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Abstract. In this paper, the notions of basic feasible solutions and ba-
sic feasible directions with respect to linear ranking functions are defined.
We consider the linear programming with trapezoidal fuzzy variables and
develop the representation theorem, which provides the basis for the col-
umn generation. Then, we illustrate the results by an example.
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1. Introduction

Linear programming is one of the most widely used decision making tools for
solving real world problems, but it fails to deals with imprecise data. So the many
researchers succeed in capturing vague and imprecise information by fuzzy linear
programming (FLP) problems [1, 2]. The concept of fuzzy decision making was
first proposed by Bellman and Zadeh [1]. Tanaka et al. [10] used this concept for
solving mathematical programming problems. The first formulation of fuzzy lin-
ear programming (FLP ) was given by Zimmermann [14]. Chanas [3] proposed the
possibility of the identification of a complete fuzzy decision in FLP problem by use
of the parametric programming technique. Fang et al. [4] studied a method for
solving linear programming problems with fuzzy coefficients in constraints. Liu [7]
introduced a method for solving FLP problem based on the satisfaction degree of
the constraints. Maleki [9] studied a method for solving linear programming with
vagueness in constraints by using ranking function. Zhang et al. [13] formulated
a FLP problem as four objective constrained optimization problem where the cost
coefficients are fuzzy and also presented it’s solution. Ganesan and Veeramani [5]
introduced an approach to solve of FLP problem with symmetric trapezoidal fuzzy
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numbers without converting it into crisp model. By using of certain linear ranking
function for ordering trapezoidal fuzzy numbers, defined the dual of a fuzzy linear
programming problem with fuzzy variables, then the duality results and complemen-
tary slackness have been given [8]. However, in contrast with the vast literature on
modeling and solution procedures for a FLP problem, the studies in the large struc-
tured problems are rather scarce. Therefore, from practical point of view, it seems
necessary which consider the large structured programming problems, but even if it
is theoretically possible to solve these problems, in practice it is not always so. There
are some certain barriers which restrict the attempt of the analyst. This suggests
the idea of developing methods of solution that should not use simultaneously all
the data of the problem. In linear programming (LP) problems, such idea is due
to Dantzig and Wolfe [6] as the decomposition principle or the column generation,
which the original problem reformulates in terms of extreme points and extreme rays
of feasible region.

In this paper, we first attempt to extend one of the most important theorems of
the linear programming to fuzzy linear programming with trapezoidal fuzzy variables
under ranking functions, which we will refer to as fuzzy representation theorem and
then expand the column generation to these problems

This paper is organized as follows: In Section 2, some preliminary summaries on
the fuzzy numbers and the fuzzy linear programming is introduced as well as fuzzy
representation theorem. In Section 3, we introduced the column generation for FLP
problem with fuzzy variables. Finally, in Section 4, a numerical example is proposed
to illustrate of method.

2. Preliminaries

In this section, we introduce some basic concepts and results of fuzzy numbers,
fuzzy arithmetic and ranking of fuzzy numbers which are needed in the rest of the
paper.

2.1. Fuzzy numbers. Let R denote the set of all real numbers. In this paper, a
fuzzy number will be a fuzzy set ã : R −→ [0, 1] with the following properties:

(1) Its membership function is defined by

µã(x) =



x− (aL − α)
α

, aL − α ≤ x ≤ aL;

1, aL ≤ x ≤ aU ;
(aU + β)− x

β
, aU ≤ x ≤ aU + β;

0, otherwise,

(2) The membership function µã(x) is a piecewise continuous one,
(3) ã is fuzzy convex; that is, µã(λx + (1 − λ)y) ≥ min{µã(x), µã(y)}, ∀x, y ∈

R and λ ∈ [0, 1],

which is denoted by ã = (aL, aU , α, β)LR. The set of fuzzy numbers ã = (aL, aU , α, β),
where aL ≤ aU , α > 0, β > 0 and aL, aU , α, β ∈ R will be denoted by F (R). Let
ã = (aL, aU , α, β)LR and b̃ = (bL, bU , γ, θ)LR be two fuzzy numbers belonging to
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F (R), then the arithmetic operations between fuzzy numbers, or fuzzy numbers and
classical numbers, is described as follows:

(1) x > 0, x ∈ R; xã = (xaL, xaU , xα, xβ),
(2) x < 0, x ∈ R; xã = (xaU , xaL,−xβ,−xα),
(3) ã + b̃ = (aL + bL, aU + bU , α + γ, β + θ).

Next, we define a ranking function that represents a fuzzy number by means of a
classical number.

2.2. Ranking function. One of the ways for solving mathematical programming
problems in a fuzzy environment is to compare fuzzy numbers. The comparison
between fuzzy numbers is achieved by using a ranking function that fulfils certain
conditions, described in [11]. An appropriate approach to ordering the elements of
F (R) is to define a ranking function R : F (R) → R, which maps each fuzzy number
in the real line, where a natural order exists. Some orders on F (R) are defined as
follows:

(1) ã ≤f b̃ if and only if R(ã)≤R(b̃);
(2) ã <f b̃ if and only if R(ã)<R(b̃);
(3) ã =f b̃ if and only if R(ã)=R(b̃),

where ã and b̃ belong to F (R), R is a ranking function, and the symbols “ ≤f , <f ”
and “ =f ” mean inequalities and equality with respect to the ranking function R.

We will restrict our attention to linear ranking functions; that is, a ranking func-
tion R such that

R(kã + b̃) = kR(ã) +R(b̃),(2.1)

for any ã, b̃ ∈ F(R) and any k ∈ R.
Hence, we can choose a linear ranking function which satisfies Equation (2.1) as

R(ã) = cLaL + cUaU + cαα + cββ,(2.2)

where cL, cU , cα and cβ are arbitrary constants.
Yager [12] proposed a procedure for ordering fuzzy sets in which a ranking R(ã)

is calculated for the fuzzy number ã = (aL, aU , α, β)LR from its λ-cut, that is,
ãλ = [aL − (1− λ)α, aU + (1− λ)β], according to the following formula:

R(ã) =
1
2

∫ 1

0

(inf ãλ + sup ãλ)dλ,

which leads to

R(ã) =
aL + aU

2
+

β − α

4
.(2.3)

Therefore, for trapezoidal fuzzy numbers ã = (aL, aU , α, β) and b̃ = (bL, bU , γ, θ),
we have

ã ≥f b̃ if and only if aL + aU +
1
2
(β − α) ≥ bL + bU +

1
2
(θ − γ).

Remark 2.1 (Definition 1.3. in [5]). For any fuzzy number ã, let us define ã ≥f 0̃
if there exist ε ≥ 0 and ξ ≥ 0 such that ã ≥f (−ε, ε, ξ, ξ). We also denote (−ε, ε, ξ, ξ)
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by 0̃. Hence, without loss of generality, we consider 0̃ = (0, 0, 0, 0) as a trapezoidal
fuzzy zero.

Although all the results are shown on the basis of the ranking function defined
(2.2), all these results remain valid for general linear ranking function as defined by
(2.1). For the sake of simplicity, we have selected the ranking function (2.2) in order
to facilitate the reading of the paper.

2.3. Fuzzy linear programming. Consider the primal problem in standard form

min z̃ =f cx̃

s.t. Ax̃ =f b̃ (FLP )
x̃ ≥f 0̃,

with dual
max w̃ =f yb̃

s.t. yA ≤ c, (FLD)

where b̃ ∈ (F(R))m, A ∈ Rm×n, cT ∈ Rn are data, x̃ ∈ (F(R))n and yT ∈ Rm are to
be determined, and R is a linear ranking function as defined by (2.2).

Definition 2.2. A trapezoidal fuzzy vector x̃ ≥f 0̃ is said to be a fuzzy feasible
solution for FLP if x̃ satisfies the constraints Ax̃ =f b̃.

Definition 2.3. A fuzzy feasible solution x̃∗ is called a fuzzy optimal solution for
FLP if for all fuzzy feasible solutions x̃, we have cx̃≥fcx̃∗.

Definition 2.4. Let A be the coefficient matrix of the problem FLP with full row
rank and B be a nonsingular sub-matrix m×m of A. Let {B1, . . . , Bm} ⊂ {1, . . . , n}
denotes the index set of the columns of matrix B. Let N = {1, 2, . . . , n} \ B. In
this case, vector x̃ =f (x̃T

B , x̃T
N )T =f (B−1b̃, 0̃) is called a basic solution. If x̃B≥f 0̃,

then the fuzzy basic solution x̃ is called a fuzzy basic feasible solution and simply
denoted by FBFS.

Definition 2.5. A fuzzy vector d̃ ∈ (F(R))n is said to be a fuzzy feasible direction
(ray) of the FLP problem at x̃ ∈ (F(R))n, if there exists a positive scalar θ for which
x̃ + θd̃ is a fuzzy feasible solution of FLP. That is,

A(x̃ + θd̃) =f b̃

x̃ + θd̃ ≥f 0̃.
(2.4)

It is easily seen that (2.4) is the same as

Ad̃ =f 0̃
d̃ ≥f 0̃.

(2.5)

In this case, a fuzzy vector d̃ =f

[
d̃B

d̃N

]
=f

[
−B−1A.j 1̃

ẽj

]
, with B−1A.j 1̃ ≤f 0̃, where

1̃ = (1, 1, 1, 1) and ẽj is an unit fuzzy vector, is called a fuzzy basic feasible direction.

Lemma 2.6. The FLP problem is unbounded if for a fuzzy basic feasible direction
d̃, cd̃ <f 0̃.
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Proof. By definition 2.5, x̃ + θd̃ is a fuzzy feasible solution of FLP for a positive
fixed θ. The objective value is equal to z̃ =f cx̃ + θcd̃, which for large enough θ,
z̃ −→ −∞. This completes the proof. �

In the following, we generalize one of the fundamental theorems of linear pro-
gramming to linear programming with trapezoidal fuzzy variables. In particular, we
show that any element of a set P = {x̃ ∈ (F(R))n : Ax̃ ≥f b̃} that has at least one
fuzzy basic feasible solution can be represented as a convex combination of fuzzy
basic feasible solutions plus a nonnegative linear combination of fuzzy basic feasible
directions. A precise statement is given by the following theorem, which we refer to
as fuzzy representation theorem.

Theorem 2.7. (Fuzzy Representation Theorem) Let P = {x̃ ∈ (F(R))n : Ax̃ ≥f b̃}
be a nonempty set with at least a fuzzy basic feasible solution. Let x̃(1), x̃(2), . . . , x̃(k)

be the fuzzy basic feasible solutions, and let d̃(1), d̃(2), . . . , d̃(t) be the fuzzy basic fea-
sible directions of P . Then for any x̃ ∈ P

x̃ =f

k∑
i=1

λix̃
(i) +

t∑
j=1

µj d̃
(j)

k∑
i=1

λi1̃ =f 1̃

λi ≥ 0, i = 1, 2, . . . , k
µj ≥ 0, j = 1, 2, . . . , t,

(2.6)

where 1̃ = (1, 1, 1, 1) is a trapezoidal fuzzy number.

Proof. Let x̃ be an element of P that does not as

k∑
i=1

λix̃
(i) +

t∑
j=1

µj d̃
(j),

with
k∑

i=1

λi = 1, λi ≥ 0 and µj ≥ 0 under linear ranking function R. That is, the

system (2.6) or equivalently


R(x̃(1)

1 ) · · · R(x̃(k)
1 ) R(d̃(1)

1 ) · · · R(d̃(t)
1 )

... · · ·
...

... · · ·
...

R(x̃(1)
n ) · · · R(x̃(k)

n ) R(d̃(1)
n ) · · · R(d̃(t)

n )
R(1̃) · · · R(1̃) R(0̃) · · · R(0̃)





λ1

...
λk

µ1

...
µt


=


R(x̃1)

...
R(x̃n)
R(1̃)



λi ≥ 0, µj ≥ 0, i = 1, . . . , k, j = 1, . . . , t,
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has no a solution, then by the Farkas Lemma,

R(x̃(1)
1 ) · · · R(x̃(1)

n ) R(1̃)
... · · ·

...
...

R(x̃(k)
1 ) · · · R(x̃(k)

n ) R(1̃)
R(d̃(1)

1 ) · · · R(d̃(1)
n ) R(0̃)

... · · ·
...

...
R(d̃(t)

1 ) · · · R(d̃(t)
n ) R(0̃)




y1

...
yn

yn+1

 ≤ 0

[
R(x̃1) · · · R(x̃n) R(1̃)

]


y1

...
yn

yn+1

 > 0,

or equivalently

yT x̃(i) + yn+1 ≤f 0̃, i = 1, . . . , k(2.7)

yT d̃(j) ≤f 0̃, j = 1, . . . , t(2.8)

yT x̃ + yn+1 >f 0̃,(2.9)

where y = [y1, . . . , yn]T , has a solution. Now consider the following problem

max z̃0 =f yT x̃

s.t. Ax̃ ≥f b̃,

which is feasible and yT d̃(j) ≤f 0̃, j = 1, . . . , t implies that it is bounded. Therefore
there exists a fuzzy basic feasible solution x̃(α), which is an optimal solution. Thus
for any fuzzy feasible solution x̃, yT x̃ ≤f yT x̃(α) which implies a contradiction by
the relations (2.7) and (2.9) and completes the proof. �

3. Column generation

Consider the linear programming problem with trapezoidal fuzzy variables

min z̃ =f cx̃

s.t. AH x̃ =f b̃H (FP )
AE x̃ =f b̃E

x̃ ≥f 0̃,

where AH ∈ Rm1×n, AE ∈ Rm2×n, b̃H ∈ (F(R))m1 , b̃E ∈ (F(R))m2 and cT ∈ Rn

are data and x̃ ∈ (F(R))n is to be determined. Let X = {x̃ ∈ (F(R))n : AE x̃ =f

b̃E , x̃ ≥f 0̃}. Then by Theorem 2.7, any feasible point x̃ ∈ X can be written as:

x̃ =f

k∑
i=1

λix̃
(i) +

t∑
j=1

µj d̃
(j)

k∑
i=1

λi1̃ =f 1̃

λi ≥ 0, i = 1, 2, . . . , k
µj ≥ 0, j = 1, 2, . . . , t,

(3.1)
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where x̃(i) and d̃(j) are the basic feasible solutions and the basic feasible directions
of X respectively. The problem (FP ) can be rewritten in the terms of basic feasible
solutions and basic feasible directions as follows:

z̃ =f cx̃

or
R(z̃) = R(cx̃) = cR(x̃)

= cR(
k∑

i=1

λix̃
(i) +

t∑
j=1

µj d̃
(j))

= R(
k∑

i=1

cλix̃
(i) +

t∑
j=1

cµj d̃
(j))

= R(
k∑

i=1

(cx̃(i))λi +
t∑

j=1

(cd̃(j))µj).

Thus,

z̃ =f
k∑

i=1

(cx̃(i))λi +
t∑

j=1

(cd̃(j))µj ,

similarly for AH x̃ =f b̃H

k∑
i=1

(AH x̃(i))λi +
t∑

j=1

(AH d̃(j))µj =f b̃H .

Therefore

min z̃ =f

k∑
i=1

(cx̃(i))λi +
t∑

j=1

(cd̃(j))µj

s.t.
k∑

i=1

(AH x̃(i))λi +
t∑

j=1

(AH d̃(j))µj =f b̃H

k∑
i=1

λi1̃ =f 1̃

λi ≥ 0, i = 1, 2, . . . , k
µj ≥ 0, j = 1, 2, . . . , t.

(3.2)

This is a linear programming problem with fuzzy coefficients that can be solved by
simplex method. It is referred to as the master problem.

Theorem 3.1. The (FP ) and (3.2) problems have the same optimal value and every
optimal solution of (FP ) corresponds to an optimal solution of (3.2) with the same
objective function value and rice-versa.

Proof. Let (λ∗, µ∗) be an optimal solution of (3.2). In this way

z̃ =f
k∑

i=1

(cx̃(i))λ∗i +
t∑

j=1

(cd̃(j))µ∗j ≤f
k∑

i=1

(cx̃(i))λ
′

i +
t∑

j=1

(cd̃(j))µ
′

j
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or

c(
k∑

i=1

x̃(i)λ∗i +
t∑

j=1

d̃(j)µ∗j ) ≤f c(
k∑

i=1

x̃(i)λ
′

i +
t∑

j=1

d̃(j)µ
′

j),

for every feasible solution (λ
′
, µ

′
) of (3.2). Then by (3.1), we have

cx̃∗ ≤f cx̃
′
.

This shows that x̃∗ =f

k∑
i=1

x̃(i)λ∗i +
t∑

j=1

d̃(j)µ∗j is an optimal solution of (FP ). �

Now suppose that given a basic feasible solution (λ, µ) of (3.2) with correspond-
ing basis matrix B(m1+1)×(m1+1) = R(B̃), where B̃ is a fuzzy sub-matrix of the
constraints matrix of (3.2). Let (y, ym1+1) = ĉBB−1, where ĉB = R(c̃B) (c̃B is the
corresponding vector to the basis B̃). The optimality criterion is carried out by
computing the components of

cx̃(i) − (y, ym1+1)
[
AH x̃(i)

1̃

]
≥f 0̃, i = 1, 2, . . . , k(3.3)

and

cd̃(j) − (y, ym1+1)
[
AH d̃(j)

0̃

]
≥f 0̃, j = 1, 2, . . . , t.(3.4)

Hence, the relations (3.3) and (3.4) can be checked by determining

min
i

w̃0 =f (c− yAH)x̃(i) − ym1+11̃

min
j

w̃00 =f (c− yAH)d̃(j),

and verifying to see the optimal values are nonnegative. Since {x̃(i)} and {d̃(j)} are
the sets of basic feasible solutions and basic feasible directions of X respectively,
thus the optimality condition can be verified by

min w̃ =f (c− yAH)x̃− ym1+11̃

s.t. AE x̃ =f b̃E

x̃ ≥f 0̃.

(3.5)

Case 1: Suppose that the optimal value of this problem is unbounded. Recall
that this is only possible if a basic feasible direction d̃(α) is found such that (c −
yAH)d̃(α) <f 0̃. This means that condition (3.4) is violated. In this case, µα with

the column B−1

[
AH d̃(α)

0̃

]
is entering to basis.

Case 2: Suppose that the optimal value is bounded. Let x̃(β) be an optimal solution
of (3.5). If the optimal value is nonnegative, then by optimality x̃(β), for each basic
feasible solution x̃(i), the optimality condition (3.3) holds and stop with an optimal

solution of the overall problem. Otherwise, λβ with the column B−1

[
AH x̃(β)

1̃

]
is

the entering to basis.
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We therefore summarize the solution method for obtaining the fuzzy optimal
solution as well as the dual evaluators at the final stage as follows

step 1: From the corresponding master problem (3.2) to (FP) and let (λ, µ)
be an optimal solution and y be the dual optimal.

step 2: Form the sub-problem (3.5) by using optimal solutions obtained in
step 1.

step 3: Solve the sub-problem of obtained in step 2, which one of the following
two cases occurs:
3-1: If the sub-problem is unbounded in direction d̃α, then a variable µα

with the column B−1

[
AH d̃(α)

0̃

]
enters to basis.

3-2: If the optimal value is nonnegative, stop and the present solution is

optimal. Otherwise, a variable λβ with the column B−1

[
AH x̃(β)

1̃

]
is the

entering variable to basis.
step 4: Perform a ratio test to determine the leaving a variable in the problem

(3.2), then update B̃ and return to step 2.

4. A numerical example

Consider the following fuzzy linear programming problem

min z̃ =f −x̃1 − 2x̃2 − x̃3

s.t. x̃1 + x̃2 + x̃3 ≤f (7, 9, 4, 20)
−x̃1 + x̃2 ≤f (1, 3, 1, 1)
−x̃1 + 2x̃2 ≤f (6, 7, 3, 9)

x̃3 ≤f (2, 3, 1, 3)
x̃1, x̃2, x̃3 ≥f 0̃.

The first constraint is handled as AH x̃ =f b̃H and the rest of the constraints are
treated by X. Note that x̃(1) =f (0̃, 0̃, 0̃)T is a basic feasible solution of X. An initial
basic feasible solution for the master problem is (s1, λ1) = (12, 1) which corresponded
to basis

B̃ =f

[
1̃ AH x̃(1)

0̃ 1̃

]
=f

[
1̃ 0̃
0̃ 1̃

]
.

For this basis,
c̃B =f (0̃, cx̃(1)) =f (0̃, 0̃),

and
(y1, y2) = ĉBB−1 = (0, 0).

Therefore, the sub-problem (3.5) becomes

min z̃ =f −x̃1 − 2x̃2 − x̃3

s.t. −x̃1 + x̃2 ≤f (1, 3, 1, 1)
−x̃1 + 2x̃2 ≤f (6, 7, 3, 9)

x̃3 ≤f (2, 3, 1, 3)
x̃1, x̃2, x̃3 ≥f 0̃.
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This sub-problem is unbounded in direction d̃(1) =f

(2, 2, 2, 2)
(1, 1, 1, 1)
(0, 0, 0, 0)

 . Thus, µ1 with

column

B−1

[
AH d̃(1)

0̃

]
=f

[
(3, 3, 3, 3)
(0, 0, 0, 0)

]
is the entering to the basis and s1 leaves from the basis.
At the second iteration:

B̃ =f

[
AH d̃(1) AH x̃(1)

0̃ 1̃

]
=f

[
(3, 3, 3, 3) (0, 0, 0, 0)
(0, 0, 0, 0) (1, 1, 1, 1)

]
,

c̃B =f (cd̃(1), cx̃(1)) =f ((−4,−4, 4, 4), (0, 0, 0, 0)),

(y1, y2) = (−4
3
, 0),

(µ1, λ1) = (4, 1).

In this way, the sub-problem (3.5) becomes

min z̃ =f 1
3 x̃1 − 2

3 x̃2 + 1
3 x̃3

s.t. −x̃1 + x̃2 ≤f (1, 3, 1, 1)
−x̃1 + 2x̃2 ≤f (6, 7, 3, 9)

x̃3 ≤f (2, 3, 1, 3)
x̃1, x̃2, x̃3 ≥f 0̃,

which has an optimal solution x̃(2) =f

(0, 5, 5, 11)
(1, 8, 6, 12)
(0, 0, 0, 0)

 with the objective function

w̃ =f (− 16
3 , 1, 29

3 , 23
3 ) <f 0̃. Therefore λ2 with the column

B−1

[
AH x̃(2)

1̃

]
=f

[
( 1
3 , 13

3 , 11
3 , 23

3 )
(1, 1, 1, 1)

]
,

is the entering to basis and λ1 leaves from the basis.
At the third iteration,

B̃ =f

[
AH d̃(1) AH x̃(2)

0̃ 1̃

]
=f

[
(3, 3, 3, 3) (1, 13, 11, 23)
(0, 0, 0, 0) (1, 1, 1, 1)

]
,

c̃B =f (cd̃(1), cx̃(2)) =f ((−4,−4, 4, 4), (−21,−2, 35, 17)),

(y1, y2) = (−4
3
,−8

3
),

(µ1, λ2) = (
2
3
, 1).

The optimal solution of the corresponding sub-problem remains the same and the
optimal value is equal to zero. Therefore, the optimal x̃∗ is given by

x̃∗ =f λ2x̃
(2) + µ1d̃

(1) =f 1

(0, 5, 5, 11)
(1, 8, 6, 12)
(0, 0, 0, 0)

 +
2
3

(2, 2, 2, 2)
(1, 1, 1, 1)
(0, 0, 0, 0)


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