideal.

Definition 2.1. A fuzzy subset f of an ordered semigroup S is called a (λ, µ)-fuzzy
right ideal of S if

(1) f(xy) ∨ λ ≥ f(x) ∧ µ for all x, y ∈ S and
(2) If x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ µ for all x, y ∈ S.

A fuzzy subset f of S is called a (λ, µ)-fuzzy left ideal of S if
(1) f(xy) ∨ λ ≥ f(y) ∧ µ for all x, y ∈ S and
(2) If x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ µ for all x, y ∈ S.

A fuzzy subset f of S is called a (λ, µ)-fuzzy ideal of S if it is both a (λ, µ)-fuzzy
right and a (λ, µ)-fuzzy left ideal of S.

Example 2.2. Let (S, ∗,≤) be an ordered semigroup defined by e ≤ a and the
following table:

∗ e a
e e a
a a e

If we define a fuzzy set f as following

S e a
f 0.5 0.5

Then f is a (0.5, 0.7)-fuzzy ideal of S.

Definition 2.3 ([2]). If (S, ◦,≤) is an ordered semigroup, a nonempty subset A of
S is called an interior ideal of S if

(1) SAS ⊆ A and
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(2) If a ∈ A, b ∈ S and b ≤ a, then b ∈ A.

Definition 2.4. If (S, ◦,≤) is an ordered semigroup, a fuzzy subset f of S is called
a (λ, µ)-fuzzy interior ideal of S if the following assertions are satisfied:

(1) f(xay) ∨ λ ≥ f(a) ∧ µ for all x, a, y ∈ S and
(2) If x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ µ.

In Example 2.2, it is easy to know thatf is also a (0.5, 0.7)-fuzzy interior ideal of
S.

Theorem 2.5. Let (S, ◦,≤) be an ordered semigroup, Then f is a (λ, µ)-fuzzy in-
terior ideal of S if and only if fα is an interior ideal of S for all α ∈ (λ, µ].

Proof. Let f be a (λ, µ)-fuzzy interior ideal of S and α ∈ (λ, µ]. First of all, we need
to show that xay ∈ fα, for all a ∈ fα, x, y ∈ S. From f(xay) ∨ λ ≥ f(a) ∧ µ ≥
α∧µ = α and λ < α, we conclude that f(xay) ≥ α, that is xay ∈ fα. Then, we need
to show that b ∈ fα for all a ∈ fα, b ∈ S such that b ≤ a. From b ≤ a we know that
f(b)∨ λ ≥ f(a)∧ µ and from a ∈ fα, we have f(a) ≥ α. Thus f(b)∨ λ ≥ α∧ µ = α.
Notice that λ < α, we conclude that f(b) ≥ α, that is, b ∈ fα.

Conversely, let fα be an interior ideal of S for all α ∈ (λ, µ]. If there are x0, a0, y0 ∈
S, such that f(x0a0y0) ∨ λ < α = f(a0) ∧ µ, then α ∈ (λ, µ], f(a0) ≥ α and
f(x0a0y0) < α. That is a0 ∈ fα and x0a0y0 6∈ fα. This is a contradiction with that
fα is an interior ideal of S. Hence f(xay) ∨ λ ≥ f(a) ∧ µ holds for all x, a, y ∈ S.
If there are x0, y0 ∈ S such that x0 ≤ y0 and f(x0) ∨ λ < α = f(y0) ∧ µ, then α ∈
(λ, µ], f(y0) ≥ α and f(x0) < α, that is y0 ∈ fα and x0 6∈ fα. This is a contradiction
with that fα is an interior ideal of S. Hence if x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ µ. �

Theorem 2.6. Let (S, ◦,≤) be an ordered semigroup and f a (λ, µ)-fuzzy ideal of
S. Then f is a (λ, µ)-fuzzy interior ideal of S.

Proof. Let x, a, y ∈ S. Since f is a (λ, µ)-fuzzy left ideal of S and x, ay ∈ S, we have
that

f(x(ay)) ∨ λ ≥ f(ay) ∧ µ. (1)

Since f is a (λ, µ)-fuzzy right ideal of S, we have that

f(ay) ∨ λ ≥ f(a) ∧ µ. (2)

From (1) and (2) we know that f(xay)∨ λ = (f(x(ay))∨ λ)∨ λ ≥ (f(ay)∧µ)∨ λ =
(f(ay) ∨ λ) ∧ (µ ∨ λ) ≥ f(a) ∧ µ. �

3. (λ, µ)-fuzzy interior ideals of regular/intra-regular ordered
semigroups

We prove here that in regular and in intra-regular ordered semigroups the (λ, µ)-
fuzzy ideals and the (λ, µ)-fuzzy interior ideals coincide.

Definition 3.1 ([3]). An ordered semigroup (S, ◦,≤) is called regular if for all a ∈ S
there exists x ∈ S such that a ≤ axa.

Definition 3.2 ([3]). An ordered semigroup (S, ◦,≤) is called intra-regular if for all
a ∈ S there exists x, y ∈ S such that a ≤ xa2y.
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Theorem 3.3. Let (S, ◦,≤) be a regular ordered semigroup and f a (λ, µ)-fuzzy
interior ideal of S. Then f is a (λ, µ)-fuzzy ideal of S.

Proof. Let x, y ∈ S. Then f(xy)∨λ ≥ f(x)∧µ. Indeed, since S is regular and x ∈ S,
there exist z ∈ S such that x ≤ xzx. Thus we have that xy ≤ (xzx)y = (xz)xy. So

f(xy) ∨ λ ≥ f((xz)xy) ∧ µ (3)

for f is a (λ, µ)-fuzzy interior ideal. Again since f is a (λ, µ)-fuzzy interior ideal of
S, we have

f((xz)xy) ∨ λ ≥ f(x) ∧ µ. (4)

From (3) and (4) we have that f(xy)∨ λ = (f(xy)∨ λ)∨ λ ≥ (f((xz)xy)∧ µ)∨ λ =
(f((xz)xy) ∨ λ) ∧ (µ ∨ λ) ≥ f(x) ∧ µ, and f is a (λ, µ)-fuzzy right ideal of S. In
a similar way, we can prove that f is a (λ, µ)-fuzzy left ideal of S. Thus f is a
(λ, µ)-fuzzy ideal of S. �

Theorem 3.4. Let (S, ◦,≤) be a intra-regular ordered semigroup and f a (λ, µ)-
fuzzy interior ideal of S. Then f is a (λ, µ)-fuzzy ideal of S.

Proof. Let a, b ∈ S. Then f(ab) ∨ λ ≥ f(a) ∧ µ. Indeed, since S is intra-regular
and a ∈ S, there exist x, y ∈ S such that a ≤ xa2y. Then ab ≤ (xa2y)b. Since
f is a (λ, µ)-fuzzy interior ideal of S, we have that f(ab) ∨ λ = (f(ab) ∨ λ) ∨ λ ≥
(f(xa2yb)∧µ)∨λ = (f(xa2yb)∨λ)∧ (µ∨λ). Again since f is a (λ, µ)-fuzzy interior
ideal of S, we have f(xa2yb) ∨ λ = f((xa)a(yb)) ∨ λ ≥ f(a) ∧ µ. Thus we have that
f(ab) ∨ λ ≥ f(a) ∧ µ, and f is a (λ, µ)-fuzzy right ideal of S. In a similar way we
can prove that f is a (λ, µ)-fuzzy left ideal of S. Therefore, f is a (λ, µ)-fuzzy ideal
of S. �

Remark 3.5. From previous theorems we know that in regular or intra-regular
ordered semigroups the concepts of (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior ideals
coincide.

4. (λ, µ)-fuzzy simple ordered semigroups

In this section, we introduce the concept of (λ, µ)-fuzzy simple ordered semigroups
and characterize this type of ordered semigroups in terms of (λ, µ)-fuzzy interior
ideals.

Definition 4.1 ([3]). An ordered semigroup S is called simple if it does not contain
proper ideals, that is, for any ideal A 6= ∅ of S, we have A = S.

Definition 4.2. An ordered semigroup S is called (λ, µ)-fuzzy simple if for any
(λ, µ)-fuzzy ideal f of S, we have f(a) ∨ λ ≥ f(b) ∧ µ, for all a, b ∈ S.

Remark 4.3. In [3], Kehayopulu and Tsingelis studied (0, 1)-fuzzy simple ordered
semigroup, which was called fuzzy simple ordered semigroup. (see Definition 3.1 of
[3])

Theorem 4.4. Let S be an ordered semigroup. Then S is (λ, µ)-fuzzy simple if and
only if for any (λ, µ)-fuzzy ideal f of S, if fα 6= ∅, then fα = S, for all α ∈ (λ, µ].
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Proof. For any (λ, µ)-fuzzy ideal f of S, suppose that fα 6= ∅. We need to prove
that x ∈ fα for all x ∈ S, where α ∈ (λ, µ]. Since fα 6= ∅, we can suppose that there
exists y ∈ fα, that is f(y) ≥ α. So f(x) ∨ λ ≥ f(y) ∧ µ ≥ α ∧ µ = α. Notice that
λ < α, we have that f(x) ≥ α, that is x ∈ fα.

Conversely, for any (λ, µ)-fuzzy ideal f of S, suppose that fα = S, for all α ∈
(λ, µ]. We need to prove that f(a) ∨ λ ≥ f(b) ∧ µ, for all a, b ∈ S. If there exist
a0, b0 ∈ S, such that f(a0) ∨ λ < α = f(b0) ∧ µ, then α ∈ (λ, µ], f(a0) < α and
f(b0) ≥ α. Thus a0 6∈ fα = S. This is a contradiction. So f(a)∨λ ≥ f(b)∧µ holds,
for all a, b ∈ S. �

Proposition 4.5. Let S be an ordered semigroup and f a (λ, µ)-fuzzy right ideal of
S. Then Ia = {b ∈ S|f(b) ∨ λ ≥ f(a) ∧ µ} is a right ideal of S for every a ∈ S.

Proof. Let a ∈ S. Then Ia 6= ∅ since a ∈ Ia.
(1) Let b ∈ Ia and s ∈ S, then bs ∈ Ia. Indeed, since f is a (λ, µ)-fuzzy right

ideal of S and b, s ∈ S, we have

f(bs) ∨ λ ≥ f(b) ∧ µ. (5)

Since b ∈ Ia, we have that
f(b) ∨ λ ≥ f(a) ∧ µ. (6)

From (5) and (6) we conclude that f(bs) ∨ λ = (f(bs) ∨ λ) ∨ λ ≥ (f(b) ∧ µ) ∨ λ =
(f(b) ∨ λ) ∧ (µ ∨ λ) ≥ f(a) ∧ µ. So bs ∈ Ia.

(2) Let b ∈ Ia and S 3 s ≤ b, then s ∈ Ia. Indeed, since f is a (λ, µ)-fuzzy right
ideal of S , s, b ∈ S and s ≤ b, we have

f(s) ∨ λ ≥ f(b) ∧ µ. (7)

Since b ∈ Ia, we have
f(b) ∨ λ ≥ f(a) ∧ µ. (8)

From (7) and (8) we obtain that f(s) ∨ λ = (f(s) ∨ λ) ∨ λ ≥ (f(b) ∧ µ) ∨ λ =
(f(b) ∨ λ) ∧ (µ ∨ λ) ≥ f(a) ∧ µ. So s ∈ Ia. �

Similarly, we have

Proposition 4.6. Let S be an ordered semigroup and f a (λ, µ)-fuzzy left ideal of
S. Then Ia = {b ∈ S | f(b) ∨ λ ≥ f(a) ∧ µ} is a left ideal of S for every a ∈ S.

By the previous propositions, we have

Proposition 4.7. Let S be an ordered semigroup and f a (λ, µ)-fuzzy ideal of S.
Then Ia = {b ∈ S | f(b) ∨ λ ≥ f(a) ∧ µ} is an ideal of S for every a ∈ S.

Lemma 4.8. Let S be an ordered semigroup and ∅ 6= I ⊆ S, then I is an ideal of
S if and only if the characteristic function fI is a (λ, µ)-fuzzy ideal of S.

Proof. Similar to the proof of Theorem 1 of Section 2. One can also see the proof
of Proposition 3.2 of [8]. �

Theorem 4.9. An ordered semigroup S is simple is simple if and only if it is (λ, µ)-
fuzzy simple.
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Proof. Suppose S is simple, let f be a (λ, µ)-fuzzy ideal of S and a, b ∈ S. By
previous proposition, the set Ia is an ideal of S. Since S is simple, we have Ia = S.
Then b ∈ Ia, from which we have that f(b) ∨ λ ≥ f(a) ∧ µ. Thus S is (λ, µ)-fuzzy
simple.

Conversely, suppose S contains proper ideals and let I be such ideal of S. By the
previous lemma, we know that fI is a (λ, µ)-fuzzy ideal of S. We have that S ⊆ I.
Indeed, let x ∈ S. Since S is (λ, µ)-fuzzy simple, fI(x) ∨ λ ≥ fI(b) ∧ µ for all b ∈ S.
Now let a ∈ I. Then we have fI(x)∨ λ ≥ fI(a)∧ µ = 1∧ µ = µ. Notice that λ < µ,
we conclude that fI(x) ≥ µ, which implies that fI(x) = 1, that is x ∈ I. Thus we
have that S ⊆ I, and so S = I. We get a contradiction. �

Lemma 4.10 ([3, 4]). An ordered semigroup S is simple if and only if for every
a ∈ S, we have S = (SaS].

Theorem 4.11. Let S be an ordered semigroup. Then S is simple if and only if for
every (λ, µ)-fuzzy interior ideal f of S, we have f(a)∨λ ≥ f(b)∧µ, for all a, b ∈ S.

Proof. Suppose S is simple. Let f be a (λ, µ)-fuzzy interior ideal of S and a, b ∈ S.
Since S is simple and b ∈ S, by the previous lemma, we have that S = (SbS]. Since
a ∈ S, we have that a ∈ (SbS]. Then there exist x, y ∈ S such that a ≤ xby. Since
a, xby ∈ S, a ≤ xby and f is a (λ, µ)-fuzzy interior ideal of S, we have that

f(a) ∨ λ ≥ f(xby) ∧ µ. (9)

Since x, b, y ∈ S and f is a (λ, µ)-fuzzy interior ideal of S, we have that

f(xby) ∨ λ ≥ f(b) ∧ µ. (10)

From (9) and (10) we conclude that f(a) ∨ λ = (f(a) ∨ λ) ∨ λ ≥ (f(xby) ∧ µ) ∨ λ =
(f(xby) ∨ λ) ∧ (µ ∨ λ) ≥ f(b) ∧ µ.

Conversely, Suppose that for every (λ, µ)-fuzzy interior ideal f of S, we have
f(a)∨λ ≥ f(b)∧µ, for all a, b ∈ S. Now let f be any (λ, µ)-fuzzy ideal f of S, then
it is a (λ, µ)-fuzzy interior ideal of S. So we have f(a)∨λ ≥ f(b)∧µ, for all a, b ∈ S.
Thus S is (λ, µ)-fuzzy simple by its definition. And from the previous theorem, we
conclude that S is simple. �

As a consequence we have

Theorem 4.12. For an ordered semigroup S, the following are equivalent:
(1) S is simple.
(2) S = (SaS] for every a ∈ S.
(3) S is (λ, µ)-fuzzy simple.
(4) For every (λ, µ)-fuzzy interior ideal f of S, we have f(a) ∨ λ ≥ f(b) ∧ µ, for

all a, b ∈ S.

5. Conclusion and further research

In this paper, we generalized Kehayopulu and Tsingelis’ results. We introduced
(λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior ideals of an ordered semigroup and stud-
ied them. When λ = 0 and µ = 1, we meet ordinary fuzzy ideals and fuzzy interior
ideals. From this view, we say that (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior ideals
are more general concepts than fuzzy ones.
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In [8], Yao gave the definition of (λ, µ)-fuzzy bi-ideals in semigroups. One can
study (λ, µ)-fuzzy bi-ideals in ordered semigroups. For example, one can research
the relationship among (λ, µ)-fuzzy ideals, (λ, µ)-fuzzy interior ideals and (λ, µ)-
fuzzy bi-ideals. We would like to explore this in next papers.
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