
Annals of Fuzzy Mathematics and Informatics

Volume 3, No. 1, (January 2012), pp. 9- 17

ISSN 2093–9310

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

The improved
(

G
′

G

)
-expansion method for solving

the fifth-order KdV equation

T. A. Nofel, M. Sayed, Y. S. Hamed, S. K. Elagan

Received 15 February 2011; Accepted 7 June 2011

Abstract. In this paper, the improved
(

G
′

G

)
− expansion method is

used for construct explicit the traveling wave solution involving parameters
of the fifth- order KdV equation, where G = G (ξ) satisfies a second order
linear differential equation. The travelling wave solution is expressed by
the rational functions.
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1. Introduction

One can easily observe that searching for explicit solutions of nonlinear evolution
equations by using various methods (see for example [1-49]) have been the object
of extensive study from differential equations theorists. Many powerful methods
have been presented by those authors such as the inverse scattering transform [3],
the Backlund transform [14,15], the generalized Riccati equation [17,28], the Jacobi
elliptic function expansion [7,13,26,28,30,34,37], the extended tanh- function method
[1,8,35,36,45], the F-expansion method [2,19-21], the exp-function expansion method
[6,9,31,43,44] the sub- ODE method [14,22], the extended sinh-cosh and sine-cosine
methods [23], the complex hyperbolic function method [38], the truncated Painleve
expansion [41], homotopy perturbation method [50, 51] and so on. The main purpose
of this paper is to use a simple method which is called the improved

(
G′
G

)
- expansion

method [5,25,40,41,48, 49]. This method is firstly proposed by Wang et al [25]
for which the traveling wave solutions of nonlinear equations are obtained. The
performance of this method is reliable, simple and gives many new solutions, its
also standard and computerizable method which enable us to solve complicated
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nonlinear evolution equations in mathematical physics. The paper is organized as
follows. In Section 2, we describe briefly the improved

(
G
′

G

)
- expansion method,

where G = G (ξ) satisfies the second order linear ordinary differential equation
G
′′

+ λG
′
+ µG = 0, whereξ = lx− V t, where l and V are constants. The degree of

this polynomial can be determined by considering the homogeneous balance between
the highest order derivatives and the non-linear terms appearing in the given non-
linear equations. In Sections 3, we apply this method to the fifth-order Kdv equation.
In section 4 some conclusions are given.

2. Description the improved G′
G − expansion method

In this section we will describe the improved
(

G
′

G

)
-expansion method for finding

out the traveling wave solutions of nonlinear evolution equations.
Suppose that a nonlinear equation, say in two independent variables x and t is

given by

(2.1) P (u, ut, ux, utt, uxt, uxx, · · · ) = 0

where u = u (x, t) is an unknown function, P is a polynomial in u = u (x, t) and
its partial derivatives in which the highest order derivatives and the nonlinear terms
are involved. In the following we give the main steps [25] of the improved

(
G
′

G

)
-

expansion method:
Step 1. The traveling wave variable

(2.2) u = u (ξ) , ξ = lx− V t

where l and V are constants, permits us reducing Eq. (2.1) to an ODE for u = u (ξ)
in the form

(2.3) P
(
u, −V u

′
, lu

′
, V 2u

′′
,−lV u

′′
, l2u

′′
, ...

)
= 0

Step 2. Suppose the solution of Eq. (2.3) can be expressed by a polynomial in(
G
′

G

)
as follows:

(2.4) u (ξ) =
n∑

i= −n

αi

(
G
′

G

)i

where G = G (ξ) satisfies the following second order linear ordinary differential
equation:

(2.5) G
′′

(ξ) + λG
′
(ξ) + µG (ξ) = 0

where αi, λ and µ are constants to be determined later. The positive integer n can
be determined by considering the homogeneous balance between the highest order
derivatives and the nonlinear terms appearing in Eq. (2.3).

Step 3. By substituting (2.4) into Eq. (2.3) and using the second order linear
ODE (2.5), collecting all terms with the same order of

(
G′
G

)
together, the left-

hand side of Eq. (2.3) is converted into another polynomial in
(

G′
G

)
Equating each

coefficient of this polynomial to zero yields a set of algebraic equations
10



T. A. Nofel et al./Ann. Fuzzy Math. Inform. 3 (2012), No. 1, 9–17

for αi, λ, µ and V.
Step 4. Since the general solution of Eq. (2.5) has been well known for us, then

substituting αi, V and the general solution of Eq. (2.5) into (2.4) we have more
traveling wave solutions of the nonlinear partial differential equation (2.1).

3. The fifth-order Kdv equation

In this section, we apply the improved
(

G′
G

)
- expansion method to construct the

traveling wave solutions for the fifth-order Kdv equation [10]as follows:
Let us first consider the fifth-order Kdv equation

(3.1) ut + uux + uxxxxx = 0

which was recently solved by Inan and ugurlu [10] using exp-function expansion
method. In order to look for the traveling wave solution of Eq.(3.1) we suppose that

(3.2) u (x, t) = u (ξ) , ξ = lx− V t

By using the traveling wave variable (3.2), Eq.(3.1) is converted into the following
ODE for u = u (ξ).

−V u
′
+ luu

′
+ l5u

(5)
= 0

By integrating we have

(3.3) C − V u +
l

2
u2 + l5u

(4)
= 0

where C is the integration constant. Suppose that the solution of ODE (3.3) can

be expressed by a polynomial in
(

G
′

G

)
as follows

(3.4) u (ξ) =
n∑

i= −n

αi

(
G
′

G

)i

where αi are arbitrary constants and G = G (ξ) satisfies the following second order
linear ordinary differential equation (2.5).

considering the homogeneous balance between u
(4)

and u
′2 in Eq. (3.2) we re-

quired that
n + 4 = 2n, then n = 4,so we can write (3.4) as

(3.5) u (ξ) =
4∑

i= −4

αi

(
G
′

G

)i

Substituting (3.5) into (3.3) along with (2.5), collecting all terms with the same

powers of
(

G
′

G

)
and setting them to zero. Consequently, we have the following

system of algebraic equations:

840l5µ4α−4 +
1
2
lα2
−4 = 0

lα−4α−3 + 2640l5µ3λα−4 + 360l5µ4α−3 = 0

lα−4α−2+120l5µ4α−2+2080l5µ3α−4+1080l5µ3λα−3+3020l5µ2λ2α−4+
1
2
lα2
−3 = 0

11
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1476l5µλ3α−4 + 1164l5µ2λ2α−3 + lα−1α−4 + 816l5µ3α−3

+4608l5µ2λα−4 + 336l5µ3λα−2 + lα−3α−2 + 24l5µ4α−1 = 0

3232l5µλ2α−4 + 1696l5µ2α−4 + 256l5λ4α−4 + lα−4α0 + 330l5λ2µ2α−2

+
1
2
lα2
−2 + 60l5µ3λα−1 + 525l5µλ3α−3 − V α−4 + lα−3α−1 + 1680l5λµ2α−3

+240l5µ3α−2 = 0

130l5µλ3α−2 + lα−3α−1 + 576l5µ2α−3 + 50l5λ2µ2α−1 + 1062l5λ2µα−3

+2240l5λµα−4 + 700l5λ3α−4 + lα−4α1 + 81l5λ4α−3 + 40l5µ3α−1

+440l5λµ2α−2 + lα−3α0 − V α−3 = 0

lα−3α1 + lα−2α0 + 660l5λ2α−4 + 480l5µα−4 + 15l5λ3µα−1 + 60l5λµ2α−1

+
1
2
lα2
−1 + 195l5λ3α−3 − V α−2 + 660l5λµα−3 + lα−4α2 + 16l5λ4α−2

+136l5µ2α−2 + 232l5λ2α−2µ = 0

30l5λ3α−2 + lα−4α3 + lα−1α0 − V α−1 + 22l5λ2µα−1 + l5λ4α−1 + 120l5λµα−2

+lα−3α2 + 240l5λα−4 + 150l5λ2α−3 + lα−2α1 + 120l5µα−3 + 16l5µ2α−1 = 0

−V α0 + 36l5λα−3 + 14l5λ2α−2 + lα−4α4 + 4l5µ4α−4 + lα−1α1 + l5λ3α−1

+16l5µ3α2 + lα−2α2 + l5λ3α1µ + lα−3α3 + 16l5µα−2 + C +
1
2
lα2

0

+14l5λ2α2µ
2 + 36l5λα3µ

3 + 8l5λα1µ
2 + 8l5λα−1µ + 24l5α−4 = 0

l5λ4α1 + lα−2α3 + 16l5µ2α1 + lα−1α2 + 120l5λα2µ
2 − V α1 + 150l5λ2α3µ

2

+22l5λ2µα1 + lα−3α4 + 120l5µ3α3 + 240l5λµ3α4 + 30l5λ3µα2 + lα0α1 = 0

−V α2 + lα−2α4 + 660l5λα3µ
2 + 480l5µ3α4 + lα−1α3 + 136l5µ2α2 + 195l5λ3α3µ

+660l5λ2α4µ
2 + lα0α2 + 15l5λ3α1 + 232l5λ2α2µ + 60l5λα1µ +

1
2
lα2

1 + 16l5λ4α2 = 0

50l5λ2α1 + lα0α3 + 700l5λ3µα4 + 130l5λ3α2 + 576l5µ2α3 + 440l5λα2µ + lα1α2

−V α3 + 2240l5λα4µ
2 + 1062l5λ2µα3 + 40l5µα1 + 81l5λ4α3 + lα−1α4 = 0

240l5µα2 + lα0α4 − V α4 + 525l5λ3α3 + lα1α3 + 330l5λ2α2 + 1696l5µ2α4 + 60l5λα1

+
1
2
lα2

2 + 3232l5λ2µα4 + 256l5λ4α4 + 1680l5λµα3 = 0

lα2α3 + 336l5λα2 + 816l5µα3 + 1476l5λ3α4 + lα1α4 + 1164l5λ2α3 + 4608l5λα4µ

+24l5α1 = 0

2080l5µα4 + 120l5α2 + lα2α4 +
1
2
lα2

3 + 3020l5λ2α4 + 1080l5λα3 = 0

lα3α3 + 2640l5λα4 + 360l5α3 = 0

840l5α4 +
1
2
lα2

4 = 0

On solving the above algebraic equations using the Maple, we obtain two cases
12
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The first case:

α−4 = −105
16

l4λ8, α−3 = −105
2

l4λ7, α−2 = −315
2

l4λ6, α−1 = −210l4λ5,

α0 = α0, α1 = α2 = α3 = α4 = 0,

C = 105α0l
5λ4 +

1
2
lα2

0 +
11025

2
l9λ8, V = 105l5λ4 + lα0, λ = λ, µ =

1
4
λ2

The second case:

α−4 = α−3 = α−2 = α−1 = 0, α0 = α0, α1 = −840l4λ3, α2 = −2520l4λ2,

α3 = −3360l4λ, α4 = −1680l4,

C = 105α0l
5λ4 +

1
2
lα2

0 +
21525

4
l9λ8, V = 105l5λ4 + lα0, λ = λ, µ =

1
4
λ2

For the first case: Expression (3.5) can be written as

u (ξ) = −105
16

l4λ8

(
G
′

G

)−4

− 105
2

l4λ7

(
G
′

G

)−3

− 315
2

l4λ6

(
G
′

G

)−2

(3.6) −210l4λ5

(
G
′

G

)−1

+ α0

where ξ = lx− (
105l5λ4 + lα0

)
t.

According to this case , the solution of Eq.(2.5) is given by,

G = e−
λ
2 ξ (C1 + C2ξ)

(3.7)
G
′

G
=

C2

C1 + C2ξ
− λ

2

where C1 and C2 are arbitrary constants. Substituting Eq. (3.7) into (3.6) , we
obtain the travelling wave solution of the fifth-order Kdv equation (3.1) as follows:

u1 (ξ) = −105
16

l4λ8

(
C2

C1 + C2ξ
− λ

2

)−4

− 105
2

l4λ7

(
C2

C1 + C2ξ
− λ

2

)−3

−315
2

l4λ6

(
C2

C1 + C2ξ
− λ

2

)−2

− 210l4λ5

(
C2

C1 + C2ξ
− λ

2

)−1

+ α0.

This solution can be simplified to

u1 (ξ) =
V

l
− 1680l4λ4

(
C2

−2C2 + λC1 + λC2ξ

)4

This is error 5 in [52], where ξ = lx − (
105l5λ4 + lα0

)
t, C1 and C2 are arbitrary

constants. We see that this solution has too many constants in it. We better write

u1 (ξ) = α0 + 105l4λ4 − 1680l4λ2

(
1

ξ − ξ0

)4

.

This is error 7 in [52].
13
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For the second case : The second solution is given

u2 (ξ) = α0 − 840l4λ3

(
C2

C1 + C2ξ
− λ

2

)
− 2520l4λ2

(
C2

C1 + C2ξ
− λ

2

)2

−3360l4λ

(
C2

C1 + C2ξ
− λ

2

)3

− 16804

(
C2

C1 + C2ξ
− λ

2

)4

This solution can be simplified to

u2 (ξ) = α0 + 105l4λ4 − 1680l4
(

C2

C1 + C2ξ

)4

.

We see that the solution has too many constants in it. It should be written as

u2 (ξ) = α0 + 105l4λ4 − 1680l4λ2

(
1

ξ − ξ0

)4

.

so u1 and u2 are the same solution.

4. Conclusions

In this paper, we have seen the main idea of the improved
(

G
′

G

)
- expansion

method, which is that the traveling wave solutions of nonlinear partial differential
equations can be expressed as polynomials in G

′

G , where G = G (ξ) satisfies the
second order linear ordinary differential equation

G
′′

+ λG
′
+ µG = 0, where ξ = lx− V t, where l, and V are constants. By using

this method, we have obtained an explicit exact solution for complicated nonlinear
evolution equation in the mathematical physics. Also in this article we obtained the
traveling wave solution in term of rational function for the fifth-order Kdv equation.
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