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1. INTRODUCTION

A fter the introduction of the concept of fuzzy sets by Zadeh [14], Demirci[6]
introduced the concept of fuzzy equality and fuzzy mapping. And he gave some
their fundamental properties. In particular, Hur et all (Hur, Choi and Lim [10])
studied many properties of fuzzy mappings in the sense of Demirci. Moreover, they
obtained the decomposition of a fuzzy mapping by using fuzzy equivalence relation.

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was in-
troduced by Atanassov [1]. Recently, Coker and his colleagues (Coker [3], Coker and
Haydar Es [4]) introduced the concept of intuitionistic fuzzy topology using intu-
itionistic fuzzy sets. Moreover, S. J. Lee and E. P. Lee [11] introduced the concepts
of intuitionstic fuzzy point and intuitionistic fuzzy neighborhoods and investigated
the properties of continuos, open and closed mappings in intuitionistic fuzzy topo-
logical sapces. In particular, Hur et al. (Hur, Kim and Ryou [8], Hur, Jang and
Lim [9]) applied the concept of intuitionistic fuzzy sets to topology and semigroup
theory, respectively. Bustince and P.Burillo.[2], and Hur et al. (Hur, Jang and Jun
[6], Hur, jang and Ahn [7]) applied it to set theory, respectively.
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In this paper, we introduce the concept of intuitionistic fuzzy equality and intu-
itionistic fuzzy mapping. And we obtain some fundamental properties of intuition-
istic fuzzy mapping. Furthermore, we give the decomposition of an intuitionistic
fuzzy mapping by using intuitionistic fuzzy equivalence relation.

2. PRELIMINARIES

In this section, we will list some concepts and results needed in the later sections.
For sets X,Y and Z, f = (f1,f2) : X — Y x Z is called a complex mapping if
fi: X =Y and fo: X — Z are mappings.

Throughout this paper, we will denote the unit interval [resp. the set of all fuzzy
sets in a set X] as I [resp. IX] and X,Y, Z,-- -, etc., will be nonempty crisp sets.

Definition 2.1([13]). Let f : X — Y be an(ordinary) mapping, let A € I and
let B € IX. Then :

(a) The image of A under f, denoted by f(A), is a fuzzy set in Y defined as
follows : For each y € Y,

[f(A](y) = { (\)/””Gf’l(y) A(x) if f~1 £ ¢,

otherwise.

(b) The preimage of B under f, denoted by f~1(B), is a fuzzy set in X defined
as follows : For each xz € X,

[f7H(B)(z) = (Bo f)(x) = B(f(x)).

Definition 2.2([1,3]). A complex mapping A = (pa,v4) : X — I x I is called a
intuitionistic fuzzy set (in short, IFS) in X if pa(z) + va(z) < 1 for each z € X,
where the mappings pa : X — I and v4 : X — I denote the degree of membership
(namely pa(x)) and the degree of nonmembership (namely v4(x)) of each z € X to
A, respectively. In particular, 0 and 1 denote the intuitionistic fuzzy empty set and

the intuitionistic fuzzy whole set in X defined by 0(x) = (0,1) and 1(x) = (1,0) for

each x € X, respectively.
We will denote the set of all the IFSs in X as IFS(X).

Definition 2.3([3]). Let A = (ua,v4) and B = (up,vp) be IFSs in X. Then
(1) ACBiff pa < up and v4 > vp.

)A=DBiff AC Band B C A.

) A¢ = (va, p1a).

) ANB = (ua Aup,vaVug).

YAUB = (ua V B, va Avp).

) [JA = (pa, 1 = pa), <> A= (1—-va,va)

Definition 2.4([3]). Let {Aq}ier be an arbitrary family of IFSs in X, where
Ay = (pa,,va,) for each o € I'. Then

(&) NAa = (Apaa, Vra,).
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(b) Uda = (V pa,, Ava,)-

Definition 2.5([3]). Let f : X — Y be an(ordinary) mapping, let A € IFS(X) and
let B € IFS(Y). Then :

(a) The image of A under f, denoted by f(A), is an intuitionistic fuzzy set in YV’
defined as follows : For each y € Y,

[F(A](y) = { Eg/,wljfl(y) ) P ) (jtfhefr;msf "

(b) The preimage of B under f, denoted by f~1(B), is an intuitionistic fuzzy set
in X defined as follows : For each z € X,

[ B) = ([f T p)l(@), [f T ve)l(@) = (us(f(2)),ve(f(2))).

Definition 2.6([2]). A complex mapping R = (ugr,vr) : X XY — I x I is called an
intuitionistic fuzzy relation (in short, IFR) from X to Y if ugr(z,y) + vr(z,y) <1
for each (z,y) € X xY, ie., R €IFS(X xY).

In particular, if R is an intuitionistic fuzzy relation from X to itself, then f is
called an intuitionistic fuzzy relation on(or in) X, and we will denote the set of all
IFRs on s set X as IFR(X).

Definition 2.7([5]). Let Ex be a fuzzy relation on X. Then Ex is called a fuzzy
equality on X if it satisfies the following conditions :

(el) Ex(z,y) =1 z=y, Va,y € X,

(e.2) Ex(z,y) = Ex(y,z), Va,y € X,

(e.3) Ex(z,z) > Ex(z,y) NEx(y,2), Vx,y,z € X.

Let E be a fuzzy equality on X and let a,b € X. Then we interpret the value
E(a,b) as the grade of ”a and b are nearly equal”. We will denote the set of all fuzzy
equalities on X as E(X).

Definition 2.8([5]). Let f be a fuzzy relation from X to Y, i.e., R € IX*Y. Let
FEx and Ey be fuzzy equalities on X and Y, respectively. Then R is called a fuzzy
mapping from X to Y with respect to(in short, w.r.t.) Ex and FEy denoted by
f X =Y, if it satisfies the following conditions :

(1) Vze X, 3y €Y such that f(z,y) > 0,

f2)Vae,ye X, VzweY, f(z,2) A fly,w) N Ex(z,y) < Ey(z,w).

Definition 2.9([5]). Let f : X — Y be a fuzzy mapping w.r.t. Ex and Ey. Then
f is said to be :

(a) strongif Vo € X, 3y € Y such that f(z,y) =1,

(b) surjective if Vy € Y,3 x € X such that f(z,y) >0,

(c) strong surjective if Vy € Y,3 & € X such that f(x,y) =1,

(d) injective it f(x,z) A f(y,w) A By (z,w) < Ex(x,y),¥V 2,y € X,V z,w €Y,

(e) bijective if it is surjective and injective,
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(f) strong bijective if it is strong surjective and injective.

Definition 2.10([5]). Let Ix be the fuzzy relation on X defined by : For any
z,y € X,

1 ife=y,
Ix(z,y) = { 0 ifx#y.
Then Ix : X — X is a strong bijective w.r.t. a fuzzy equality Ex on X. In this
case, Ix is called the unit fuzzy mapping on X.

Definition 2.11([5]). Let f : X — Y be an(ordinary) mapping, let A € IX and
let B € IX. Then :

(a) The image of A under f, denoted by f(A), is a fuzzy set in Y defined as
follows : For each y € Y,

[F(A)(Y) = Veex[A@) A flz,y)]-

(b) The preimage of B under f, denoted by f~1(B), is a fuzzy set in X defined
as follows : For each z € X,

[F7HB() = Vyey [BW) A f(,9))-
3. INTUITIONISTIC FUZZY EQUALITIES AND INTUTIONISTIC FUZZY MAPPINGS

Definition 3.1. Let X be a nonempty set and let IEx = (urpy, Viey) EIFR(X).
Then IEx is called an intuitionistic fuzzy equality on X it satisfies the following
conditions :

(ie.l) IEx(z,y) = (1,0) @z =y, Vz,y € X,

(ie.2) IEx(z,y) = IEx(y,z), ¥V z,y € X,

(163) HIEx (I7 y) N PIEX (ya Z) < UIEx (‘Tﬂ Z)
and

viex (2,Y) V iy (Y, 2) > viex (2,2),V 2,9,z € X.

We will denote the set of all intuitionistic fuzzy equalities on X as IE(X).

Example 3.1. (1) Let X = {0,1,2,3,4,5}, let IEx = (urpy,Viey) be the intu-
itionistic fuzzy relation in X defined by : For any z,y € X,
wres (z,y) =1—-0.2 % |z —y| and vip, (z,y) = 0.2 X |z — y|.
Then we can easily see that IEx = (1gy,Vigy) EIE(X).
(2) Equality of two points in the classical sense can be graded by the mapping
ey 0 X X X — 2= {0, 1} defined by

(,y) = 1 ifx=y,
HEXEY) =17 0 ife#y VaryeX.
Then we can also easily see that IEx = (ugy, purg) € IE(X).

The following is the immediate results of Definition 2.7, Definitions 2.3 and 3.1.

Proposition 3.2. (1) If Ex €E(X), then (Ex, Ey¥) € IE(X).
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(2) IfIEx = (,U,IEX,VIEX) EIE(X), then <> I FEx, []IEX EIE(X)
(3) If IEx = (/.LIEX,I/[EX) EIE(X), then UIE s VIEXC GE(X)

Definition 3.3. For any two nonempty sets X and Y, let [Ex and [ FEy be two
intuitionistic fuzzy equalities on X and Y, respectively. Let f €IFS(X x Y'). Then
f is called an intuitionistic fuzzy mapping from X to Y w.r.t. I1Ex €IE(X) and
IEy €lIE(Y), denoted by f: X — Y, if it satisfies the following conditions :
(ift1) Vo € X,3 y €Y such that py(x,y) >0 and vs(z,y) < 1.
(if2) Va,y € X,V z,w €Y,
Nf(x’ Z) A :uf(yv U)) N WIEX ((E, y) < WIBy (Zv U))
and
vi(@,2) Vve(y,w) vV vipy (#,y) 2 vip, (2, w).

Example 3.3. Let X and IEx be same as Example 3.1 (1). Let f = (uy,vy) be
the intuitionistic fuzzy relation on X given by
flz,2)=(02x(5—12),1-02x (5—2x))Vze X\{5},f(55) =(0,1),
flz,z—1)=(0.2¢,1 —0.22) V 2 € X\{0},
r<z orzx—1>z = f(z,z)=(0,1)Vzz €X.
Then we can see that f : X — X is an intuitionistic fuzzy mapping w.r.t. IEx.

The followings are the immediate results of Definitions 2.8, 3.1, and Proposition
3.2.

Proposition 3.4. (1) Let f: X — Y be a fuzzy mapping w.r.t. Ex € E(X) and
Ey € E(Y). Then (f, f¢) : X — Y is an intuitionistic fuzzy mapping from X to Y
wrt. (Ex,E¥) and (Ey, Ey).

(2) Let f = (us,vf) : X — Y be an intuitionistic fuzzy mapping from X to ¥
w.r.t. IEx €IE(X) and I Ey €IE(Y). Then <> f and <> f are intuitionistic fuzzy
mapping from X to Y w.r.t. intuitionistic fuzzy equalities <> IEx and <> [FEy,
and [ ]IEx and [ ]I Ey, respectively.

(3) Let f = (pf,v5) be an intuitionistic fuzzy function from X to Y w.r.t.
IEx €lE(X) and IEy €IE(Y). Then py and v, are fuzzy mappings from X to Y’
w.r.t. fuzzy equalities prpy and prg,, and vy © and vy © on X and Y, respectively.

Definition 3.5. For sets X and Y, let f : X — Y be an intuitionistic fuzzy mapping
from X to Y w.rt. IEx €lE(X) and IEy €IE(Y). Then f is said to be :
(a) strong if Vo € X, 3y € Y such that f(z,y) = (1,0),
(b) surjectiveif Vy € Y,3 & € X such that ps(z,y) > 0 and vs(z,y) <1,
(c) strong surjective if Vy € Y,3 z € X such that f(z,y) = (1,0),
(d) injective if
pg (@, 2) A pg (Y, w) A pirey (2,0) < prey (2,y)
and
vi(z,z) Vve(y,w) Vg, (z,w) > vipg(z,y), YVo,ye X,V z,weY,
(e) bijective if it is surjective and injective,
(f) strong bijective if it is strong surjective and injective.
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The followings are the immediate results of Definitions 2.3, 2.8, 2.9, 3.5, Propositions
3.2 and 3.4.

Proposition 3.6. (1) Let f : X — Y be a strong [surjective, strong surjective,
injective, bijective, strong bijective| fuzzy mapping w.r.t. fuzzy equalities Ex and
Ey on X and Y, respectively, then (f, f¢) : X — Y is a strong [surjective, strong
surjective, injective, bijective, strong bijective] intuitionistic fuzzy w.r.t. (Ex,E5) €
IE(X) and (Ey, Ey?) €IE(Y).

(2) Let f = (pf,v5) © X — Y be a strong [surjective, strong surjective, injec-
tive, bijective, strong bijective] intuitionistic fuzzy mapping w.r.t. [Ex €lE(X)
and IEy € IE(Y). Then <> f and [ ]f are a strong [surjective, strong surjective,
injective, bijective, strong bijective| intuitionistic fuzzy mapping w.r.t. intuitionis-
tic fuzzy equalities <> IEy and <> IEy, and [ [IEx and [ [[Ey on X and Y,
respectively.

(3) Let f = (uy,vf) : X — Y be a strong [surjective, strong surjective, injective,
bijective, strong bijective] intuitionistic fuzzy mapping w.r.t. I[Ex € IE(X) and
IEy €IE(Y). Then py and v, are strong [surjective, strong surjective, injective,
bijective, strong bijective] fuzzy mappings w.r.t. fuzzy equalities urp, and prp,,
and v;p © and v p © on X and Y, respectively.

The following is the immediate result of Definition 3.3.

Proposition 3.7. Let Ax be the intuitionistic fuzzy relation on a set X defined by
: For each (z,y) € X x X,

_ (1,0) ifx=y,
AX(x,y){ (0,1) ifzx#y.

Then Ax is a strong and strong bijective intuitionistic fuzzy mapping on X w.r.t.
an intuitionistic fuzzy equality IEFx on X. In fact, Ax is an intuitionistic fuzzy
equality on X. In this case, Ax is called an identity intuitionistic fuzzy mapping on
X.

Definition 3.8([2]). Let R be an intuitionistic fuzzy relation from X to Y and let
S be an intuitionistic fuzzy relation from Y to Z.
(a) R71 is called the inverse of R if R™1(y,z) = R(z,y),Vz € X,Vy €Y.
(b) The sup-min composition of R and S, denoted by S o R, is an intuitionistic
fuzzy relation from X to Z defined by : For each (z,2) € X x Y,
H“SOR(‘Ta Z) - \/ [IU‘R(xa y) A /LS(y7 Z)]
yey
and
vsor(w,2) = N vr(w,y) Vv vs(y, 2)).
yey
Proposition 3.9. Let f: X — Y and g : Y — Z be intuitionistic fuzzy mapping
w.r.t. IEy €IE(X),IEy €lE(Y) and IEy €IE(Z). Then the sup-min composition
g o f is an intuitionistic fuzzy mapping go f : X — Z w.a.t. IEx € IE(X) and
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1Ey €IB(Z).

Proof (i) Let z € X. Since f and g are intuitionistic fuzzy mapping, Jyo € Y and
zo € Z such that
ﬂf(xvyO) > Oa /j’g(y()u ZO) > 0 and Vf(.’ﬂ,y()) <1, Vf(yO»ZO) <L
Then gy (x,y0) A f1g(Yo, 20) > 0 and ve(x,y0) V v¢ (Yo, 20) < 1. Thus
g0 (3 20) = Vyey 17 (0,9) A sig (3 20)] > 0
and
Vgof (2, 20) = /\er[Vf('Ta Y) Vve(y,20)] < 1.
So g o f satisfies the condition (if.1).
(ii) Let x1,29 € X and let 21,29 € Z. Then by the proof of Proposition 2.1 in
[5], it is clear that

tgof(T1,21) A Hgof (T2, 22) A iy (T1,T2) < prp, (21, 22) - (3.1)
Let pt = vgos(x1,21) and let A = v(x2, z2). We show that
WV AV g (x1,22) > vig, (71, 22). (3.2)

If 4 =1 or A =1, then clearly, the inequality (3.2) holds.
Suppose ;¢ < 1 and A < 1. Then, by the definition of v4,4 and p, for p vV A <€ <
1,3y1(e), y2(e) € Y such that

ve(x1,y1(€)) Vvg(yi(e), z1) < pte

and

v(@2,y2(€)) V vg(y2(e), 22) < A+
Thus

vi(@1,y1(€) Vvp(we, y2(€)) Vvg(yi(e), 21) V vg(y2(e€), 22) V vipy (21, 72)

< (mu+e)V(A+e). (3.3)
Since f is an intuitionistic fuzzy mapping,

vi(@1,y1(€)) Vg (e, y2(€)) Vires (21, 2) 2 vip, (y1(€), y2(€)). (3.4)
So

viE, (21, 22) S vg(y1(e), 21) V vg(y2(e), 22)
[Since g is an intuitionistic fuzzy mapping |
<(p+e)V(A+e) Vg, (r1,22). By (3.3) and (3.4)]
Since € > 0 is arbitrary, the inequality (3.2) holds. Hence

Vgor (T1,21) V Vgos (T2, 22) V ViEy (71, %2) > ViE, (21, 22). (3.5)
Hence, by (3.1) and (3.5), g o f satisfies the condition (if.2). Therefore go f is an
intuitionistic fuzzy mapping. O

The following are the immediate results of Proposition 3.9 and Definitions 3.5
and 3.8 (b).

Corollary 3.9-1. Let f: X — Y and g : Y — Z be intuitionistic fuzzy mappings
wrt. [Ex €IE(X), IEy €IE(Y) and IEz €IE(Z), respectively. If f and g are
strong [resp. injective, surjective, strong surjective, bijective and strong bijective],
then sois go f.

Corollary 3.9-2. Let f: X — Y and g : Y — Z be intuitionistic fuzzy mappings
wrt. IEx € IE(X), IEy € IE(Y) and IEz €IE(Z), respectively.
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(a) If g o f is strong [resp. injective], then so is f.

(b) If g o f is surjective [resp. strong surjective], then so is g.

(c) If go f is bijective [resp. strong bijective], then f is injective and g is surjective
[resp. strong surjective].

Definition 3.10. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
IEx €lE(X) and IEy € IE(Y). Then f is said to be invertible if the intuition-
istic fuzzy relation f~! on Y x X is an intuitionistic fuzzy mapping f~!:Y — X
w.r.t. IEy and IEx.

Lemma 3.11. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t. IEx €IE(X)
and IEy €IE(Y). If f is invertible, then f is bijective.

Proof. Suppose f is invertible and let y € Y. Since f~!: Y — X is an intuitionistic
fuzzy mapping w.r.t. IEy and IEx, dz9 € X such that ps-1(y,z9) > 0 and
vi-1(y,x0) < 1. Then py(xo,y) > 0 and vy(zg,y) < 1. Thus f is surjective. Let
x1,22 € X and let 31, y2 € Y. Since f~! : Y — X is an intuitionistic fuzzy mapping,

pp-1 (Y1, 1) A prp-1(y2, 22) A prey (Y1, 92) < prey (@1, 22)

and
vi-1(y1,21) Vvp-1(y2, 22) V Viey (Y1, Y2) = Viey (21, 22).
Thus
pr(xn,y1) A pp(ee,y2) A prey (Y1, y2) < prex (21, 22)
and
vi(x1,y1) V (e, y2) V visy (Y1, Y2) = Viey (21, 22).
So f is injective. Hence f is bijective. O

Lemma 3.12. Let f : X — Y be a bijective intuitionistic fuzzy mapping w.r.t.
IEx €lE(X) and IEy €IE(Y). Then the intuitionistic fuzzy relation f~* on Y x X
is an intuitionistic fuzzy mapping f~!':Y — X w.r.t. IEy and IEx.

Proof. (i) Let y € Y. Since f is surjective, 3z¢ € X such that pus(xo,y) > 0 and
vi(wo,y) < 1. Then pp-1(y,z0) > 0 and vp-1(y,z9) < 1. Thus f~! satisfies the
condition (if.1). Let y1,y2 € Y and let 1,22 € X. Since f is injective,

(1, 1) A (T2, y2) A pirmy (1, 92) < prey (21, 22)
and

vi(z1,y1) Vve(22,Y2) V Ve, (Y1,Y2) < Viey (21, 22)
Then

pp-1 (Y1, 1) A pp-1(y2, ©2) A prey (Y1, y2) < prey (T1,72).
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fol(ylaxl) \ fol(yz,IQ) Vg, (Y1,Y2) < viey (21, 72).
Thus f~! satisfies the condition (if.2). So f=': Y — X is an intuitioninstic fuzzy
mapping w.r.t. IFy and IFx.
(ii) Let © € X. Since f is an intuitionistic fuzzy mapping, Jyo € Y such that
py(z,y0) > 0 and vy(z,yo) < 1. Then prp-1(yo,z) > 0 and vs(z,yo) > 0. Thus f~*
is surjective. Now let y1,y2 € Y and let x1,x2 € X. Since f is an intuitionistic fuzzy
mapping,

pp(xr, 1) A pg(e, y2) A prex (21, 22) < prey (Y1, y2)-

and
vi(w,y1) V vp(22,y2) V vips (21, 22) < vigy (Y1, 92)-
Then
pp=1 (Y1, 21) A pp-1(y2, 22) A prey (21, 22) < prey (Y1, Y2)-
and
vi-1(y1,21) Vvp-1(y2, 22) V ey (21, 22) < vipy (Y1, 92)-
Thus f~! is injective. So f~! is bijective. This competes the proof. O

The following is the immediate result of Lemma 3.12 and Definition 3.5.

Corollary 3.12. If f : X — Y is strong bijective, then f~! : ¥ — X is strong
bijective.

The following is the immediate result of Lemmas 3.11 and 3.12.

Theorem 3.13 Let f : X — Y be an intuitionistic fuzzy mapping w.r.t. IEx €IE(X)
and IEy €IE(Y). Then f is invertible if and only if f is bijective.

Lemma 3.14. Let f : X — Y is strong and injective w.r.t. TEx = Ay € TE(X)
and By €IE(Y), then f~'o f = Ax.

Proof. We show that py-155 = pay and vp-1,5 = va,. Since pr-155 = pay, by
the proof of Proposition 2.3 in [5], it is sufficient to show that vs-1,f = va .
Let z,2’ € X. Then
Vi-top(@,2)= Nyey v (z,y) Vvp-i(y,2')]
Ao 5, ) V vy 9) V vy (3,9)
[By the definition of I Ey,vig, (y,y) = 0. ]
< vrgy (z,2') [since f is injective]
=va, (z,2'). [since IEx = Ax]

Thus va, < Vf-157. On the other hand, va (z,2") = 1 or va, (z,2') = 0.
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If vay (z,2") = 1, then clearly vp-1of(x,2") < vay(z,2'). Suppose va (z,2") =0,
i.e., z =2a’. Since f is strong, for z € X, 3y € Y such that vs(x,yo) = 0.
Thus
folof(xa LE) - /\er[Vf(xa y) \ Vi1 (ya {ZZ)]
:/\er vy (JJ, y)
So, in either cases, vay < Vy-1o¢ . Hence vy-1,5 = va,. This complete the
proof. O

Lemma 3.15. If f : X — Y is strong surjective w.r.t. TEx €IE(X) and [Ey =
Ay €IE(Y), then fo f~! = Ay.

Proof. Since piyof-1 = piay, by the proof of Lemma 3.11 in [10], it is sufficient to
show that vy, -1 = va, .
Let y,4' € Y. Then
Viof=1(4:4)= Naexvi-1(y,2) V vs(z,y')]
:/\meX[Vf(x’ y)Vvp(z,y') Ve, (z,2)]
[By the definition of IEx,vip, (z,z) = 0. ]
> vigy (y,y') [since f is intuitionistic fuzzy mapping]
=va, (y,y). [since IEy = Ay]

Thus va . ., . Onthe other hand, va, (y,y') = lorva, (v,4') = 0. lfva, (y,9') = 1,
fof—1 Y Yy Y

then clearly veo ;-1 (y,%') < vay (y,y'). Suppose va, (y,y') =0, ie., y =y'. Since f
is strong, for y € Y, 3z € Y such that v¢(zo,y) = 0.

Thus
Vfoffl(y?y) = /\zGX[fol(yvx) \ l/f(l', y)]
:/\IEX Vf(.T, y)
So, in either cases, vfop-1 < va, . Hence vyop-1 = va,. This complete the
proof. O

The following is the immediate result of Lemmas 3.14 and 3.15.

Theorem 3.16. Let f: X — Y be an intuitionistic fuzzy mapping w.r.t. IEx €
IE(X) and IEy € IE(Y). If f is strong and strong bijective, IEx = Ax and
IEy = Ay, then flof=Ax and fo f~!=Ay.

Proposition 3.17. Let f: X — Y and g : Y — Z be bijective w.r.t. IEx €IE(X),
IEy € IE(Y) and [Ey €IE(Z). Then (go f)~' = f~' 0 g~ and the intuitionistic
fuzzy relation (g o f)~! is an intuitionistic fuzzy mapping (go f)™!: Z — X w.r.t.
IEZ and IEX

Proof. From Definition 3.8, it can be easily seen that (go f)~t = f~1og~!. More-

over, by this equality and Proposition 3.9 and Theorem 3.13, it is directly obtained
that the intuitionistic fuzzy relation (go f)~! is an intuitionistic fuzzy mapping. O
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Definition 3.18. Let f : X — Y be an intuitionistic fuzzy mapping, and let
A € IFS(X), B € IFS(Y). Then :

(a) The image of A under f, denoted by f(A), is an intuitionistic fuzzy set in YV’
given by : For each y €Y,

@) =\ [ma(@) A psla,y)]

zeX

viay(y) = /\ [va(z) vV vp(z,y)].
zeX
(b) The preimage of B under f, denoted by f~!(B), is an intuitionistic fuzzy set
in X given by : For each z € X,
pr-ey (@) =\ [1BW) A s (,y)]
yey

vicup (@) = N\ vs(y) v ve(z,y)).

yey

and

and

Remark 3.18. (a) If f : X — Y is an (ordinary) mapping, then it is clear that
Definition 3.18 is identical with Definition 2.5.
(b) If f: X — Y is strong surjective, then
FAY®) = (Vs oyt £4(0): A o)1 ¥4 (0)), Yy €Y
(ii) If f: X — Y is strong, then
fH(B)(z) = (\/f(x,y):l s (), /\f(;c,y):l ve(y)), Vz € X.

Proposition 3.19. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
IEx €lE(X) and IEy € IE(Y). Let A €IFS(X) and let B €IFS(Y). Then :

(a) If f is strong, then A C f~1(f(A)).

(b) If IEx = Ax and f is injective, then f Lf(A) c
(c) If f is strong surjective, then B C f(f~1(B)).
(d) If IEy = Ay, then f(f~'(B)) C B.

Proof. (a) Suppose f is strong and let A €IFS(X). Since pra < pp-1(5(ay), by the
proof of Proposition 2.5(a) in [5], it is sufficient to show that vy-1(s(a)) § vy. For
each z € X, let vy—1(5a))(z) = A
Then
vi-ipa) (@) = Nyey {Nwexva@) Ve (@' )] Vve(z,y)}
=Nyev{Awexlva@) V(@' y) Vv (z,y)l}

=M. (3.6)
Thus va(z') Vvy(a',y) Vvp(z,y) > A\, Vy e Y. (3.7)
Since f is strong, for x € X,3yy € Y such that vy(z,y0) = 0. In (3.7), let 2’ = =
and let y = yo. Then vp-1(5a)) < va.
Hence A C f=1(f(4)).

(b) Suppose f : X — Y is injective w.rt. IEx = Ax and IEy. Since
Br-1(fcayy) < pa, by the proof of Proposition 2.5(b) in [5 ] it is sufficient to show
that v4 < vy-1(4a)). For each v € X, let A = vp-1(pay)(v). If A =1, then clearly
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va(x) < vp-1(pay(x). Suppose A < 1. Let A < e < 1. Then, by (3.6), Ju(e) € X
and y(e) € Y such that
va(u(€)) Vg
ThUSl/f(u(E),y( ))\/Vf( z,y(e€))
1> wy(ule), y(e)) vV vy(z,y(e))
=vy(u(e), y(€)) Vvi(z,y(e)) Vvimy (y(e), y(e))
> I/IEX( ( ),.T) (39)
Since IEx = Ax, vig, (u(e), ) = va, (u(e),z) = 0. So u(e) = .
By (3.8) and (3.9),
() V vy, 5(0)

u(e),y(e)) Vvs(z,y(e)) < A+e< 1. (3.8)
(e)) < 1 Since f is injective,
))) (z,

At+e>wva(ule)) Vp(ule),y
> va(u(€)) Vvipy (u(e), z)
=v4(x).
Since € is arbitrary, va(z) < X. In either cases, va < vp-1(5(ay). Hence f~1(f(A)) C
A.
By using a similar way as that in (a) and (b), it can be easily see that the prop-
erties (¢) and (d) hold. O

The following is the immediate result of the definition of a mapping and Defini-
tion 3.18.

Proposition 3.20. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
IEx €IE(X) and I By €IE(Y).

(a) Define the (ordinary) relation f from IFS(X) to IFS(Y) as follows : f(A) =
f(A), VA€ IFS(X). Then f :IFS(X () —IFS(Y) is an (ordinary) mapping,

(b) Define the (ordinary) relation f from IFS(Y) to IFS(X) as follows : f(B) =
f~YB), VBEIFS(Y). Then f:IFS(Y) —IFS(X) is an (ordinary) mapping.

Corollary 3.20-1. Let f: X — Y be strong surjective w.r.t. [Ey = Ay €lE(X).
Then fo fof=f.

Proof. Let A € IFS(X). Sincef is stron 1 surjective, by Propositions 3.20 and 3.19

(), F(A) = f(A) C F(F71(f(A) = (Fo fo)(A).

Then ?LA) (fo f F)(A). Since IEy = Ay, by Proposition 3.20 and 3.19(d),
(fofof)(A)=F(f(f(A))C f(A)=F(A). Thus (fo fo f)(A) C f(A). So

(fofof)(A) = f(A). Hence fofof=F. O

Corollary 3.20-2. Let f: X — Y be an intuionistic fuzzy mapping w.r.t. [Ex €
IE(X) and IEy €IE(Y).

_ (a) If f is strong, injective and IEy = Ax, then, VA, Ay €IFS(X), f(A) =
f(A ) = A1 = AQ. _

_ (b) If f is strong surjective and IEy = A, then, VB1, B> €IFS(Y), f(By) =
?(B ) = By = Bs.
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Proposition 3.21. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
IEx €lE(X) and TEy € IE(Y).
(a) If f is strong, injective and IEx = Ax, then f o
(b) If f is strong surjective and IEy = Ay, then f o

f is bijective.

? is bijective.

Proof.(a) Clearly ?o fIFS(X) —IFS(X) is an (ordinary) mapping. Suppose (?o
(A = (?o f)(Az), VA1, Ay €IFS(X). Then, by Proposition 3.20, f~1(f(A;)) =
f~1(f(As)). Thus, by Proposition 3.19, A; = Ay. So ? f is injective. Let
A €IFS(X). Then clearly f(A) = f(A) €IFS(Y). Moreover, by Proposition 3.19,
(?of)( A) = f‘l(f(A)) A. Thus f o f is surjective. Hence f o f is bijective.

(b) Clearly f f [IFS(Y) —IFS(Y) is an (ordinary) mapping. Suppose (f o
)( 1) = (f o f)(Bg), VBy, By €IFS(Y). Then, by Proposition 3.20, f(f~1(B;)) =
f(f~Y(Bs)). Thus, by Proposition 3.19, B; = B,. So f o f is injective. Let

B EI S(Y). Then clearly f~1(B) € IFS(X) and f(f~!(B)) = B. Thus (fo?)(B) =

)
So f o f is surjective. Hence f o f is bijective.

O

Proposition 3.22. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
IEx €lE(X) and I Ey €IE(Y).

(a) ! i
(b) If f is strong surjective and I Ey = Ay, then f is surjective and f is injective.
(c) If f is strong, strong bijective, [Ex = Ax and IEy = Ay, then f and f are
bijective.

If f is strong, injective and IEx = Ax, then f is injective and ? is surjective.

Proof. (a) Suppose f(A1) = f(Ay), VA1, Ay €IFS(X). Then, by Corollary 3.20-2,
Ay = Ay. Thus f is injective. Let A € IFS(X). Then clearly f(A) = f(A) €
IFS(Y). Thus, by Proposition 3.19, f~1(f(A)) = A, ie., f(f(4)) = A. So f is
surjective.

(b) Let B €IFS(Y ). Then clearly f(f(B )) = f~Y(B) € IFS(X). Thus, by
Proposition 3.19, f(f~ YB)) = B, ie., f(f~Y(B)) = B. So f is surjective. Now
suppose f(f(B 1)) = f(f(B2)), VB1,By € IFS(Y). Then, by Corollary 3.20-2,

By = B,. Thus f is injective.
(c) It is clear from (a) and (b). O

)
Y

Proposition 3.23. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
[Ey €lE(X) and [Ey €IE(Y). Let A €IFS(X) and let B €IFS(Y). Then :
(a) f(A°) C [f(A)]°. In particular, if f is strong surjective, then [f(A)]¢ = f(A°).
(b) f~1(B¢) C [f~Y(B)]°. In particular, if f is strong, then f~1(B¢) = [f~1(B)]°.

Proof. (a) From Definition 2.3 and 3.18, it is clear that : For each y € Y,
[F(AD(W) = Vaexva@) App(@,9)], Apexpale) Vv (z,y)))

and
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FAIW) = (Npexva(@) Ve (@, 9)l, Ve x ale) A ps(z,y)))-

Moreover, for each x € X,
va(@) A pg(z,y) Svalz) Vve(z,y)

and

pa(z)Vve(z,y) > palz) A pg(z,y).
Then

\/xEX[VA(x) A /J‘f(xa y)] < /\xeX[VA(l') \ Vf<x7 y)]
and

Neexlpa(@) Vvs(e,y)] = Voexlpa(@) A pg(e,y)].

Thus f(A°) C [f(A)]°.
Suppose f is strong surjective and let y € Y. Then 3¢ € X such that f(zo,y) =
(1,0). Thus
[£(A9)](y) = (va(zo), pa(zo)) = [f(A)]°(y)-

So f(A%) = [f(A)]".
(b) It is clear that : For each z € X,

[FB) (@) = (NyeyvB(y) Vvi (@ 9)l, Vyey 1Y) A ps(e,9)])

and

[F(B))(2) = (VyeyvBW) A pp(@,9)], Ayey vB(Y) V i (2, ).

By the similar way of the proof of (a), it can be easily seen that f~1(B¢) C [f~1(B)]°.
Suppose f is strong and let € X. Then Jyp € Y such that f(x,yo) = (1,0).
Thus

[FH(B)(@) = (vB(Y0), kB (o)) = [f~H(B)]*(x)-
So f~Y(B¢) = [f~Y(B)]°. This completes the proof. O

Proposition 3.24. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t. [Ex €
IE(X) and IEy €IE(Y). Let {An}aer CIFS(X) and let {Bg }aer CIFS(Y). Then :

(U A0 = f(40)

aecl acl

71(UBOL): Uf71

acl ael

F(N) 4a) € ) F(4a)

acTl acl

@ f(()Ba) () 7

acl ael’
(e) If A, C Ag for o, B €T, then f(Aq) C f(Ap).
(f) If B, C Bg for a, 8 € T, then f~1(B,) C f~(Bp).
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(g) I IEx = Ax and f is injective, then ﬂ f(Aq) C f( ﬂ Ay)

ael’ ael
(h) If TEy = Ay, then () f"(Ba) € f7'([) Ba)
ael’ acl’

Proof. By Definition 3.18, it can be easily seen that the properties (a) - (f) hold.
(g) Suppose f is injective and IEx = Ax. For each y € Y, let
[ﬂaer f(Aa](y)
= (Naer Praa) ): Vaer Viaw)

(AaeriViexra, @) A pr(@,y)1E VaerfAvex va. (@) V ve(z,9)]})
=(A p) (3.10)

and let

[F(Naer 4a)l(¥)

= (L (naerA0) Y Vi(Aneran) (Y))

= (VaexMnaeran () A ps(@,9)] Apex Vaaeraa () Vvg(z,y)])
E\/Iex{/\aer[/m (@) AN g (@, )1} Apex {Vaervaa (@) Vve(z,y)]})

(3.11)
By the proof of Proposition 2.9 (g) in [5],
If(AaerAa) Y) S Bp(neraa) (1), 1e, A< N (3.12)
Thus it is sufficient to show that
Vi(OmerAa) ¥) = ViAaeran) (), de,p >y, (3.13)
By (3.10), A, cx [Vaer(z) V vs(z,y)] < VaeTl (3.14)

If 4 =1, then it is obvious that (3.13) olds Suppose p < 1. Let p < e < 1 and let
a € T'. Then, by (3,14),
Jz4(€) € X such that veer(xa(e),y) < p+e < 1. (3.15)
Since f is injective, for any «, 8 € T,
1> vy(vale,y) V v (@3(e),y)
=vy(zale),y) Vve(zs(e),y) Ve, (y,y)
[Since vig, (y,y) =0
< vipy (Tal€), z5(€))
=va (za(€), ( )). [Since IEx = Ax]

Thus z,(€) = zg(€). So, for a fixed v € I, (3.15) implies that
va, (xy(€)) Vve(zy(€),y) <p+e, VYael,

W= /\ggeX{vaeF[VA () Vvp(z,y)}
< Vaerlva.(@(e)) Vv f(%(€),y)]

<p-+e

ie.,

Since € is arbitray, ' < p, So (3.13) holds. Hence, by (3.12) and (3.13), (,cp f(4a) C

F(Naer Aa)-
(h) Suppose IEy = Ay. For each = € X, let
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Naer f 7 Ba)I(E) = (Brper f1(B.) (T), Vrger -1 (Bo) () = (A 1)

and let
7 (Naer Ba)l(@) = (-1 (AuerBa) () Vi1 (e Ba) (2) = (N, 1),

By the proof of Proposition 2.7 (h),
Bf1(nerBa) (@) S pp-1(AnerB (@), de, AN (3.16)

Thus, it is sufficient to show that
Vi-1(Aner B (T) 2 Vi-1(anerBay(®) 5 e, > g (3.17)

If u =1, then it is clear that (3.17) holds. Suppose p < 1.
Let p < e <1 and let a € I'. Then, by the definition of p,
Jya(e) € Y such that v, (y,(€))Vrs(z, yy(€)) < pte < 1. (3.18)

Let o, 8 € T'. Since f is an intuitionistic fuzzy mapping,

1> Vf(aj?ya)(e) N Uf(SU,]Jﬁ(G)) V VIEx (mv‘T)
[Since vyg,y (z,z) = 0]

2 VIEy (ya(e)’ yﬁ(‘E))
=vAy (Yal(€),ys(€)). [Since IEy = Ay]

Then yo () = yg(e). Thus, for a fixed v € T', (3.18) implies that
VB, (Y () Vv (2,45 (c)) <pt+e, Vael,

B W= Vo ()
=Nyey {Vacrve. (y) Vve(z.y)l}

< Vaerlva. (y:(6)) V vy, y5(€))]
<p+te

Since € is arbitrary, y/ < . Hence, by (3.16), (,er /7' (Ba) € f~ (Nyer Ba)- This
completes the proof. O

The following is the immediate result of Definition 3.1.
Proposition 3.25. Let {X,}acr be a family of sets and let X =[] . Xo be the
product of {X,}aer. If IEx,_ be an intuitionistic fuzzy equality on X, for each

a € I, then IEx = [[,er IEx, is an intuitionistic fuzzy equality on X, where
IEx = (urEx,ViEy) : X X X — I x I is the complex mapping defined as follows :

IEX((£O¢)7 (ya)) = (/\ael‘ HIEx, (-TCH ya), VaGF VIEx, (xa7 ya))7

for any (), (ya) € X.

The following is the immediate result of Definition 3.3 and Proposition 3.25.
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Proposition 3.26. Let X = [ . Xo be the product of a family { X, }aer of sets.
For each a € T', we define the intuitionistic fuzzy relation 74 = (fr_, Vr, ) on X x X,
as follows :

Ta((o),x) = (1,0), ifx=2x,
and

pr, (o), ) > 0 and vr_ (24),2) <1, if & # x4,
for each (z,) € X and each x € X,,.
Then 7, : X — X, is an intuitionistic fuzzy mapping w.r.t. [Ex = HaEF IEx, €
IE(X) and TEx, € IE(X), Va €T. In this case, 7, is called the intuitionistic
fuzzy projection of X to X,. In fact, m, is strong and strong surjective.

Proposition 3.27. Let 7, : X = HaEF Xo — X, be the intuitionistic fuzzy
projection of X to X, and let B, €IFS(X,), Va € T'. Then (,cp 75" (Ba) =

[Iocr Ba, where [[,cp Ba is the intuitionistic fuzzy set in X defined as follows :
For each (z,) € X,

(Haer Ba)((#a)) = (Aaer #B. (2a), Vaer VB, (%a))-

Proof. Let (z,) € X. Then
Naer Ta H(Ba)l((za)) = (/\aerﬂﬂgl(Ba)(( a))s Vaerv o (Ba)((xa>))
=(NaertVyex, 1. @) ATa((@a): I} Vaer i ex, 78, () VTa((za), 9)]})
=(Awer 4B, (Za); Vaer VB. (za))  [Since 7, is strong]
Z(HaerB )(2a)).
Hence (), cp 74 Y By) = [Ioer Ba- O

The following is the immediate result of Definition 3.3 and Proposition 3.25.

Proposition 3.28. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
IEx €IE(X) and IEy €lE(Y). We defined the intuitionistic fuzzy relation g on
(X x X) x (Y xY) as follws :

9((,2), (4, ) = (172, 9) A (&', ), vp (@, 9) V (2, 9')),
foreach(x,x) € X x X and each (y, )EYXY. Then g : X x X - Y xY
is an intuitionistic fuzzy mapping w.r.t. IExxx = [Ex x [Ex €lE(X x X) and
IEy«y = IEy X IEy €IE(Y xY). In this case, g is called the intuitionistic fuzzy
product mapping of f and is denoted by g = f x f = f2.

4. PREIMAGE AND QUOTIENT OF INTUITIONISTIC FUZZY EQUIVALENCE RELATIONS

Definition 4.1[2]. An intuitionistic fuzzy relation on X is called an intuitionis-
tic fuzzy equivalence relation (in short, IFER) on X if it satisfies the following
conditions :
(1) it is intuitionistic fuzzy reflexive, i.e., R(x,z) = (1,0) Vz € X,
(ii) it is intuitionistic fuzzy symmetric, i.e., R~! = R,
(iii) it is intuitionistic fuzzy transitive, i.e., Ro R = R.
7
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We will denote the set of all IFERs on X as IFE(X).

Proposition 4.2. Let f : X — Y be an intuitionistic fuzzy mapping w.r.t.
IEx €lE(X) and IEy € IE(Y), and let R be an intuitionistic fuzzy equivalence
relation on Y. Then f~2(R) is an intuitionistic fuzzy equivalence relation on X. In
this case, f~1(R) is called the preimage of G under f, where f=2 = (f?)~1.

proof. It is clear that f~1(R) is an intuitionistic fuzzy relation on X.
(i) Let 2 € X. Then, by the proof of proposition 4.1 in [10], pts—2(p) (2, ) = 1.
Thus, it is sufficient to show that vy (z,z) = 0.
Vi-2(R) (z,2) = /\(y,y’)EYXY[VR(yv y/) k4 (Vf X l/f)((xv ), (y, y/))}
[By Definition 3.18 and Notation f? = f x f]
= /\(y,y’)erY[VR(y7 y/) v (Vf(xa y) A Vf(x/’ y/))]
[By Proposition 3.28.]
< vr(¥0,Yo)
[Since f is strong, Jyo € Y such that vy(z,yo) = 1.]
=0.
So vp-2(g)(x,2) = 0. Hence f~!(R) is reflexive.
(ii) By the definition of f~2(R), it is clear that f~2(R) is symmetirc.
(iii) Let o, 2" € X, Then, by the proof of Proposition 4.1 in [10],
pr—2(Ryof—2(r) (T, ") < py2(gy(x,2”). Thus, it is sufficient to show that
Vf—Q(R)of—Q(R) (LC, LUH) Z Vf—z(R)({,C, SL'/I).
vi-2(R)os-2(R) (¥, 2")
= NwexV-2(r) (2, 2') V V-2 () (2, 2")]
= /\x’eX{(/\(y,y')EYXY[VR(y7y/) V(v xvp)((z, @
VA ey e R Y) V (0 X vg) (2, 27),
= /\x’eX{(/\(y,y’)erY[VR(yv y/) \% Vf(xv y) \ Vf(x/’ Y )
\/(/\(y’,y”)erY[VR(y/7 y//) v Vf(xl? y)v Vf(mllv y//)])}
= /\(y7y//)€y><y[VR(ya yO) v VR(yOa y”) v f(l‘, y) v Vf<xl/a y//>]
[Since f is strong, Jyo € Y such that v¢(2’,y9) = 0.]
z /\(y,y”)EYXY[VR(y7 y”) \ (Vf X l/f)((l‘, 3;‘”), (y7 y//))}
[Since f is transitive.]
= foz(R)(ZL‘,l‘”).
So f72(R) o f~2(R) C f~2%(R), i.e., f~2(R) is transitive. Hence f~2(R) is an intu-
itionistic fuzzy equivalence relation on X. O

) (y,9)])
W'y}

Corollary 4.2. Let f and R be same as in Proposition 4.2. Then f~2(R) =
S~ oRof.

Proof. Let a,b € X. Then
[f2(R)](a, )
= (Nf—2(R)(av b), Vi-2(R) (a,b))
= (\/(c,d)eYXY[:uR(Cv d) A (/u‘f x :uf)((av b), (¢,d))],
/\(c,d)EYxY[VR(Cv d) v (Vf X Vf)((a7 b)’ (C7 d))])
= (\/(c,d)EYXY[:uR(Cv d) A Ky (a,c) A K (b, d)],
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/\(c,d)erY[VR(C’ d) v vy (a, )V Vf<b’ d)))
= (Vaey{Veeylprla, e) Apr(e,d)]) A pys(b,d)},
Naev{Acevlvi(a,e) Vvr(e,d)]) Vvs(b,d)})
= (Vaey [ror(a,d) A pp(b,d)], Agey [VRor (a, d) V 14 (b, d)])
= (\/deY[MRof(C% d) A Hf—1 (dv b)}v /\deY[VROf (CL, d) \ fol( ’ b)}
=(f"o(Ro f))(a,b).
Hence f~2(R) = f"'oRo f. O

Let R be an intuitionistic fuzzy equivalence relation on X and let a € X. We define
a complex mapping Ra : X — I x I as follows : For each z € X,

Ra(z) = R(a,x).
Then clearly Ra € IFS(X). The intuitionistic fuzzy set Ra in X is called an intu-
itionistic fuzzy equivalence class of R containing a € X. The set {Ra : a € X} is
called the intuitionistic fuzzy quotient set of X by R and denoted by X/R.

Result 4.A[7, Theorem 2.5]. Let R €IFE(X). Then :
(a) Ra = Rb if and only if R(a,b) = (1,0) for any a,b € X.
(b) Ra = Rb if and only if Ra N Rb = 0., for any a,b € X
(©) Upex Ba = 1.
(d) 3 the surjection 7 : X — X/R(called the natural mapping) defined by
m(x) = Rx for each x € X.

We obtain the generalization of Result 4.A(d).

Proposition 4.3. If R is an intuitionistic fuzzy equivalence relation on X, then 3

the strong and strong surjective intuitionistic fuzzy mapping 7 : X — X/R w.r.t.

Ax €lE(X) and IEx g €IE(X/R), where [Ex/g : X/R x X/R — I x I is the

intuitionistic fuzzy equality on X/R defined as follows : For any a,b € X,
IExgr(Ra, Rb) = R(a,b).

In this case, 7 is called the natural (or canonical) fuzzy mapping.

Proof. We define the intuitionistic fuzzy relation m: X x X/R — I x I as follows :
For any a,b € X,
m(a, Rb) = Rb(a) = R(b,a).

Then, by Result 4.A(a), 7 satisfies the condition (if.1). Let a1,a9,b1,by € X. If
a1 # ag, then clearly Ax(ai,a2) = (0,1). Thus
pir (a1, Rby) A pr(ag, Rb2) A piay (a1, a2) =0 < prpy ,, (Rb1, Rbs)

and
l/ﬂ-(al,Rbl) V I/ﬂ-(ag,RbQ) V I/AX (CL17CL2) = 1 Z VIEX/R(RblaRbQ)-

Suppose a; = ay. Then, by the proof of Proposition 4.2 in [10],
pir (@1, Rb1) A pr(az, Rba) A piay (a1, a2) < piey, , (Rb1, Rba).

Thus it is sufficient to show that
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Vﬂ(al,Rbl) V Vﬂ—(ag,Rbg) V VA (a17a2> > V]EX/R(Rbl,Rbg).

vr(ar, Rby) V vgr(ag, Rbo) V va, (a1, az)

=vg(a1,b1) Vvg(ar,b2) Vva,(a1,a1) [By the hypothesis.]

=vr(b1,a1) V vr(a1,be) [Since R is symmetric and va, (a1,a1) = 0.]

> vr(b1,b2) [ Since R is transitive.]

= VIEX/R(Rb17 Rbg)
So 7 satisfies the condition (if.2). Hence w : X — X/R is an intuitionistic fuzzy
mapping w.r.t. Ax and I Ex,/r. Furthermore, it is clear that 7 is strong and strong
surjective from the definition of . O

Proposition 4.4. Let R and G be intuitionistic fuzzy equivalent relations on X
such that R C G. We define the complex mapping G/R : X/R x X/R — I x I as
follows :

[G/R](Ra, Rb) = G(a,b), Va,be X.
Then G/R is an intuitionistic fuzzy equivalence relation on X/R. In this case, G/R
is called the intuitionistic fuzzy quotient of G by R.

Proof. Tt is clear that G/R is intuitionistic fuzzy reflexive and symmetric. Let a,c €
X. Then, by the proof of Proposition 4.3 in [10], ¢ /roc/r(Ra, Re) < pa)r(Ra, Re).
On the other hand,
va/roc/R(Ra, Re) = Ny x Ve r(Ra, Rb) V vg r(Rb, Re)]
= Noexva(a,b) v v(b,c)]
= vgoc(a,c)
> vg(a,c¢) [Since G is transitive.]
= vg/r(Ra, Rc).
Thus G/R is intuitionistic fuzzy transitive. This completes the proof. O

The following is the immediate result of Proposition 4.4.
Corollary 4.4. Let R, G, H €IFE(X) such that R C G C H. Then G/R C H/R.

Proposition 4.5. Let R, G and H be same as in Corollary 4.4.

(a) RC GoH.

(b) If G o H €IFE(X), then (G o H)/R is an intuitionistic fuzzy equivalence
relation on X/R and G/Ro H/R = (G o H)/R.

(¢) G/Ro H/R €IFE(X/R).

Proof. (a) Let a,c € X. Then, by the proof of Proposition 4.4(a) in [10],
N’GOH(av C) > MR(a7 C)'
On the other hand,
V(GoH) (a,c) = /\beX v (a,b) Vve(b,c)]

< Npex[Vr(a,b) Vvg(b,c)] [Since R C G C H]
< vr(a,c) Vg(cc)
= vg(a,c). [Since vg(c,c) = 0]

Thus RC Go H.
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(b) By the hypothesis, (a) and Proposition 4.4, it is clear that (G o H)/R is an
intuitionistic fuzzy equivalence relation on X/R. Let a,c¢ € X. Then
(G/Ro H/R)(Ra, Rc)
(Viex[va/r(Ra, Rb)Avg r(Rb, Re)l, \pe x [Vh/r(Ra, Rb)Vvg, r(Rb, Re)])
= Vol (@,5) A va(b, )], Aex r(a,5) V v (b, o)
= (vgon(a, ), vgon(a, c))
= [(G o H)/R](Ra, Rc).
Thus G/Ro H/R = (Go H)/R.
(c) It is obvious from (b). O

Proposition 4.6. Let R €IFE(X) and G €IFE(Y) and let the intuitiionistic fuzzy
product of R and G, denoted by R - G, be an intuitionistic fuzzy relation on (X X
Y) x (X xY) defined as follows : V1,22 € X,Vy1,y2 €Y,

(R ’ G)((l‘l, yl)a ($27 y?))

= (ur(21,72) A pa(yi,y2), vr(T1,22) V va (Y1, y2)-
Then R-G € IER(X x Y).

Proof. By the definition of R - G, it can be easily seen that R - G is intuitionistic
fuzzy reflexive and symmetric. Let (a1, b1), (a2,b2) € X x Y. Then, by the proof of
Proposition 4.5 in [10],

H(Rr-G)o(r-c)((a1,01), (a2,b2)) < pr.c((a1,b1), (az,b2)).
On the other hand,

V(R-G)o(r-G)((a1.b1), (a2, b2))

— Aoy (@, br), (a,0) V i ((a,b), (a,b2)]

= NapexxyVr(ai,a) Vve(by,b) Vvr(a, az) V vg(b, by)]

= (Nuex[vr(ar,a) Vvr(a,a2)]) V (Apey [va (b1, 0) V va (b, ba)])

= V(ror)(a1,a2) V V(Goc) (b1, b2)

> vr(a1,a2) V vg(by,by) [Since R and G are intuitionistic fuzzy transitive]

= VR.G((al, bl), (CLQ, bg))
Thus (R-G)o (R-G) C R-G. So R -G is intuitionistic fuzzy transitive. Hence
R-Ge (X xY). O

5. INTUITIONISTIC FUZZY EQUIVALENCE RELATIONS AND INTUITIONISTIC FUZZY
MAPPINGS

Proposition 5.1 Let f : X — Y be a strong intuitionistic fuzzy mapping w.r.t.
IEx €lE(X) and IEy € IE(Y). We define the mapping R : X x X — I x I as
follows : For each (z,2') € X x X,
R(z,2") = (V (y ey <y s (@ y) A (@ y') A piey (9, 9],
Nyney <y Wil y) V(@' y') Vv, (y,9)))-
Then R €IFE(X). In this case, R is called the intuitionistic fuzzy equivalence rela-
tion on X determined by f and will be denoted by Ry.

Proof. By the definition of R, it can be easily seen that R is intuitionistic fuzzy
reflexive and symmetric. Let a,c € X. Then, by the proof of Proposition 5.1 in [10],
p’RoR(a7 C) < MR(av C)'
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On the other hand,
Vror(a,¢) = N\ cx[Vr(a,z) V vr(z,c)]

= /\zeX{(/\(b,b’)erY[Vf(av b) v Vf(x’ b/) VVipy (b’ b/)])
VIAw ey sy (@, 0) Vvg(e,t') Vg, (0, )}

= (/\(b,bo)erY[Vf(a, b) v Vf(x’ bO) VVigy (b’ bo)])
V(Ao bryey sy Vr(@,00) V vp(e,b”) V vig, (bo, 0")])
[Since f is strong, 3by € Y such that v¢(z,by) = 0.]

> /\(b7b,,)€YXY[1/f(a, bo) Vve(e,b") Vg, (b,b")]

=vg(a,c).

Thus Ro R C R. So R is intuitionistic fuzzy transitive. Hence R €IFE(X). O

Corollary 5.1. Let R €IFE(X). If 7 : X — X/R is the natural intuitionistic fuzzy
mapping w.r.t. Ay €IE(X) and IEx/r €IE(X/R), then R = R;.

Proof. By Proposition 4.3, it is obvious that 7 is strong. Let a,b € X, Then, by
the proof of Corollary 5.1 in [10], ug = pr.. On the other hand,
VR, (a,b) = /\(c,d)eXxX [vx(a, Re) V vz (b, Rb) V VIEX/R(RC’ Rd)]
= NeyexxxVr(e,a) Vvr(d,b) Vvg(c,d)]
[By the definitions of 7 and IEx/p.]
= Aucxc{Aoex na,€) V vale d)) A va(d,b)}
[Since R is symmetric]
= Aaex[Vror(a,d) V vr(d, b)]
> NaexVr(a,d) V vr(d,b)] [Since R is transitive]
= Vror(a,b)
> vr(a,b). [Since R is transitive]
Thus vg(a,b) < vg, (a,b).
Also,
vr(a,b) = vr(a,a) V vg(b,b) Vvr(a,b)
=vr(a, Ra) V vy (b, Rb) V viEy ,,(Ra, RD)
[By the definitions of 7 and IEx p.]
> /\(c,d)eXxX [Vﬂ' (av RC) V Vr (b, Rd) N VIEx/Rr (RC, Rd)]
=vpg, (a,b). [By the definitions of R,]
Thus v, <vgr. So vg =vg,_ . Hence R = R,. O

Remark 5.1. Corollary 5.1 is the generalization of Theorem 3.22 in [12] in intu-
itionistic fuzzy setting.

Proposition 5.2. Let f : X — Y be a strong intuitionistic fuzzy mapping w.r.t.
Ax €IE(X) and IEy €IE(Y) and let
ranf = {y € Y : 3z € X such that pr(z,y) >0 and vs(x,y) <1} C Y.
Let R be the intuitionistic fuzzy equivalence relation determined by f. We define
two intuitiionistic fuzzy relations s and ¢ on X/R X ranf and ranf x Y, respectively
as follows:
s(Ra,y) = f(a,y),Va € X,Vy € ran f
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and

n_ ) (1L, if y=y,
t(y7y)—{ (0,1) if y#y ,Yyeranf,Vy €Y.

Then s is strong and bijective, ¢ is strong and injective and f =tosom.

Proof. (i) By Proposition 4.3, it is obvious that 7 : X — X/R is a strong and
strong surjective intuitionistic fuzzy mapping w.r.t. Ax and IEx/r € E(X/R).

(ii) It can be easily seen that s : X/R — ran f is an intuitionistic fuzzy mapping
w.r.t. IEx/p and IEy. Moreover, by the defninition of s, s is surjective. Let
x1,22 € X and let y1,y2 € ran f. Then, by the proof of Proposition 5.2 in [10],

g (Rry,y1) A ps(Roa, yo) A prey (Y1,Y2) < HIEy, ,(R21, Rog).
On the other hand,
ViEy r(RT1, Rr2) = vR(21, 72)
=N(e.yey v V(@1 ¢) Vvs(ze,d) Vvip, (¢, d)]
[Since R is an intuitionistic fuzzy equivalence relation determined by f]
<wp(xr, ) Vvp(e,y2) V vrey (Y1, y2)
=vs(Rr1,y1) V vs(Rr2,y2) V ViE, (Y1, Y2)-
[By the definition of s.]
Thus s is injective. Since f is strong, it is clear that s is strong. Hence s is strong
and bijective.

(iii) From the definition of ¢, it can be easily seen that ¢: ran f— Y is strong and
injective intuitionistic fuzzy mapping w.r.t. IEy and I Fy.

(iv) Let x € X and let y € Y. Then

(tosom)(z,y) =[(tos)omn](x,y)
= (\/Ragx/R[NW(xv Ra) A pieos(Ra, y)], /\Ragx/R[Vﬂ(wv Ra) V vio5(Ra, y)])
= (\/RaEX/R[lU’R(a7 LC) A (\/zemnf [N’S(Rav Z) A Kt (Z’ y)D]a
/\RG.EX/R[VR(G‘7 l’) \ (/\zeranf [VS (Ra” Z) \ Ut (Z, y)])])
[By the definitions of 7 and ¢ o s.]
= Van[MR(aﬂ .’E) A (Vzemnf[:uf(av Z) A Nt(zv y)])]»
Nox [VR(0:2) V (Ncranglvs (@, 2) V 12z, y)])
[By the definition of s.]
= (V epang (. 2) A (2, 9),
/\zEranf [Vf ('T7 Z) Vg (Z7 y)]
[Since R is reflexive.]
= (uf(z,y),ve(z,y))  [By the definition of ¢]
Thus t o s o = f. This completes the proof. O

The following is the immediate result of Propositions 5.2
Corollary 5.2. Let f,s,t and R be same as in Proposition 5.2. If f is surjective
[resp. strong surjective], then ¢t : ran f — Y is strong and bijective [resp. strong

bijective] and hence s : X/R — Y is strong and bijective [resp. strong bijective].
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Remark 5.2. Proposition 5.2 and Corollary 5.2 are the generalizations of Theorems
3.23 and 3.24 in [12] in intuitionistic fuzzy setting.

Proposition 5.3. Let f: X — Y be a strong intuitionistic fuzzy mapping w.r.t.
Ax €lE(X) and IEy € IE(Y). Let R be the intuitionistic fuzzy equivalence rela-
tion on X determined by f and let G €IFE(X) such that G C R. We define the
intuitionistic fuzzy relation f/G on X/G x Y as follows:

[f/Gl(Gz,y) = f(z,y),Vz € X, Vy €Y.
Then f/G : X/G — Y is a strong intuitionistic fuzzy mapping w.r.t. IEx,q €IE(X/G)
and Fy. In this case, f/G is called the fuzzy quatient of f by G.

Proof. From the definition of f/G, it is clear that f/G satisfies the condition (if.1).
Let Gx1,Gxzo € X/G and let y1,y2 € Y. Then, by the proof of Proposition 5.3 in
[10],
tpa(Gr,y1) Apg o (Grz, y2) Arey n (Gor, Gaa) < prey (Y1, 92)- (5.1)
On the other hand,
via(Gri,y1) Vv a(Gri,y2) V viey o (Grr, Gag)
ve(z1,y1) Vvp(22,y2) V ve (21, 22)
vi(z1,y1) Vvg(ze,y2) Vvr(zi,z2)  [Since G C R\
vi(zi,y1) V(ee,y2) V(A (e, d) €Y x Yvg(z1,¢) Vg(ze,d) Vg, (¢, d)])
[Since R is the intuitionistic fuzzy equivalence relation determined by
fl

vi(@1,y1) V vg(@2,92) V visy (Y1, y2)
[Since f is strong, Jcp,dg € Y such that f(z1,c0) = f(z2,do) = (1,0).]

v

=vy(w1,y1) V vy(2,92) V ViR, (C0, C0)- (5.2)
Since f: X — Y is an intuitionistic fuzzy mapping w.r.t. Ax and I Fy,
vi(w1, y1) Vs (e, y2) Vvay (21, 72) > vigy (Y1, Y2)- (5.3)

By (5.1) and (5.2),
ve(xy,y1) V (w2, y2) V vax (21, 22) V viEy (co, do)

> vigy (co,do) V ViEy (Y1,Y2) = ViEy (Y1, Y2)-
Thus

vy a(Gry, yi)Vvsa(Gre, y2)Vvrey , (Gry, Gre) > vig, (Y1, Y2)- (5.4)
So, by (5.1) and (5.4), f/G satisfies the condition (if.2). Since f is strong, it is clear
that f/G is strong. Hence f/G : X/G — Y is strong w.r.t. [Ex/c and IEy. O

Proposition 5.4. Let f, R, G and f/G be same as in Proposition 5.3. Then R/G
is the intuitionistic fuzzy equivalence relation on X/G determined by f/G.

Proof. Let Ry, be the intuitionistic fuzzy equivalence relation on X/G determined
by f/G and let Ga, Gb € X/G. Then, by the proof of Proposition 5.4 in [10],
1R, (Ga,Gb) = up/c(Ra, RD).
On the other hand,
Z/f/G(GCL, Gb):/\(c,d)erY[Vf/G(Ga7 C) V Z/f/G(Gb, d) \ VIEy (C, d)]
:/\(c,d)erY [vs(a,e) Vvp(b,d) Vg, (c,d)]
=vg(a,b) [By Proposition 5.1]
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=vgr/c(Ga, Gb). [By Proposition 4.4]
Thus Ry = R/G . So R/G is the intuitionistic fuzzy equivalence relation on X/G
determined by f/G. O

Remark 5.4. Proposition 5.4. is the generalization of Theorem 3.26 in [12] in
intuitionistic fuzzy setting.

Proposition 5.5. Let R, G €IFE(X) such that G C R. Then 3 a strong and strong
bijective intuitionistic fuzzy mapping b : (X/G)/(R/G) — X/R.

Proof. By Proposition 4.3, 3 a strong and strong surjective intuitionistic fuzzy
mapping 7 : X — X/R wat. Ax €IE(X) and [Ex/r €IE(X/R). By Corollary
5.1, it is clear that R = R,. Then, by Proposition 5.3, 7/G : X/G — X/R is strong
w.rt. [Ex,q €IE(X/G) and I Ex . Thus, by Proposition 5.4, R/G = R, . Since
7 is strong surjective, w/G is strong surjective. So, 7/G : X/G — X/R is strong
and strong surjective. Hence, by Corollary 5.2, 3 a strong and strong bijective intu-
itionistic fuzzy mapping h : (X/G)/(R/G) — X/R. O

The following is the immediate result of Proposition 5.5.

Corollary 5.5. Let R, G €IFE(X). Then :
(a) 3 a bijective intuitionistic fuzzy mapping g : X/(RoG) — (X/R)/(RoG/R).
(b) 3 a bijective intuitionistic fuzzy mapping h: X/R — (X/RNG)/(R/RNG).

Proposition 5.6. Let f : X — Y be a strong and strong surjective intuitionistic
fuzzy mapping w.r.t. Ax € IE(X) and IEy €IE(Y), and let R €IFE(X). Then
f?(R) €IFE(Y). In this case, f2(R) is called the image of G under f.

Proof. By the definition of f2(R), it can be easily seen that f2(R) is intuitionistic
fuzzy reflexive and symmetric. Let y,y” € Y. Then, by the proof of Proposition 5.6
in [10],
tr2(ryof2(r) (Y, Y") < ppzcry (y,y").
On the other hand,
vi2(R)of2(r) (Y5
=Nyeyvrm@y) vV vem ',y
:/\y’eY{(/\(ac,x/)GXxX[VR(x7 ;[;/) V l/f(l’, y) vV I/f(w” yl)D
V(A emyexsxVr(@, ") V(@ y') Vg (a”, y")])}
:/\(w,x”)EXXX[VR(‘r’ x0) Vvr(zo, ") Vvi(z,y) V f2”,y"))
[Since f is strong surjective, 3z € X such that f(zo,y’) = (1,0).]
> \/(3:739”)6X><X[VR($7 l'//) v l/f(SU, y) N l/f(l'//a y//)]
[Since R is transitive.]
=vyp2(r) (Y, ")
Thus f2(R) o f2(R) C f?(R). So f%(R) is intuitionistic fuzzy transitive. Hence
F2(R) €IFE(X). O
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Theorem 5.7. Let f: X — Y be strong and strong surjective w.r.t. Ax €IE(X)
and IEy €IE(Y), let R = Ry and let G €IFE(Y). Then :

(a) R C f7%(G).

(b) H = f~%(G) if and only it G = f2(H).
Hence 3 a bijection h :IFE(Y) —IFER(X), where IFEg(X) denotes the set of all
intuitionistic fuzzy equivalence relations on X containing R.

Proof. (a) Let x,2’ € X. Then, by the proof of Theorem 5.7(a),
pr(z, @) < pp-2(c) (@, 2).
On the other hand,
vR(2, %) = Ny yev <y Vs (@ y) Vve(a',y') Ve, (y,y')] [By Proposition 5.1]
(v,y") EYXY[Vf( 'Y ) \ Vf( /73//)]
/\(y,y yev v [Va (Yo, vo) V ve(,y) Vvp (2, y')] [Since G(yo,yo) = 1]
=Nyeyxy Ve, v') Vve(z,y) Ve, y')]
=vy-2(e) (%, 7).
Thus R C f~%(G).
(b) (=): Suppose H = f~2(G) and let 3,9’ € Y. Then, by the proof of Theorem
5.7(b) in [10],
tp2m (s y') = pa(y, y')-
On the other hand,
Vez(H) (ya y/)
= /\(m,a:’)eXXX[VH(xv .Z‘/) Vg ((J), 1‘/), (ya y/))]
= NaanexxxVi—2c) (@ @) V(e y) V(' y')]
= l/ffz(G)(l‘o, 3;‘6)
[Since f is strong surjective, Ixg, z( € X such that f(zo,y) = f(z(,y") = (1,0).]
= /\(z,z’)erY[VG(Za Z/) v Vf(x()? z)V Vf(l‘f), Z/)]
= VG(yvy/)' [Since f(xayO) = f(xlvy(l)) = (17 0)}
Thus f?(H) = G.
(«<): Suppose f2(H) = G and let 2,2’ € X. Then, by the proof of Theorem
5.7(b) in [10],
pg-2(c) (@, 2") = pu(z,a’).
vi-2(c) (@, 2')
= Adgarrer v 6008 ¥ vpa((2.0), (.1
[

/\(y y)ey xy [Vf? (H)(y’ ) v Vf(xvy) \ Vf(x/>y/)]
= vp2(a) (Yo: Yo)
[Since f is strong, Jyo,y,, € Y such that f(z,y0) = f(2',y{) = (1,0).]

= Napyexxxva(a,b) Vve(a,yo) Vv (b, 6)}

— v(e,a'). [Since f(z,y0) = F(a',5) = (1,0)]
Thus f~2(G) = H.

Now we define h :IFE(Y) —IFER(X) as follows: VG €IFE(Y), h(G) = f~%(G).

Then, by Proposition 5.6 and (a), clearly h(G) EIFER(X). It is easy to see that h

is bijective. This completes the proof. O
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