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Abstract. In this article, we consider the variety Alg(τ) of all algebras
of type τ and fuzzy fully invariant congruence relations on the algebra
Fτ (X) of all terms algebra of type τ , where co-domain of them is a complete
lattice L with the least element 0 and the greatest element 1 then we show
that the lattice of all equational theories can be embedded into the lattice
of all fuzzy fully invariant congruence relations on Fτ (X) and the lattice
of all varieties of type τ is dually isomorphic to a sublattice of the lattice
of all fuzzy fully invariant congruence relations on Fτ (X). Using a Galois
connection, we obtain the Birkhoff-type characterization, namely, every
variety can be defined by a set of fuzzy fully invariant congruence relations
on Fτ (X). In a special case, if L is the unit interval [0, 1] of real numbers,
we show that the set of all fuzzy subvarieties of Alg(τ), where the value
of an algebra A ∈ Alg(τ) is 1 if and only if |A| = 1 and the set of all
fuzzy fully invariant congruence equality relations on Fτ (X) are coincide,
whenever 0 is an image of elements in the both sets.
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1. Introduction

A variety of type τ is a class of algebras of type τ closed under taking of sub-
algebras, homomorphic images and direct products. It is known that every class of
algebras defined by a set of equations, set of pairs of terms, is a variety so-called
an equational class. In the opposite side, we call every subset of equations which
equals to the set of all identities of a class of algebras an equational theory. In [4],
the lattice of all equational classes is dually isomorphic to the lattice of all equa-
tional theories as complete lattices. The notion of fuzzy set was introduced first by
Zadeh [14] as a function from set X to the unit interval [0, 1]. The first inspiration
application to many algebraic structures was the concept of fuzzy group introduced
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by Rosenfeld [10]. In universal algebra, Murali [7] introduced and investigated fuzzy
subalgebras. Fuzzification was applied to classes of algebras by Mordeson [6]. The
notion of a fuzzy subvariety was introduced by Šešelja [11] as a poset valued variety.
Then Pibaljomme [9] specified co-domain of fuzzy subvarieties to the unit interval
[0, 1] and showed that the lattice of all subvarieties of a given varieties can be em-
bedded into the lattice of all fuzzy subvarieties of the variety. The concept of fuzzy
equality was introduced first by Höhle [5] who has been used by many others see
e.g. [6, 12, 1]. In unversal algebra, the concept of fuzzy equality was introduced and
investigated by Bělohávek (see [1, 13]) to many algebraic structures such as subal-
gebras, products and varieties of L-algebras, where L is a residuated lattice. In [12],
Šešelja and Tepavčević investigated compatible fuzzy equality so-called fuzzy iden-
tities in universal algebra. In [1], Bělohávek introduced the concept of fuzzy fully
invariant congruence relations on the L-algebra of terms and generalized well-known
Birkhoff’s result [2] in Pavelka style approach [8].

Our investigation is to find an interconnection between the lattice of all equational
theories, the lattice of all fuzzy fully invariant congruence relations on the algebra
of terms, the lattice of all fuzzy subvarieties of the variety of all algebras of the same
type and the lattice of all subvarieties of the same type. Finally, we use a Galois
connection to show the Birkhoff-type theorem, namely, every variety can be defined
by a set of fuzzy fully invariant congruence relations.

2. Preliminaries

Let τ = (ni)i∈I be a type of algebras with operation symbols (fi)i∈I , where fi

is an ni-ary operation. An algebra of type τ is an ordered pair A := (A; (fA
i )i∈I),

where A is a non-empty set and (fA
i )i∈I is a sequence of operations on A indexed

by a non-empty index set I such that to each ni− ary operation symbol fi there
is a corresponding ni-ary operation fA

i on A. The set A is called the universe of
A and the sequence (fA

i )i∈I is called the sequence of fundamental operations of A.
We often write A instead of A := (A; (fA

i )i∈I). We denote by Alg(τ) the class of all
algebras of type τ . A class V of algebras of type τ is called a variety if it is closed
under taking of homomorphic images (H), subalgebras (S) and direct products (P).

Let Xn := {x1, . . . , xn} be a finite set of variables, Wτ (Xn) be the set of all n-

ary terms of type τ , and let Wτ (X) :=
∞⋃

n=1

Wτ (Xn), X := {x1, . . . , xn, . . .} be the

set of all terms of type τ. Then we denote by Fτ (X) the absolutely free algebra;
Fτ (X) := (Wτ (X); (f̄i)i∈I) with f̄i : (t1, . . . , tni

) 7→ fi(t1, . . . , tni
).

An equation of type τ is a pair (s, t) ∈ Wτ (X)2; such pairs are commonly written
as s ≈ t. An equation s ≈ t is an identity of an algebra A, denoted by A |= s ≈ t if
sA = tA, where sA and tA are the term operations induced by terms s and t on A.
A class K of algebras of type τ satisfies an equation s ≈ t, denoted by K |= s ≈ t,
if A |= s ≈ t, for every A ∈ K. Let Σ be a set of equations of type τ . A class K
of algebras of type τ is said to satisfy Σ , denoted by K |= Σ, if K |= s ≈ t for
every s ≈ t ∈ Σ. The notation K 6|= Σ means that K dose not satisfy Σ. We observe
that |== {(A, s ≈ t) ∈ Alg(τ)×Wτ (X)2 | A |= s ≈ t} is a relation between Alg(τ)
and Wτ (X)2. Therefore, the relation |= gives a Galois connection (Mod, Id) between
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the class Alg(τ) and the set Wτ (X)2 defined by letting for every Σ ⊆ Wτ (X)2 and
K ⊆ Alg(τ),

ModΣ := {A ∈ Alg(τ) | A |= Σ} and
IdK := {s ≈ t ∈ Wτ (X)2 | K |= s ≈ t}.

A class K of algebras of type τ is called an equational class if there is a set
Σ ⊆ Wτ (X)2 such that K = ModΣ. A class Σ of equations of type τ is called an
equational theory if there is a class K of algebras of type τ such that Σ = IdK. We
note that V is a variety if and only if ModIdV = V .

In [4], we know that the set of all equational classes L(τ) forms a complete lattice,
where the meet ∧ and the join ∨ operations are defined as following

K ∧ V = K ∩ V and
K ∨ V = ∩{T ∈ L(τ) | T ⊇ K ∪ V }

for every K, V ⊆ Alg(τ) and the set of all equational theories E(τ) forms a complete
lattice, where the meet ∧ and the join ∨ operations are defined as following

Σ ∧ Ω = Σ ∩ Ω and
Σ ∨ Ω = ∩{Ψ ∈ E(τ) | Ψ ⊇ Σ ∪ Ω}

for every Σ,Ω ⊆ Wτ (X)2. Moreover, the lattice of all equational classes is dually
isomorphic to the lattice of all equational theories.

A congruence relation θ on Fτ (X) is said to be fully invariant if whenever (x, y) ∈
θ, we also have (ϕ(x), ϕ(y)) ∈ θ, for every endomorphism ϕ of Fτ (X); that is, if
θ compatible with all endomorphisms ϕ of Fτ (X). It is clear that Wτ (X)2 and
∆Wτ (X) := {(t, t) | t ∈ Wτ (X)} are fully invariant congruence relation on Fτ (X).
We denote by End(Fτ (X)) the set of all endomorphisms of Fτ (X).

Theorem 2.1 ([4]). Let Σ ⊆ Wτ (X)2 be a set of equations of type τ . Then Σ is
an equational theory if and only if it is a fully invariant congruence relation on the
term algebra Fτ (X).

Theorem 2.2 ([4]). A class K of algebras of type τ is an equational class if and
only if it is a variety.

For more information about terms, identities, and varieties see, e.g., [3, 4].
Let (L,∧,∨, 0, 1) be a complete lattice with the least element 0 and the greatest

element 1 in L. A mapping µ : Alg(τ) → L is called a fuzzy subvariety of Alg(τ) if
the following properties are satisfied:

(1) ∀B ∈ Alg(τ)∀A ∈ H(B), µ(A) ≥ µ(B),
(2) ∀B ∈ Alg(τ)∀A ∈ S(B), µ(A) ≥ µ(B), and
(3) µ(

∏
j∈J

Aj) ≥ inf{µ(Aj) | j ∈ J} for all Aj ∈ Alg(τ).

The set of all fuzzy subvarieties of Alg(τ) is denoted by FS(Alg(τ)) and the set of
all fuzzy subvarieties of Alg(τ), where µ(A) = 1 if and only if |A| = 1 is denoted
by FSE(Alg(τ)). In ([9]), we know that the set FS(Alg(τ)) with compositions the
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meet ∧ and the join ∨ is a complete lattice, where∧
j∈J

µj :=
⋂
j∈J

µj and

∨
j∈J

µj :=
⋂
{µ ∈ FS(Alg(τ)) |

⋃
j∈J

µj ⊆ µ}

for every family {µj | j ∈ J} ⊆ FS(Alg(τ)).
A mapping E : Wτ (X)2 → L is called a compatible fuzzy equivalence relation on

Wτ (X) if
(1) E(t, t) = 1, ∀t ∈ Wτ (X) (reflexivity),
(2) E(s, t) = E(t, s), ∀s, t ∈ Wτ (X) (symmetry),
(3) E(s, t) ∧ E(t, p) ≤ E(s, p), ∀s, t, p ∈ Wτ (X) (transitivity) and

(4)
ni∧

j=1

E(sj , tj) ≤ E(f̄i(s1, . . . , sni), f̄i(t1, . . . , tni)), for all ni-ary operation f̄i

on Wτ (X) and s1, . . . , sni , t1, . . . , tni ∈ Wτ (X) (compatibility).
A compatible fuzzy equivalence relation E on Wτ (X), where E(s, t) = 1 implies

s = t will be called a compatible fuzzy equality relation on Wτ (X).
Form now on and in the rest of the paper, we assume that (L,∧,∨, 0, 1) denotes

an arbitrary complete lattice with the least element 0 and the greatest element 1
unless specified otherwise.

3. Fuzzy fully invariant congruence relations

In this section, we mention the concept of fuzzy fully invariant congruence relation
introductioned by Bělohávek ([1]) and prove that the lattice of all equational theories
is embedded into the lattice of all fuzzy fully invariant congruence relations.

Definition 3.1 ([1]). A compatible fuzzy equivalence relation E : Wτ (X)2 → L is
called a fuzzy fully invariant congruence relation on Fτ (X) if E(ϕ(s), ϕ(t)) ≥ E(s, t)
for all s, t ∈ Wτ (X) and ϕ ∈ End(Fτ (X)).

A fuzzy fully invariant congruence relation on Fτ (X), where E(s, t) = 1 implies
s = t will be called a fuzzy fully invariant congruence equality relation.

We denote by FF (Fτ (X)) the set of all fuzzy fully invariant congruence rela-
tions on Fτ (X) and by FFE(Fτ (X)) the set of all fuzzy fully invariant congruence
equality relations on Fτ (X).

Let E be a fuzzy set of Wτ (X)2 and α ∈ L. We note that the set

Eα := {(s, t) ∈ Wτ (X)2 | E(s, t) ≥ α}
is called α− cut set of E.

The next lemma is equivalent to the definition of a fuzzy fully invariant congruence
relation on Fτ (X).

Lemma 3.2. Let E : Wτ (X)2 → L be a fuzzy set. Then E ∈ FF (Fτ (X)) if and
only if Eα is a fully invariant congruence relation on Fτ (X), for all α ∈ L.

Proof. (⇒) : Let E ∈ FF (Fτ (X)) and α ∈ L. By Theorem 1 in [12], Eα is a
congruence relation on Fτ (X). Let (s, t) ∈ Eα and ϕ ∈ End(Fτ (X)). Then α ≤
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E(s, t) ≤ E(ϕ(s), ϕ(t)). Hence, (ϕ(s), ϕ(t)) ∈ Eα. Thus, Eα is a fully invariant on
Fτ (X).

(⇐) : Suppose that for all α ∈ L, Eα is a fully invariant congruence relation on
Fτ (X). Since 1 ∈ L,E1 is a fully invariant congruence relation on Fτ (X). We have
(t, t) ∈ E1 for all t ∈ Wτ (X), i.e., E(t, t) = 1 for all t ∈ Wτ (X).

Let s, t ∈ Wτ (X). Since (s, t) ∈ EE(s,t) and EE(s,t) is a fully invariant congruence
relation on Fτ (X), we have (t, s) ∈ EE(s,t). Hence, E(t, s) ≥ E(s, t). Similarly,
E(s, t) ≥ E(t, s). Thus, E(s, t) = E(t, s).

Let s, t, p ∈ Wτ (X) and E(s, t) ∧ E(t, p) = α. Then E(s, t) ≥ α and E(t, p) ≥ α.
Hence, (s, t), (t, p) ∈ Eα. By assumption and (s, t), (t, p) ∈ Eα, we have (s, p) ∈ Eα.
Thus, E(s, p) ≥ α = E(s, t) ∧ E(t, p).

Next, we show that E is compatible with all ni-ary operation f̄i ∈ (f̄i)i∈I . Let
s1, . . . , sni

, t1, . . . , tni
∈ Wτ (X) and f̄i ∈ (f̄i)i∈I be an ni-ary operation on Wτ (X).

Let
ni∧

j=1

E(sj , tj) = α. Then (sj , tj) ∈ Eα, for all j = 1, . . . , ni. Since Eα is a fully

invariant congruence relation on Fτ (X), (f̄(s1, s2, . . . , sni
), f̄(t1, t2, . . . , tni

)) ∈ Eα.

Hence, E(f̄(s1, s2, . . . , sni), f̄(t1, t2, . . . , tni)) ≥ α =
ni∧

j=1

E(sj , tj).

Finally, we show that E(ϕ(s), ϕ(t)) ≥ E(s, t) for all ϕ ∈ End(Fτ (X)) and s, t ∈
Wτ (X). Let s, t ∈ Wτ (X) and ϕ ∈ End(Fτ (X)). Since EE(s,t) is a fully invariant
congruence relation on Fτ (X), (ϕ(s), ϕ(t)) ∈ EE(s,t). Hence, E(ϕ(s), ϕ(t)) ≥ E(s, t).
Therefore, E ∈ FF (Fτ (X)). �

By Theorem 2.1 and Lemma 3.2, we obtain the following corollary.

Corollary 3.3. Let E : Wτ (X)2 → L be a fuzzy set. Then E ∈ FF (Fτ (X)) if and
only if Eα is an equational theory, for all α ∈ L.

Let Σ ⊆ Wτ (X)2. A function EΣ : Wτ (X)2 → L define by

EΣ(s, t) =
{

1, if (s, t) ∈ Σ;
0, otherwise,

for all (s, t) ∈ Wτ (X)2 is called a characteristic function.

Proposition 3.4. Let Σ ⊆ Wτ (X)2. Then the characteristic function EΣ is a fuzzy
fully invariant congruence relation on Fτ (X) if and only if Σ is an equational theory.

Proof. (⇒) : Assume that EΣ is a fuzzy fully invariant congruence relation on Fτ (X).
By Corollary 3.3, E1 is an equational theory. It follows that Σ is an equational theory.

(⇐) : Assume that Σ is an equational theory. We have

(EΣ)α =
{

Σ, if α > 0;
Wτ (X)2, if α = 0.

By Corollary 3.3, this implies that EΣ is a fuzzy fully invariant congruence relation
on Fτ (X). �

Proposition 3.5. Let Σ be an equational theory and α ∈ L \ {0}. Then there exists
a fuzzy fully invariant congruence relation E on Fτ (X) such that Σ = Eα.
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Proof. Let Σ be an equational theory and α ∈ L \ {0}. Let E : Wτ (X)2 → L be a
fuzzy set defined by letting for every (s, t) ∈ Wτ (X)2,

E(s, t) =

 1, if s = t;
α, if (s, t) ∈ Σ \∆Wτ (X);
0, otherwise.

Then, it can be easily verified that E is a fuzzy fully invariant congruence relation
on Fτ (X) such that Σ = Eα. �

Proposition 3.6. Let µ : Alg(τ) → L be a fuzzy subvariety and α ∈ L \ {0} such
that µα 6= ∅. Then there exists a fuzzy fully invariant congruence relation E on
Fτ (X) such that µα = ModEα.

Proof. Let µ : Alg(τ) → L be a fuzzy subvariety and α ∈ L \ {0} such that µα 6= ∅.
Let E : Wτ (X)2 → L be a fuzzy set defined by letting for every (s, t) ∈ Wτ (X)2,

E(s, t) =

 1, if s = t;
α, if (s, t) ∈ Idµα \∆Wτ (X);
0, otherwise.

Then, it is easy to verify that E is a fuzzy fully invariant congruence relation on
Fτ (X). Since Eα = Idµα, and by Proposition 3.3 in [9] and µα is a variety, we have
ModEα = ModIdµα = µα. �

Proposition 3.7. Let E ∈ FF (Fτ (X)) and {αi | i ∈ I} ⊆ L. Then∧
i∈I

Eαi
= E∨

i∈I

αi
.

Proof. Let E ∈ FF (Fτ (X)) and {αi | i ∈ I} ⊆ L. Since E∨
i∈I

αi
⊆ Eαi

for all i ∈ I,

we have E∨
i∈I

αi
⊆
∧
i∈I

Eαi
. Let (s, t) ∈

∧
i∈I

Eαi
. Then E(s, t) ≥ αi for all i ∈ I.

Hence, E(s, t) ≥
∨
i∈I

αi. Thus, (s, t) ∈ E∨
i∈I

αi
. Therefore,

∧
i∈I

Eαi = E∨
i∈I

αi
. �

At the end of this section, we present another example of a fuzzy fully invariant
congruence relation on Fτ (X).

Example 3.8. Let type τ = (2), B := Mod{x(yz) ≈ (xy)z, x2 ≈ x} be the variety
of bands and RB := Mod{x(yz) ≈ (xy)z, x2 ≈ x, xyz ≈ xz} be the variety of
rectangular bands. We define the mapping E : Wτ (X)2 → [0, 1] by letting for every
(s, t) ∈ Wτ (X)2,

E(s, t) =


1, if s = t;
0.8, if (s, t) ∈ IdB \∆Wτ (X);
0.4, if (s, t) ∈ Id(RB) \ IdB;
0, otherwise.

Then E is a fuzzy fully invariant congruence relation on Fτ (X), since every level
subset of E is a fully invariant congruence relation on Fτ (X).
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4. Lattice of fuzzy fully invariant congruence relations

Let E and F ∈ FF (Fτ (X)). We define the order on FF (Fτ (X)) by E ≤ F
(sometimes written by E ⊆ F ) which E ≤ F means E(s, t) ≤ F (s, t) for all (s, t) ∈
Wτ (X)2. We repeat the meaning of unions and intersections of fuzzy subsets ([8])
of Fτ (X). Let E,F ∈ FF (Fτ (X)) and (s, t) ∈ Wτ (X)2. We define

(E ∩ F )(s, t) := min{E(s, t), F (s, t)} and
(E ∪ F )(s, t) := max{E(s, t), F (s, t)}.

For arbitrary intersections and unions, we define(⋂
i∈I

Ei

)
(s, t) := inf{Ei(s, t) | i ∈ I} and(⋃

i∈I

Ei

)
(s, t) := sup{Ei(s, t) | i ∈ I},

for a family {Ei | i ∈ I} of fuzzy subsets of Fτ (X) and (s, t) ∈ Wτ (X)2. Then the
following lemma is easy to verify.

Lemma 4.1. Let {Ei | i ∈ I} be a family of fuzzy fully invariant congruence
relations on Fτ (X). Then

⋂
i∈I

Ei is a fuzzy fully invariant congruence relation on

Fτ (X).

In general, the union of fuzzy fully invariant congruence relations need not to be
a fuzzy fully invariant congruence relation as the following example shows.

Example 4.2. Let L be a lattice given in Figure 1 and type τ = (2).

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

0

α β

1

rr
r

r
Figure 1.

Let Σ1 = IdMod{x(yz) ≈ (xy)z, x2 ≈ x} and Σ2 = IdMod{x(yz) ≈ (xy)z, xy ≈
yx}. We define a fuzzy fully invariant congruence relation E : Wτ (X)2 → L by

E(s, t) :=


1, if (s, t) ∈ Σ1 ∩ Σ2;
α, if (s, t) ∈ Σ1 \ Σ1 ∩ Σ2;
β, if (s, t) ∈ Σ2 \ Σ1 ∩ Σ2;
0, otherwise,
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for every (s, t) ∈ Wτ (X)2 and define a fuzzy fully invariant congruence relation
F : Wτ (X)2 → L by letting for every (s, t) ∈ Wτ (X)2,

F (s, t) :=


1, if (s, t) ∈ Σ1 ∩ Σ2;
α, if (s, t) ∈ Σ2 \ Σ1 ∩ Σ2;
β, if (s, t) ∈ Σ1 \ Σ1 ∩ Σ2;
0, otherwise.

Then we have for every (s, t) ∈ Wτ (X)2,

(E ∪ F )(s, t) :=
{

1, if (s, t) ∈ Σ1 ∪ Σ2;
0, otherwise.

We obtain (E ∪F )1 = Σ1 ∪Σ2 which is not an equational theory. By Corollary 3.3,
we obtain that E ∪ F is not a fuzzy fully invariant congruence relation of Fτ (X).

Next, we consider the lattice of all fuzzy fully invariant congruence relations on
Fτ (X). Let {Ej | j ∈ J} be a family of fuzzy fully invariant congruence relations
on Fτ (X). We define the meet ∧ and the join ∨ on FF (Fτ (X)) as follow:∧

j∈J

Ej :=
⋂
j∈J

Ej and

∨
j∈J

Ej :=
⋂
{E ∈ FF (Fτ (X)) |

⋃
j∈J

Ej ⊆ E}.

Then we have the following theorem which is easy to verify.

Theorem 4.3. The lattice of all fuzzy fully invariant congruence relations on Fτ (X)
denoted by FF (Fτ (X)) := (FF (Fτ (X)),∧,∨) forms a complete lattice which has the
least and the greatest elements, say 0,1 respectively, where 1(s, t) = 1 and

0(s, t) =
{

1, if s = t,
0, otherwise,

for all (s, t) ∈ Wτ (X)2.

In the following example, we show that FFE(Fτ (X)) is not a sublattice of
FF (Fτ (X)).

Example 4.4. Let τ = (2), L be a lattice given in Figure 1 and Σ = IdMod{x(yz) ≈
(xy)z, x2 ≈ x, xy ≈ yx}. We define a fuzzy fully invariant congruence equality
relation E : Wτ (X)2 → L by letting for every (s, t) ∈ Wτ (X)2,

E(s, t) :=

 1, if s = t;
α, if (s, t) ∈ Σ \∆Wτ (X);
0, otherwise,

and define a fuzzy fully invariant congruence equality relation F : Wτ (X)2 → L by
letting for every (s, t) ∈ Wτ (X)2,

F (s, t) :=

 1, if s = t;
β, if (s, t) ∈ Σ \∆Wτ (X);
0, otherwise.
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Then we have

(E ∨ F )(s, t) :=
{

1, if (s, t) ∈ Σ;
0, otherwise.

Hence, we obtain (E ∨ F )1 = Σ. Thus, E ∨ F 6∈ FFE(Fτ (X)).

Using Proposition 3.4, we prove that the lattice E(τ) of all equational theories
of type τ can be embedded into the lattice of all fuzzy fully invariant congruence
relations on Fτ (X).

Theorem 4.5. The lattice E(τ) of all equational theories of type τ can be embed-
ded into the lattice FF (Fτ (X)) of all fuzzy fully invariant congruence relations on
Fτ (X).

Proof. We define a mapping ϕ : E(τ) → FF (Fτ (X)) by Σ 7→ EΣ for every equational
theory Σ in E(τ). By Proposition 3.4, ϕ is an injective mapping. Let Σ,Σ′ be
equational theories in E(τ). It is clear that ϕ(Σ ∧ Σ′) = EΣ ∧ EΣ′ . Next, we show
that ϕ(Σ∨Σ′) = EΣ∨EΣ′ , i.e., EΣ∨Σ′ = EΣ∨EΣ′ . Now, we have EΣ∨Σ′ ⊇ EΣ∪EΣ′ .
Let (s, t) ∈ Wτ (X)2 and F ∈ FF (Fτ (X)) be such that F ⊇ EΣ ∪ EΣ′ .

Case 1. Let (s, t) ∈ Σ ∨ Σ′. Since F ⊇ EΣ ∪ EΣ′ , F1 ⊇ (EΣ ∪ EΣ′)1 = Σ ∪ Σ′. It
follows that F1 ⊇ Σ ∨ Σ′. Hence, F (s, t) = 1 = EΣ∨Σ′(s, t).

Case 2. Let (s, t) 6∈ Σ ∨ Σ′. Then we have EΣ∨Σ′(s, t) = 0 ≤ F (s, t). Thus,
ϕ(Σ ∨ Σ′) = EΣ ∨ EΣ′ . This completes the proof. �

Since the lattice of all equational theories of type τ is dually isomorphic to the
lattice of all varieties of type τ and by Theorem 4.5, we have the following theorem.

Theorem 4.6. The lattice L(τ) of all varieties of type τ is dually isomorphic to a
sublattice of the lattice FF (Fτ (X)).

In the case L = [0, 1], we define the fuzzy fully invariant congruence relation on
Fτ (X) generated by a fuzzy subset of Wτ (X)2 as follows. Let E be a fuzzy subset
of Wτ (X)2. The fuzzy fully invariant congruence relation on Fτ (X) generated by E
is defined by

< E >FF :=
⋂
{F ∈ FF (Fτ (X)) | E ⊆ F}.

Now, we want to describe the construction of the fuzzy invariant congruence relation
on Fτ (X) generated by a fuzzy subset E of Wτ (X)2.

Theorem 4.7. Let E : Wτ (X)2 → [0, 1] be a fuzzy subset of Wτ (X)2. Define a
mapping F : Wτ (X)2 → [0, 1] by

F (s, t) = sup{α ∈ [0, 1] | (s, t) ∈ IdModEα}

for every (s, t) ∈ Wτ (X)2. Then F =< E >FF .

Proof. First, we prove that F is a fuzzy fully invariant congruence relation on
Fτ (X). It is sufficient to prove that for all α ∈ Im(F ), Fα is a fully invariant
congruence relation on Fτ (X). Let α ∈ Im(F ). Since (t, t) ∈ IdModE1 for all
t ∈ Wτ (X), F (t, t) = 1. Hence, (t, t) ∈ Fα for all t ∈ Wτ (X).
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Let (s, t) ∈ Fα. We have (s, t) ∈ IdModEα if and only if (t, s) ∈ IdModEα.
Hence, we obtain {α ∈ [0, 1] | (s, t) ∈ IdModEα} = {α ∈ [0, 1] | (t, s) ∈ IdModEα}.
Then F (s, t) = F (t, s). This implies that (t, s) ∈ Fα.

Let (s, t), (t, p) ∈ Fα. Then F (s, t) ≥ α and F (t, p) ≥ α. Without loss of generality,
we assume that F (s, t) ≤ F (t, p). If F (s, t) = 0 then α = 0. Hence, (s, p) ∈ Fα.
Suppose that F (s, t) > 0. Let γ ∈ [0, 1] be such that γ < F (s, t). Hence,(s, t), (t, p) ∈
IdModEγ . Since IdModEγ is a fully invariant congruence relation on Fτ (X) and
(s, t), (t, p) ∈ IdModEγ , we have (s, p) ∈ IdModEγ . This implies that F (s, p) ≥
F (s, t) ≥ α. Therefore, (s, p) ∈ Fα.

Let (s1, t1), . . . , (sni
, tni

) ∈ Fα and f̄i ∈ (f̄i)i∈I be an ni−ary operation. Then
F (sj , tj) ≥ α for all j = 1, . . . , ni. Without loss of generality, we may assume that
F (s1, t1) ≤ . . . ≤ F (sni , tni). If F (s1, t1) = 0 then α = 0. Hence, (f̄i(s1, . . . , sni),
f̄i(t1, . . . , tni)) ∈ Fα. Suppose that F (s1, t1) > 0. Let γ ∈ [0, 1] be such that
F (s1, t1) > γ. Then (sj , tj) ∈ IdModEγ for all j = 1, . . . , ni. Since IdModEγ

is a fully invariant congruence relation on Fτ (X) and (sj , tj) ∈ IdModEγ , for every
j = 1, . . . , ni, we have (f̄i(s1, . . . , sni

), f̄i(t1, . . . , tni
)) ∈ IdModEγ . It follows that

F (f̄i(s1, . . . , sni), f̄i(t1, . . . , tni)) ≥ F (s1, t1) ≥ α. Thus,

(f̄i(s1, . . . , sni), f̄i(t1, . . . , tni)) ∈ Fα.

Let (s, t) ∈ Fα and ϕ ∈ End(Fτ (X)). Then F (s, t) ≥ α. If F (s, t) = 0 then
α = 0. Hence, (ϕ(s), ϕ(t)) ∈ Fα. Suppose that F (s, t) > 0. Let γ ∈ [0, 1] be
such that F (s, t) > γ. Then (s, t) ∈ IdModEγ . Since IdModEγ is a fully invariant
congruence relation on Fτ (X) and (s, t) ∈ IdModEγ , (ϕ(s), ϕ(t)) ∈ IdModEγ . This
implies that F (ϕ(s), ϕ(t)) ≥ F (s, t) ≥ α. Hence, (ϕ(s), ϕ(t)) ∈ Fα. Thus, F is a
fuzzy fully invariant congruence relation on Fτ (X).

Next step is to show that E ⊆ F. Let (s, t) ∈ Wτ (X)2. Since (s, t) ∈ IdModEE(s,t),
we have F (s, t) ≥ E(s, t).

Finally, we want to prove that for any fuzzy fully invariant congruence relation
G on Fτ (X) containing E we have F ⊆ G. It is clear that for all α ∈ [0, 1], we have
IdModEα ⊆ Gα, since (s, t) ∈ Eα implies α ≤ E(s, t) ≤ G(s, t), i.e., (s, t) ∈ Gα. Let
(s, t) ∈ Wτ (X)2 and β ∈ {α ∈ [0, 1] | (s, t) ∈ IdModEα}. Then (s, t) ∈ IdModEβ ⊆
Gβ implies G(s, t) ≥ β. Therefore, F (s, t) = sup{α ∈ [0, 1] | (s, t) ∈ IdModEα} ≤
G(s, t). This completes the proof. �

Proposition 4.8. FFE(Fτ (X)) is a sublattice of FF (Fτ (X)) but not a complete
sublattice.

Proof. First,we show that if E ∈ FFE(Fτ (X)) then there exists α ∈ [0, 1) such that
Eα = E1. Let E ∈ FFE(Fτ (X)). Suppose that Eα 6= E1 for all α ∈ [0, 1). Let
αi = 1 − 1

i for all i ∈ N. Then we have E0 = Eα1 ⊇ Eα2 ⊇ . . . ⊇ Eαi ⊇ . . . ⊃ E1.
Hence, there exist s, t ∈ Wτ (X) with s 6= t such that (s, t) ∈ Eαi for all i ∈ N. By
Theorem 4.7, E(s, t) = sup{α ∈ [0, 1] | (s, t) ∈ Eα} = 1. Then E 6∈ FFE(Fτ (X)).
It is a contradiction. Thus, there exists α ∈ [0, 1) such that Eα = E1.

Next, we show that if E,F ∈ FFE(Fτ (X)) then E∧F and E∨F ∈ FFE(Fτ (X)).
Let E,F ∈ FFE(Fτ (X)). It is clear that E∧F ∈ FFE(Fτ (X)). Now, we show that
E ∨ F ∈ FFE(Fτ (X)). It is sufficient to show that (E ∨ F )(s, t) 6= 1 for all s, t ∈
Wτ (X) with s 6= t. Let s, t ∈ Wτ (X) be such that s 6= t. Since E,F ∈ FFE(Fτ (X)),
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there exist β1, β2 ∈ [0, 1) such that Eβ1 = E1 = F1 = Fβ2 . Let γ = max{β1, β2}.
So, γ < 1 and Eγ = E1 = F1 = Fγ . Then (s, t) 6∈ Eγ ∪ Fγ = Eγ ∨ Fγ = E1 = F1.
By Theorem 4.7, (E ∨ F )(s, t) = sup{α ∈ [0, 1] | (s, t) ∈ IdMod(E ∪ F )α} ≤ γ < 1.
Hence, E ∨ F ∈ FFE(Fτ (X)). Thus, FFE(Fτ (X)) is a sublattice of FF (Fτ (X)).

Finally, we show that FFE(Fτ (X)) is not a complete sublattice of FF (Fτ (X)).
Let

En(s, t) :=
{

1, if s = t;
1− 1

n , otherwise,

for all (s, t) ∈ Wτ (X)2 and n ∈ N. Then we have {En | n ∈ N} ⊆ FFE(Fτ (X)). But∨
n∈N

En(s, t) = 1 for all (s, t) ∈ Wτ (X)2. Hence,
∨
n∈N

En 6∈ FFE(Fτ (X)). Therefore,

FFE(Fτ (X)) is not a complete sublattice of FF (Fτ (X). �

Now, we want to show that the set {E ∈ FFE(Fτ (X)) | 0 ∈ Im(E)} is a one to
one correspondence to the set {µ ∈ FSE(Alg(τ)) | 0 ∈ Im(µ)}.

Lemma 4.9. If µ ∈ FSE(Alg(τ)) with 0 ∈ Im(µ) then there exists E ∈ FFE(Fτ (X))
such that Idµα = E1−α for all α ∈ Im(µ).

Proof. Suppose that µ ∈ FSE(Alg(τ)) with 0 ∈ Im(µ). Let Eµ : Wτ (X)2 → [0, 1]
be a fuzzy set defined by letting for every (s, t) ∈ Wτ (X)2,

Eµ(s, t) =
{

1, if s = t,
1− α, if (s, t) ∈ Idµα \ Idµβ , β < α and α, β ∈ Im(µ).

It is sufficient to prove that for all α ∈ Im(µ), Idµα = (Eµ)1−α. Let α ∈ Im(µ).
It is clear that Idµ0 = (Eµ)1. Suppose that α > 0. Let (s, t) ∈ (Eµ)1−α. Then
Eµ(s, t) = 1 − γ ≥ 1 − α, for some γ ∈ [0, 1]. Then (s, t) ∈ Idµγ − Idµβ , for all
β < γ. Since γ ≤ α, we have Idµγ ⊆ Idµα. Thus (s, t) ∈ Idµα. Let (s, t) ∈ Idµα.
Then Eµ(s, t) ≥ 1− α. It follows that (s, t) ∈ (Eµ)1−α, i.e., Idµα ⊆ (Eµ)1−α. Thus,
Idµα = (Eµ)1−α. �

Remark 4.10. Let µ ∈ FSE(Alg(τ)) with 0 ∈ Im(µ).
(1) α ∈ Im(µ) if and only if 1− α ∈ Im(Eµ).
(2) If F ∈ FFE(Fτ (X)) such that Idµα = F1−α, for all α ∈ Im(µ), then

Eµ ≤ F.
(3) If ν ∈ FSE(Alg(τ)) with 0 ∈ Im(ν) and Eµ = Eν , then µ = ν.

Proof. (1) (⇒) : Suppose that α ∈ Im(µ). If α = 0, then we have 1 − α = 1 ∈
Im(Eµ). If α > 0, then Idµα ⊃ Idµβ for all β ∈ Im(µ) such that β < α. It follows
that 1− α ∈ Im(Eµ).

(⇐) : Clear.
(2) Assume that F ∈ FFE(Fτ (X)) such that for all α ∈ Im(µ), Idµα = F1−α.

Let (s, t) ∈ Wτ (X)2. We have (s, t) ∈ (Eµ)Eµ(s,t) = Idµ(1−Eµ(s,t)) = FEµ(s,t). Hence,
F (s, t) ≥ Eµ(s, t).

(3) Suppose that ν ∈ FSE(Alg(τ)) with 0 ∈ Im(ν) and Eµ = Eν . Let A ∈
Alg(τ). Then we have Idµµ(A) = (Eµ)1−µ(A) = (Eν)1−µ(A) = Idνµ(A). This im-
plies that ModIdµµ(A) = ModIdνµ(A). Hence, µµ(A) = νµ(A). Thus, µ(A) ≤ ν(A).
Similarly, we can show that ν(A) ≤ µ(A). Then ν(A) = µ(A). Therefore, ν = µ. �
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Lemma 4.11. If E ∈ FFE(Fτ (X)) with 0 ∈ Im(E), then there exists µ ∈
FSE(Alg(τ)) such that µ1−α = ModEα for all α ∈ Im(E).

Proof. Let E ∈ FFE(Fτ (X)) with 0 ∈ Im(E). We define a mapping µE : Alg(τ) →
[0, 1] by letting for every A ∈ Alg(τ),

µE(A) =
{

1, if |A| = 1;
1− α, if A |= Eα and A 6|= Eβ ,∀α, β ∈ Im(E) with β < α.

It is sufficient to show that ModEα = (µE)1−α for all α ∈ Im(E). Let α ∈ Im(E).
It is clear that (µE)1 = ModE0. Suppose that α > 0. Let A ∈ (µE)1−α. Then
µE(A) = 1 − γ ≥ 1 − α, for some γ ∈ [0, 1]. It follows that A |= Eγ and γ ≤ α.
Hence, A |= Eα, i.e., A ∈ ModEα. Thus, (µE)1−α ⊆ ModEα. LetA ∈ ModEα. Then
A |= Eα. It turns out µE(A) ≥ 1−α, i.e., A ∈ (µE)1−α. Hence, ModEα ⊆ (µE)1−α.
Thus, ModEα = (µE)1−α. �

Remark 4.12. Let E ∈ FFE(Fτ (X)) with 0 ∈ Im(E).
(1) α ∈ Im(E) if and only if 1− α ∈ Im(µE).
(2) If ν ∈ FSE(Alg(τ)) such that ModEα = ν1−α, for all α ∈ Im(E), then

µE ≤ ν.
(3) If F ∈ FFE(Fτ (X)) with 0 ∈ Im(F ) and µE = µF , then E = F.

Theorem 4.13. The set {E ∈ FFE(Fτ (X)) | 0 ∈ Im(E)} is a one to one corre-
spondence to the set {µ ∈ FSE(Alg(τ)) | 0 ∈ Im(µ)}.

Proof. We define a mapping ϕ : FSE(Alg(τ)) → FFE(Fτ (X)) by letting µ ∈
FSE(Alg(τ),

ϕ(µ) = Eµ

By Lemma 4.9, Remark 4.10 and Lemma 4.11, we have that ϕ is a bijection. �

5. A Galois connection between FF (Fτ (X)) and Alg(τ)

In the rest of this note we back to assume that L is a complete lattice with the least
element 0 and the greatest element 1. Then we define a Galois connection between
the set FF (Fτ (X)) and the class Alg(τ). Using Galois connection properties, we
obtain the Birkhoff-type theorem, namely, every variety can be defined by a set of
fuzzy fully invariant congruence relations on Fτ (X).

Theorem 5.1 ([4]). Let σ : P (FF (Fτ (X))) → P (Alg(τ)) and ι : P (Alg(τ)) →
P (FF (Fτ (X))). For any subset Γ ⊆ FF (Fτ (X)) and any subclass K ⊆ Alg(τ), we
define

σ(Γ) = {A ∈ Alg(τ) | ∀E ∈ Γ∃α ∈ L,A |= Eα} and
ι(K) = {E ∈ FF (Fτ (X)) | ∀A ∈ K∃α ∈ L,A |= Eα}.

Then (σ, ι) is a Galois connection between FF (Fτ (X)) and Alg(τ).

By the Galois connection (σ, ι) in Theorem 5.1, we obtain the following proposi-
tion.

Proposition 5.2. Let K ⊆ Alg(τ). Then ι(K) is a bounded meet-semilattice.
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Proof. Let K ⊆ Alg(τ). It is clear that 0 ∈ ι(K). Let {Ej | j ∈ J} ⊆ ι(K). Then
(
∧
j∈J

Ej)α ⊆ (Ej)α for all α ∈ L and j ∈ J. This implies that
∧
j∈J

Ej ∈ ι(K). �

Lemma 5.3. Let Γ ⊆ FF (Fτ (X)). Then σ(Γ) is a variety.

Proof. Let Γ ⊆ FF (Fτ (X)), B ∈ σ(Γ) and A ∈ H(B). Since B ∈ σ(Γ), for all
E ∈ Γ there exists α ∈ L such that B |= Eα. Since A ∈ H(B) and B |= Eα then
A |= Eα. Hence, A ∈ σ(Γ). Similarly, σ(Γ) is closed under taking the operation
S. Let Aj ∈ σ(Γ) for all j ∈ J and E ∈ Γ. Then there exists αj ∈ L such that
Aj |= Eαj , for all j ∈ J . Let α = sup{αj | j ∈ J,Aj |= Eαj}. Then Aj |= Eα, for all
j ∈ J . Hence,

∏
j∈J

Aj |= Eα. Thus,
∏
j∈J

Aj ∈ σ(Γ). Therefore, σ(Γ) is a variety. �

Lemma 5.4. Let K ⊆ Alg(τ) and E ∈ FF (Fτ (X)). Then for all A ∈ K there
exists α ∈ L such that A |= Eα if and only if there exists β ∈ L such that for all
A ∈ K,A |= Eβ .

Proof. (⇐) : Obvious.
(⇒) : Suppose that for all A ∈ K there exists αA ∈ L,A |= EαA . Let β =

sup{αA ∈ L | A ∈ K,A |= EαA}. Then Eβ ⊆ EαA , for all A ∈ K. Hence, A |= Eβ ,
for all A ∈ K. �

Lemma 5.5. Let K, K ′ ⊆ Alg(τ). Then IdK ⊆ IdK ′ if and only if EIdK ∈ ι(K ′).

Proof. (⇒) : Assume that IdK ⊆ IdK ′. Let A ∈ K ′. We have A |= IdK ′. By
assumption, we have A |= IdK. Since IdK = (EIdK)1, EIdK ∈ ι(K ′).

(⇐) : Assume that EIdK ∈ ι(K ′). By Lemma 5.4, there exists β ∈ L such that
A |= (EIdK)β , for every A ∈ K ′, i.e., K ′ |= (EIdK)β . Since (EIdK)1 ⊆ (EIdK)β , we
have IdK = (EIdK)1 ⊆ (EIdK)β ⊆ IdK ′. �

Proposition 5.6. Let K ⊆ Alg(τ). Then σι(K) = ModIdK.

Proof. By Lemma 5.3, we have ModIdK ⊆ σι(K). Let A ∈ σι(K). Since EIdK ∈
ι(K),A |= IdK. It implies that A ∈ ModIdK. Hence, σι(K) ⊆ ModIdK. Thus,
σι(K) = ModIdK. �

Corollary 5.7. K is a variety if and only if σι(K) = K.

Now we present the Birkhoff-type theorem, namely every variety can be defined
by a set of fuzzy fully invariant congruence relations.

Theorem 5.8. K is a variety if and only if there exists Γ ⊆ FF (Fτ (X)) such that
K = σ(Γ).

Proof. (⇒) : Let K be a variety. Let Γ = {EIdK}. We claim that σ({EIdK}) =
K. Clearly, K ⊆ σ({EIdK}). Let A ∈ σ({EIdK}). We have A |= IdK, since
(EIdK)α = Wτ (X)2 or (EIdK)α = IdK for every α ∈ L. Then A ∈ K. Therefore,
σ({EIdK}) = K.

(⇐) : For the converse we obtain by Lemma 5.3. �

Finally, we show that the lattice Hισ of all closed sets under the closure operator
ισ is isomorphic to the lattice E(τ) of all equational theories.
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Theorem 5.9. The lattice of all closed sets under ισ is isomorphic to the lattice of
all equational theories.

Proof. Define ϕ : Hισ → E(τ) defined by letting for every K ⊆ Alg(τ),

ϕ(ι(K)) = IdK.

By Lemma 5.5, ϕ is well-defined and one to one. It is clear that ϕ is onto. So, ϕ
is a bijection. Next, we show that ϕ preserves the meet and join operations. Let
K, K ′ ⊆ Alg(τ). Now we show ϕ(ι(K) ∧ ι(K ′)) = ϕ(ι(K)) ∧ ϕ(ι(K ′)). Consider

ϕ(ι(K) ∧ ι(K ′)) = ϕ(ι(K) ∩ ι(K ′))
= ϕ(ι(K ∪K ′))
= Id(K ∪K ′)
= IdK ∧ IdK ′

= ϕ(ι(K)) ∧ ϕ(ι(K ′)).

Finally, we show that ϕ(ι(K) ∨ ι(K ′)) = ϕ(ι(K)) ∨ ϕ(ι(K ′)).
We recall :

ι(K) ∨ ι(K ′) = ∩{ι(T ) ⊆ FF (Fτ (X)) | ι(T ) ⊇ ι(K) ∪ ι(K ′)} and
IdK ∨ IdK ′ = ∩{IdT ⊆ Wτ (X)2 | IdT ⊇ IdK ∪ IdK ′}.

Let

A = {T ⊆ Alg(τ) | ι(T ) ⊇ ι(K) ∪ ι(K ′)} and
B = {T ⊆ Alg(τ) | IdT ⊇ IdK ∪ IdK ′}.

Now, we show that A = B. Let T ∈ A. Then ι(T ) ⊇ ι(K) ∪ ι(K ′). It follows that
EIdK , EIdK′ ∈ ι(T ). By Lemma 5.5, we have IdT ⊇ IdK ∪ IdK ′. Hence, T ∈ B.
Thus, A ⊆ B. Let T ∈ B. Then IdT ⊇ IdK ∪ IdK ′. Let E ∈ ι(K) ∪ ι(K ′). If
E ∈ ι(K) then there exists α ∈ L such that K |= Eα. Since IdK ⊆ IdT, Eα ⊆ IdT .
Then T |= Eα. Hence, E ∈ ι(T ). Similarly, if E ∈ ι(K ′) then E ∈ ι(T ). Then
ι(T ) ⊇ ι(K) ∪ ι(K ′). Hence, T ∈ A. Thus, B ⊆ A. Therefore A = B.

We assume that ι(K) ∨ ι(K ′) = ι(T ). Then T ∈ A. Since A = B, T ∈ B. Then
IdT ⊇ IdK ∪ IdK ′. Hence, IdT ⊇ IdK ∨ IdK ′. Let M ⊆ Alg(τ) be such that
IdM ⊇ IdK ∪ IdK ′. Then M ∈ B. Since A = B,M ∈ A. So that ι(T ) ⊆ ι(M).
Since EIdT ∈ ι(T ), EIdT ∈ ι(M). Then we have IdT = (EIdT )1 ⊆ IdM . Thus,
IdT = IdK∨IdK ′. It follows that ϕ(ι(K)∨ι(K ′)) = ϕ(ι(K))∨ϕ(ι(K ′)). Therefore,
ϕ is an isomorphism. This completes the proof. �

6. Conclusions

We have presented that the lattice of all equational theories can be embedded into
the lattice of all fuzzy fully invariant congruence relations on Fτ (X). In addition,
we have defined a Galois connection between the class of all algebras of type τ and
the set of all fuzzy fully invariant congruence relations on Fτ (X) and showed that
every variety can be defined by a set of fuzzy fully invariant congruence relations on
Fτ (X).
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Our future work is to introduce the concept of fuzzy totally fully invariant con-
gruence relation on Fτ (X) and investigate the connection between solid varieties
and fuzzy totally fully invariant congruence relations on Fτ (X).
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