
Annals of Fuzzy Mathematics and Informatics

Volume 2, No. 2, (October 2011), pp. 239- 257

ISSN 2093–9310

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Optimization of fuzzy integrated vendor-buyer
inventory models

W. Ritha, R. Kalaiarasi, Young Bae Jun

Received 19 April 2011; Revised 9 June 2011; Accepted 10 June 2011

Abstract. Trade Credit is an important service in modern business
operation. Therefore to incorporate the concept of vendor-buyer integra-
tion and ordersize, dependent trade credit, we present a stylized model
to determine the optimal strategy for an integrate vendor-buyer inven-
tory system under the condition of trade credit. This paper develops an
approach to determine the optimum economic order quantity and total
annual integrated cost for both vendor and buyer under the fuzzy arith-
metical operations of function principle are proposed. A full fuzzy model is
developed where the input parameters annual demand, production rate, set
up cost, holding cost, purchase cost, transportation cost, order processing
cost, carrying cost are fuzzy trapezoidal numbers. The optimal policy for
the fuzzy production inventory model is determined using the algorithm
of extension of the Lagrangean method for solving inequality constraint
problem and graded mean integration method is used for defuzzifying the
fuzzy total annual integrated cost. A numerical example is used to show
the feasibility of the proposed integration models.
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1. Introduction

In this paper, we consider the situation that a vendor and a buyer can invest in
reducing the buyer’s ordering cost to decrease their joint total cost. We consider
a model to determine an optimal integrated vendor-buyer inventory policy under
conditions of order processing time reduction and permissible delay in payments.
The total annual cost function of the model possesses some kinds of convexities.
The vendor and buyer usually establish a long term production purchasing agreement
before any action is taken and then work together towards maximizing their mutual
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benefits. This implies that the optimal contract quantity and number of deliveries
must be determined at the outset of the contract based on their integrated total cost
function.

Trade credit plays an important role in finance. Suppliers offer trade credit to re-
tailers to encourage sales, promote market share and reduce on landstock levels. On
the otherhand retailers can gain capital materials and service without any payment
during the tradecredit period. Hence both supplier and the retailer can take advan-
tage of the trade credit policy. Teng [34] indicated that the trade credit produces
two benefits to the supplier.

(i) It should attract new customers who consider it to be a type of price reduc-
tion.

(ii) It should cause a reduction in sales outstanding.

Since some established customers will pay more promptly in order to take advantage
of tradecredit more frequently. Trade credit intended to link financing, marketing as
well as operations concerns. The joint inventory models, payment for the quantity
ordered is made when the buyer receives the ordered quantity. . This is not true
in today’s business transactions since vendors frequently allow credit for some fixed
time period for settling the payment for the goods and don’t change any interest to
the buyer on the amount owed during this credit period. Buyer’s don’t have to pay
the vendor immediately after receiving the goods. They can delay their payment
until the end of the allowed period.

Based on this phenomenon, Goyal [16] established a single item inventory model
under permissible delay in payments. Chand and Ward [5] modeled the cost of funds
tied up in inventory consistent with the assumptions of the classical EOQ model.
Gupta [18] showed that when the delay is infinite, any policy with positive and finite
order quantity will be optimal.

Chung [13] developed an alternative approach to find the economic order quantity
under the condition of permissible delay in payments. Chang [6] extended this issue
with linear trend demand. Hwang and Shin [23] modeled an inventory system for
retailer’s pricing and lotsizing policy for exponentially deteriorating products under
the condition of permissible delay in payments.

Huang [21] modified the model by two levels of trade credit. Huang [20] incorpo-
rated Huang’s model with Teng’s model by considering limitation of the retailer’s
storage space to reflect real life conditions. Since the integrated inventory model
would be necessary to incorporate the tradecredit.

This paper incorporates the permissible delay in payments and order processing
cost reduction into the integrated inventory model. In the real world the parameter
and variables in inventory model may be almost uncertain datum. Park [29] used
fuzzy set concept to treat the inventory model with fuzzy inventory cost under
arithmetic operation of extension principle. Integrated inventory model for single
supplier and a single customer was first introduced by Goyal [16]. The joint economic
lotsize model for a single vendor and a single customer was introduced by Banerjee
[2]. Goyal modified Banerjee model on the assumption that vendor may possible
product a lotsize that may supply an integer number of orders to the buyer.
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Recently fuzzy concepts have introduced in EOQ models. First time Mahata [28]
investigated the joint economic lotsize model for both buyer and vendor in fuzzy
sense.

In this paper we consider integrated inventory model with a single vendor and
single buyer for a single product with fuzzy input parameters. Here demand and
cost are represented as a trapezoidal fuzzy number. Chen’s [8] function principle
is proposed for arithmetic operation of fuzzy number and Lagrangean method is
used for optimization. Graded mean integration is used for defuzzifying the annual
integrated total cost for both vendor and buyer with order processing cost reduction
and permissible delay in payments.

In Section 2, we deal with crisp integrated inventory model with different situa-
tion. Section 3 discuss with basic concepts of function principle, Lagrangean method,
graded mean integration representation method. Section 4 deals with fuzzy inven-
tory model with crisp production quantity and fuzzy production quantity , Section 5
presents a numerical example illustrates the solution procedure demonstrating that
the developed model. Last session concluded the discussion of the proposed work.

2. An integrated inventory model with order processing cost
reduction and permissible delay in payments

This section examines the cost implications of integrating the lot sizing policies by
determining a common economic policy using the total cost for both parties. Figure
1 shows the behavior of inventory levels for both the vendor and the buyer based on
the notations and assumptions.

2.1. Notations and Assumptions. The following notations and assumptions are
used throughout to develop the integrated inventory model.

2.1.1. Notations

Q Lotsize per production run
D Annual demand
R Production rate, R > D
Sv Set up cost per production run for the vendor
hv Unit stock-holding cost per item per year for the vendor
hb Unit stock-holding cost per item per year excluding interest charges

for the buyer
P Unit purchase price
n Total number of shipments in a batch from the vendor to the buyer,

a positive integer
q Size of each shipment from the vendor to the buyer
F Fixed transportation cost per shipment
U Order processing cost per unit time for the buyer
L0 Original order-processing time per shipment
t Permissible delay in settling accounts
I Carrying cost per dollar per year

2.1.2. Assumptions
241



W. Ritha et al./Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 2, 239–257

1. The integrated inventory model only deals with a single vendor and single
buyer for a single product.

2. The demand for the item is constant overtime.
3. Shortages are not allowed.
4. The Lead time L has mutually independent components.
5. Since the vendor allows the buyer a delay in payment, the cost for improving

the annual order processing cost are assigned to the buyer.
6. The time period is infinite.

2.2. Mathematical Model. This section examines the cost implications of inte-
grating the lotsizing policies by determining a common economic policy using the
total cost for both parties. Figure 1 shows the behavior of inventory levels for both
the vendor and the buyer based on the above notations and assumptions. The an-
nual integrated total cost for the both the vendor and the buyer consist of (1) the
vendor’s total annual cost, (2) the buyer’s total annual cost.

(1) The accumulation and depletion processes of the vendor’s inventory for each
production cycle are shown in Figure 1 according to Woo et al. [36]. The vendor’s
holding cost per production cycle is equal to the unit holding cost times the value
of accumulated inventory (bold-lined area) minus the depleted inventory (shaded
area). Therefore the vendor’s holding cost per year is given by

Holding cost per year =
(Bold Lined Area - Shaded Area)× hv

Cycle Time

=

{[
Q

(
Q/n
R + (n− 1) Q

nD

)
− Q(Q/R)

2

]
− Q

nD

[
Q
n + 2Q

n + · · ·+ (n−1)Q
n

}}
hv

Q/D

=
(n− 2)Q

2n

(
1− D

R

)
hv +

Q

2n
hv.

After adding the setup cost, the vendor’s total annual cost is given by

TCv(n, Q) = DSv

Q + (n−2)Q
2n

(
1− D

R

)
hv + Q

2nhv.(2.1)

(2) The buyer’s annual inventory cost consists of the cost of placing orders, holding
cost excluding interest charges and the cost of interest charges for the items kept in
stock during the permissible settlement period. Chand and Ward [5] assumed that
the delay of t periods in making the payment to the supplier is equivalent to a price
discount. Therefore if p is the price per unit with permissible delay of t periods,
then the effective price per unit is

P̂ =
P

1 + It
.

After adding the transportation cost, order processing cost, carrying cost and interest
charges the buyer’s annual cost is

TCb(n, Q, L0) = n(F + UL0)D
Q + Q

2n

[
hb + PI

1+It

]
+ R(L0).
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Figure 1. Time weighted inventory for vendor and buyer
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The annual integrated total cost for both the vendor and buyer is

JTC(n, Q, L0) = TCv(n, Q) + TCb(n, Q, L0)

=
D

[
Sv+n(F+UL0)

]
Q + Q

2n

[
(n− 2)

(
1− D

R

)
hv + hv + hb + PI

1+It

]
+ R(L0).

The objective is to find the optimal shortage quantity and optimal order quantity
which minimize the annual integrated total cost.

The necessary condition for minimum ∂JTC
∂Q = 0

At a particular value of n, let JTC(Q) = JTC(n, Q, L0)

Q∗ =

√
2nD [Sv + n(F + UL0)]

(n− 2)
(
1− D

R

)
hv + hv + hb + PI

1+It

.

3. The fuzzy arithmetical operations under function principle

Function principle is proposed to be as the fuzzy arithmetical operations by trape-
zoidal fuzzy numbers. We define some fuzzy arithmetical operations under Function
Principle as follows :

Suppose Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) are two trapezoidal fuzzy
numbers. Then

(1) The addition of Ã and B̃ is

Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

where a1, a2, a3, a4, b1, b2, b3 and b4 are any real numbers.
(2) The multiplication of Ã and B̃ is

Ã⊗ B̃ = (C1, C2, C3, C4)

where T = {a1b1, a1b4, a4b1, a4b4}, T1 = {a2b2, a2b3, a3b2, a3b3}, C1 = minT,
C2 = minT1, C3 = maxT, C4 = maxT1.
If a1, a2, a3, a4, b1, b2, b3 and b4 are all zero positive real numbers then

Ã⊗ B̃ = (a1b1, a2b2, a3b3, a4b4).

(3) −B̃ = (−b4,−b3,−b2,−b1) and the subtraction of Ã and B̃ is

Ã	 B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1)

where a1, a2, a3, a4, b1, b2, b3 and b4 are any real numbers.
(4) 1

B̃
= B̃−1 =

(
1
b4

, 1
b3

, 1
b2

, 1
b1

)
where b1, b2, b3 and b4 are positive real num-

bers. If a1, a2, a3, a4, b1, b2, b3 and b4 are nonzero positive numbers, then the
division of Ã and B̃ is

Ã� B̃ =
(

a1
b4

, a2
b3

, a3
b2

, a4
b1

)
.

(5) For any α ∈ R,

(i) If α ≥ 0, then α⊗ Ã = (αa1, αa2, αa3, αa4) ,

(ii) If α < 0, then α⊗ Ã = (αa4, αa3, αa2, αa1) .
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3.1. Extension of the Lagrangean method. Taha [32] discussed how to solve
the optimum solution of nonlinear programming problem with equality constraints
by using Lagrangean Method, and showed how the Lagrangean method may be ex-
tended to solve inequality constraints. The general idea of extending the Lagrangean
procedure is that if the unconstrained optimum the problem does not satisfy all con-
straints, the constrained optimum must occur at a boundary point of the solution
space. Suppose that the problem is given by

Minimize y = f(x)
Sub to gi(x) ≥ 0, i = 1, 2, · · · ,m.

The nonnegativity constraints x ≥ 0 if any are included in the m constraints. Then
the procedure of the Extension of the Lagrangean method involves the following
steps.
Step 1: Solve the unconstrained problem

Min y = f(x)
If the resulting optimum satisfies all the constraints, stop because all con-
straints are redundant. Otherwise set K = 1 and go to step 2.

Step 2: : Activate any K constraints (i,e., convert them into equality) and optimize
f(x) subject to the K active constraints by the Lagrangean method. If the resulting
solution is feasible with respect to the remaining constraints and repeat the step. If
all sets of active constraints taken K at a time are considered without encountering
a feasible solution, go to step 3.
Step 3:

If K = m, stop; no feasible solution exists.
Otherwise set K = K + 1 and go to step 2.

3.2. Graded mean integration representation method. Chen and Hsieh [11]
introduced Graded mean Integration Representation Method based on the integral
value of graded mean h-level of generalized fuzzy number for defuzzifying generalized
fuzzy number. Here, we fist define generalized fuzzy number as follows:

Suppose Ã is a generalized fuzzy number as shown in Figure 2.
It is described as any fuzzy subset of the real line R, whose membership function

µÃ satisfies the following conditions.
1. µÃ(x) is a continuous mapping from R to [0, 1],
2. µÃ(x) = 0, −∞ < x ≤ a1,
3. µÃ(x) = L(x) is strictly increasing on [a1, a2],
4. µÃ(x) = WA, a2 ≤ x ≤ a3,
5. µÃ(x) = R(x) is strictly decreasing on [a3, a4],
6. µÃ(x) = 0, a4 ≤ x < ∞,

where 0 < WA ≤ 1 and a1, a2, a3 and a4 are real numbers. This type of generalized
fuzzy numbers are denoted as

Ã = (a1, a2, a3, a4;wA)LR.

When wA = 1, it can be formed as Ã = (a1, a2, a3, a4)LR. Second, by Graded Mean
Integration Representation Method, L−1 and R−1 are the inverse functions of L
and R respectively and the graded mean h-level value of generalized fuzzy number
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Ã = (a1, a2, a3, a4;wA)LR is given by h
2

(
L−1(h) + R−1(h)

)
(see Figure 2). Then the

graded Mean Integration Representation of P (Ã) with grade wA, where

P (Ã) =

∫ ωA

0
h
2

(
L−1(h) + R−1(h)

)
dh∫ wA

0
hdh

(3.1)

where 0 < h ≤ wA and 0 < wA ≤ 1.
Throughout this paper, we only use popular trapezoidal fuzzy number as the type

of all fuzzy parameters in our proposed fuzzy production inventorymodels. Let B̃
be a trapezoidal fuzzy number and be denoted as B̃ = (b1, b2, b3, b4). Then we can
get the Graded Mean Integration Representation of by the formula (3.1) as

P (B̃) =

∫ 1

0
h
2 [(b1 + b4) + h(b2 − b1 − b4 + b3)] dh∫ 1

0
hdh

=
b1 + 2b2 + 2b3 + b4

6
.

(3.2)

Figure 2. The graded mean h-level value of generalized
fuzzy number Ã = (a1, a2, a3, a4 : wA)LR

4. Fuzzy integrated inventory model for crisp production quantity

Throughout this paper, we use of the following variables in order to simplify the
treatment of an integrated inventory models.

Let D̃, R̃, S̃v, h̃v, h̃b, P̃ , F̃ , Ũ and Ĩ be fuzzy parameters. We introduce an
integrated inventory model with fuzzy parameters for crisp production quantity
JTC(n, Q, L0) as follows.
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The annual integrated total inventory cost for both the vendor and buyer

JT̃C(n, Q, L0)

=
{D1[Sv1+n(F1+U1L0)]

Q + Q
2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
,

D2[Sv2+n(F2+U2L0)]
Q + Q

2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I2t

]
,

D3[Sv3+n(F3+U3L0)]
Q + Q

2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I3t

]
,

D4[Sv4+n(F4+U4L0)]
Q + Q

2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]}
JT̃C(n, Q, L0) =

[
D̃ ⊗

[
S̃v ⊕ n

(
F̃ ⊕ Ũ ⊗ L0

)]
� Q̃

]
⊕

Q̃� 2⊗ n
[
(n− 2)⊗ (1− D̃ � R̃)⊗ hv

]
⊕

hv ⊕ hb ⊕
[
P ⊗ Ĩ � (1⊕ Ĩ ⊗ t)

](4.1)

where �, ⊗ and ⊕ are the fuzzy arithmetical operators under Function Principle.
Suppose

D̃ = (D1, D2, D3, D4)
S̃v = (Sv1 , Sv2 , Sv3 , Sv4)
F̃ = (F1, F2, F3, F4)
Ũ = (U1, U2, U3, U4)
Q̃ = (Q1, Q2, Q3, Q4)
R̃ = (R1, R2, R3, R4)
h̃v = (hv1 , hv2 , hv3 , hv4)
h̃b = (hb1 , hb2 , hb3 , hb4)
P̃ = (P1, P2, P3, P4)
Ĩ = (I1, I2, I3, I4)

are nonnegative trapezoidal fuzzy numbers. Then we solve the optimal production
quantity of formula (4.1) as the following steps.

Second, we defuzzify the fuzzy total production inventory for the vendor and buyer
cost by formula (3.2). Graded mean integration representation of JT̃C(n, Q, L0) is

P (JT̃C(n, Q, L0))

= 1
6

{D1[Sv1+n(F1+U1L0)]
Q + Q

2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
+

D2[Sv2+n(F2+U2L0)]
Q + Q

2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I3t

]
+

D3[Sv3+n(F3+U3L0)]
Q + Q

2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I2t

]
+

D4[Sv4+n(F4+U4L0)]
Q + Q

2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]}
.

Third, we can get the optimal production quantity Q∗ when P (JT̃C(n, Q, L0))
is minimization.

In order to find the minimization of P (JT̃C(n, Q, L0)),
247



W. Ritha et al./Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 2, 239–257

the derivative of P (JT̃C(n, Q, L0)) with Q is

∂P
(
JT̃C(n, Q, L0)

)
∂Q

= 0.

We find the optimal production quantity

Q = Q∗

=

√√√√√√√√√√√

(
2n

[
D1(Sv1+n(F1+U1L0))+2D2(Sv2+n(F2+U2L0))+

2D3(Sv3+n(F3+U3L0))+D4(Sv4+n(F4+U4L0))
] )

 (n−2)

[(
1−

D4
R1

)
hv1+2

(
1−

D3
R2

)
hv2+2

(
1−

D2
R3

)
hv3+

(
1−

D1
R4

)
hv4

]
+

(hv1+2hv2+2hv3+hv4 )+(hb1
+2hb2

+2hb3
+hb4

)+

P1I1
1+I4t+

2P2I2
1+I3t+

2P3I3
1+I2t+

P4I4
1+I1t


.(4.2)

4.1. Fuzzy Integrated Inventory Model for fuzzy production quantity. In
this section, we introduce an integrated inventory model by changing the crisp pro-
duction quantity into fuzzy production quantity.

Suppose fuzzy production quantity Q̃ be a trapezoidal fuzzy number Q̃ = (Q1,
Q2, Q3, Q4) with 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4. Thus we can get the fuzzy total
production inventory cost

P (JT̃C1(n, Q, L0))

=
{D1[Sv1+n(F1+U1L0)]

Q4
+ Q1

2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
,

2D2[Sv2+n(F2+U2L0)]
Q3

+ 2Q2
2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I3t

]
,

2D3[Sv3+n(F3+U3L0)]
Q2

+ 2Q3
2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I2t

]
,

D4[Sv4+n(F4+U4L0)]
Q1

+ Q4
2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]}
.

We can obtain the Graded Mean Integration Representation of

P (JT̃C1(n, Q, L0))
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by formula (3.2) as

P (JT̃C1(n, Q, L0)) = 1
6

{
D1[Sv1+n(F1+U1L0)]

Q4
+

Q1
2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
+

2D2[Sv2+n(F2+U2L0)]
Q3

+

2Q2
2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I3t

]
+

2D3[Sv3+n(F3+U3L0)]
Q2

+

2Q3
2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I2t

]
+

D4[Sv4+n(F4+U4L0)]
Q1

+

Q4
2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]}

(4.3)

with 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4. It will not change the meaning of formula (4.3) if we
replace inequality conditions 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4 into the following inequality
Q2−Q1 ≥ 0, Q3−Q2 ≥ 0, Q4−Q3 ≥ 0, Q1 > 0. In the following steps, extension of
the Lagrangean method is used to find the solutions of Q1, Q2, Q3, Q4 to minimize
P (JT̃C1(n, Q, L0)) in formula (4.3).

Step 1 : Solve the unconstraint problem. Consider min P (JT̃C1(n, Q, L0))
To find the min P (JT̃C1(n, Q, L0)), we have to find the derivative of

P (JT̃C1(n, Q, L0))

with respect to Q1, Q2, Q3, Q4.

∂P
∂Q1

= 1
6

{
1
2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
−

D4(Sv4+n(F4+U4L0))
Q2

1

}
∂P
∂Q2

= 1
6

{
2
2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I3t

]
−

2D3(Sv3+n(F3+U3L0))
Q2

2

}
∂P
∂Q3

= 1
6

{
2
2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I2t

]
−

2D2(Sv2+n(F2+U2L0))
Q2

3

}
∂P
∂Q4

= 1
6

{
1
2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]
−

D1(Sv1+n(F1+U1L0))
Q2

4

}
.

Let all the above results partial derivatives equal to zero and solve Q1, Q2, Q3,
Q4.
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Let ∂P
∂Q1

= 0. Then

Q1 =
√

2nD4(Sv4+n(F4+U4L0))

(n−2)

(
1−D4

R1

)
hv1+hv1+hb1+

P1I1
1+I4t

.

Let ∂P
∂Q2

= 0. Then

Q2 =
√

4nD3(Sv3+n(F3+U3L0))

2

[
(n−2)

(
1−D3

R2

)
hv2+hv2+hb2+

P2I2
1+I3t

] .

Let ∂P
∂Q3

= 0. Then

Q3 =
√

4nD2(Sv2+n(F2+U2L0))

2

[
(n−2)

(
1−D2

R3

)
hv3+hv3+hb3+

P3I3
1+I2t

] .

Let ∂P
∂Q4

= 0. Then

Q4 =
√

2nD1(Sv1+n(F1+U1L0))

(n−2)

(
1−D1

R4

)
hv4+hv4+hb4+

P4I4
1+I1t

.

Because the above show that Q1 > Q2 > Q3 > Q4, it does not satisfy the constraint
0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4. Therefore set K = 1 and go to Step 2.

Step 2 : Convert the inequality constraint Q2 −Q1 ≥ 0 into equality constraint
Q2 − Q1 = 0 and optimize P (JT̃C1(n, Q, L0)) subject to Q2 − Q1 = 0 by the
Lagrangean Method. We have Lagrangean function as

L(Q1, Q2, Q3, Q4, λ) = P (JT̃C1(n, Q, L0))− λ(Q2 −Q1).

Taking the partial derivatives of L(Q1, Q2, Q3, Q4, λ) with respect to Q1, Q2, Q3, Q4

and λ to find the minimization of L(Q1, Q2, Q3, Q4, λ). Let all the partial derivatives
equal to zero and solve Q1, Q2, Q3 and Q4. Then we get,

∂L
∂Q1

=
{

1
2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
−

D4(Sv4+n(F4+U4L0))
Q2

1

}
1
6 + λ

implies that

− 1
2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
+

D4(Sv4+n(F4+U4L0))
Q2

1
= 6λ,
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∂L
∂Q2

= 1
6

[
− 2D3(Sv3+n(F3+U3L0))

Q2
2

+

2
2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I3t

]]
− λ = 0,

∂L
∂Q3

= 1
6

[
− 2D2(Sv2+n(F2+U2L0))

Q2
3

+

2
2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I2t

]]
= 0,

∂L
∂Q4

= 1
6

[
−D1(Sv1+n(F1+U1L0))

Q2
4

+

1
2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]]
= 0,

∂P
∂λ = −(Q2 −Q1),

Q1 = Q2 =

√√√√√√√
2n [D4(Sv4 + n(F4 + U4L0)) + 2D3(Sv3 + n(F3 + U3L0))] (n−2)

(
1−D4

R1

)
hv1+hv1+hb1+

P1I1
1+I4t+

2(n−2)

(
1−D3

R2

)
hv2+2hv2+2hb2+

2P2I2
1+I3t



Q3 =

√√√√ 4nD2 (Sv2 + n(F2 + U2L0))

2(n− 2)
(
1− D2

R3

)
hv3 + 2hv3 + 2hb3 + 2P3I3

1+I2t

Q4 =

√√√√ 2nD1 (Sv1 + n(F1 + U1L0))

(n− 2)
(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

.

Because the above results show that Q3 > Q4, it does not satisfy the constraint
0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4. Therefore it is not a local optimum. Similarly we can
get the same result if we select any other one inequality constraint to be equality
constraint, therefore set K = 2 and go to Step 3.

Step 3 : Convert the inequality constraints Q2 − Q1 ≥ 0, Q3 − Q2 ≥ 0, into
equality constraints Q2−Q1 = 0 and Q3−Q2 = 0. We optimize P (JT̃C1(n, Q, L0)).
Subject to Q2 − Q1 = 0 and Q3 − Q2 = 0 by the Lagrangean Method. Then the
Lagrangean method is

L(Q1, Q2, Q3, Q4, λ1, λ2) = P (JT̃C1(n, Q, L0))− λ1(Q2 −Q1)− λ2(Q3 −Q2).

In order to find the minimization of L(Q1, Q2, Q3, Q4, λ1, λ2), we take the partial
derivatives of L(Q1, Q2, Q3, Q4, λ1, λ2) with respect to Q1, Q2, Q3, Q4, λ1, λ2 and
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let all the partial derivatives equal to zero and solve Q1, Q2, Q3 and Q4.

∂L
∂Q1

= 1
6

[
1
2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
−

D4(Sv4+n(F4+U4L0))
Q2

1

]
+ λ1 = 0,

∂L
∂Q2

= 1
6

[
2
2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I3t

]
−

2D3(Sv3+n(F3+U3L0))
Q2

2

]
+ λ2 − λ1 = 0,

∂L
∂Q3

= 1
6

[
2
2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I2t

]
−

2D2(Sv2+n(F2+U2L0))
Q2

3

]
− λ2 = 0,

∂L
∂Q4

= 1
6

[
1
2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]
−

D1(Sv1+n(F1+U1L0))
Q2

4

]
= 0,

∂L
∂λ1

= −(Q2 −Q1), ∂L
∂λ2

= −(Q3 −Q2),

Q1 = Q2 = Q3

=

√√√√√√√√√√√√√

(
2n

[
2D2(Sv2+n(F2+U2L0))+2D3(Sv3+n(F3+U3L0))+

D4(Sv4+n(F4+U4L0))
] )


2

[
(n−2)

(
1−

D3
R2

)
hv2+hv2+hb2

+
P2I2
1+I3t

]
+

2

[
(n−2)

(
1−

D2
R3

)
hv3+hv3+hb3

+
P3I3
1+I2t

]
+[

(n−2)

(
1−D4

R1

)
hv1+hv1+hb1+

P1I1
1+I4t

]


Q4 =

√√√√ 2nD1 (Sv1 + n(F1 + U1L0))

(n− 2)
(
1− D1

R4

)
hv4 + 2hv4 + 2hb4 + 2P4I4

1+I1t

.

The above results Q1 > Q4, does not satisfy the constraint 0 < Q1 ≤ Q2 ≤ Q3 ≤
Q4. Therefore it is not a local optimum. Similarly we can get the same result if we
select any other two inequality constraints to be equality constraint, therefore set
K = 3 and go to Step 4.

Step 4 : Convert the inequality constraints Q2 − Q1 ≥ 0, Q3 − Q2 ≥ 0 and
Q4 −Q3 ≥ 0 into equality constraints Q2 −Q1 = 0, Q3 −Q2 = 0 and Q4 −Q3 = 0.

We optimize P
(
JT̃C1(n, Q, L0)

)
. Subject to Q2 − Q1 = 0, Q3 − Q2 = 0 and

Q4 −Q3 = 0 by the Lagrangean Method. The Lagrangean function is given by

L(Q1, Q2, Q3, Q4, λ1, λ2, λ3) = P
(
JT̃C1(n, Q, L0)

)
− λ1(Q2 −Q1)−

λ2(Q3 −Q2)− λ3(Q4 −Q3).
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In order to find the minimization of L(Q1, Q2, Q3, Q4, λ1, λ2, λ3), we take the partial
derivatives of L(Q1, Q2, Q3, Q4, λ1, λ2, λ3) with respect to Q1, Q2, Q3, Q4, λ1, λ2,
λ3) and let all the partial derivatives equal to zero and solve Q1, Q2, Q3 and Q4.
Then we get

∂L
∂Q1

= 1
6

[
1
2n

[
(n− 2)

(
1− D4

R1

)
hv1 + hv1 + hb1 + P1I1

1+I4t

]
−

D4(Sv4+n(F4+U4L0))
Q2

1

]
+ λ1 = 0,

∂L
∂Q2

= 1
6

[
2
2n

[
(n− 2)

(
1− D3

R2

)
hv2 + hv2 + hb2 + P2I2

1+I3t

]
−

2D3(Sv3+n(F3+U3L0))
Q2

2

]
− λ1 + λ2 = 0,

∂L
∂Q3

= 1
6

[
2
2n

[
(n− 2)

(
1− D2

R3

)
hv3 + hv3 + hb3 + P3I3

1+I2t

]
−

2D2(Sv2+n(F2+U2L0))
Q2

3

]
− λ2 + λ3 = 0,

∂L
∂Q4

= 1
6

[
1
2n

[
(n− 2)

(
1− D1

R4

)
hv4 + hv4 + hb4 + P4I4

1+I1t

]
−

D1(Sv1+n(F1+U1L0))
Q2

4

]
− λ3 = 0,

∂L
∂λ1

= −(Q2 −Q1), ∂L
∂λ2

= −(Q3 −Q2), ∂L
∂λ3

= −(Q4 −Q3),

Q1 = Q2 = Q3 = Q4

=

√√√√√√√√√√√√√√

(
2n

[
D1(Sv1+n(F1+U1L0))+2D2(Sv2+n(F2+U2L0))+

2D3(Sv3+n(F3+U3L0))+D4(Sv4+n(F4+U4L0))
] )


[
(n−2)

(
1−

D4
R1

)
hv1+hv1+hb1

+
P1I1
1+I4t

]
+

2

[
(n−2)

(
1−

D3
R2

)
hv2+hv2+hb2

+
P2I2
1+I3t

]
+

2

[
(n−2)

(
1−

D2
R3

)
hv3+hv3+hb3

+
P3I3
1+I2t

]
+[

(n−2)

(
1−

D1
R4

)
hv4+hv4+hb4

+
P4I4
1+I1t

]


.

Because the above solution Q̃ = (Q1, Q2, Q3, Q4) satisfies all inequality constraints,
the procedure terminates with Q̃ as a local optimum solution to the problem. Since
the above local optimum solution is the only one feasible solution of formula (4.2).
So it is an optimum solution of the inventory model with fuzzy production quantity
according to extension of the Lagrangean Method.
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Let Q1 = Q2 = Q3 = Q4 = Q̃∗. Then the optimal fuzzy production quantity is
Q̃∗ = (Q∗, Q∗, Q∗, Q∗)

Q∗ =

√√√√√√√√√√√

(
2n

[
D1(Sv1+n(F1+U1L0))+2D2(Sv2+n(F2+U2L0))+

2D3(Sv3+n(F3+U3L0))+D4(Sv4+n(F4+U4L0))
] )

 (n−2)

(
1−

D4
R1

)
hv1+2(n−2)

(
1−

D3
R2

)
hv2+2(n−2)

(
1−

D2
R3

)
hv3+(n−2)

(
1−

D1
R4

)
hv4+

(hv1+2hv2+2hv3+hv4 )+(hb1
+2hb2

+2hb3
+hb4

)+

P1I1
1+I4t+2

P2I2
1+I3t+2

P3I3
1+I2t+

P4I4
1+I1t


.

5. Numerical Examples

To illustrate the results obtained in this paper, the proposed analytic solution
method is applied to efficiency solve the following numerical example. Consider an
inventory system with the following characteristics.

D = 2700, R = 9000, hb = 5.00, hv = 2.00, U = 1400, Sv = 200, P = 10,
F = 300, t = 0.25, I = 0.15, n = 2, Q∗ = 1182.77, L0 = 0.105

JTC(n, Q, L0) = 5144.71

In this example can be transferred into the fuzzy parameters as follows. Consider
any problem in which an annual demand is more or less than 2700 units, production
rate is more or less than 9000, unit stock-holding cost is more or less than 5.00 per
item per year for the buyer, unit stock-holding cost is more or less than 2.00 cost per
item per year for the vender. Order processing cost is more or less than 1400 cost
per unit time for the buyer, set up cost is more or less than 200 per production run
for the vendor, purchase price is more or less than 10 per units, Fixed transportation
cost is more or less than 300 per shipment, permissible delay is more or less than
0.25 in settling amounts, Carrying cost is more or less than 0.15 per dollar per year.
Determine the optimum integrated total cost? Here we represent the case of value,
”more or less than Y ” as the type of trapezoidal fuzzy number. Suppose Fuzzy
annual demand is ”more or less than 2700”

D̃ = (D1, D2, D3, D4) = (2550, 2725, 2730, 2740).
Fuzzy production rate is ”more or less than 9000”

R̃ = (R1, R2, R3, R4) = (8850, 9025, 9030, 9040).
Fuzzy unit stock holding cost is ”more or less than 5.00” per item per year for the
buyer

h̃b = (hb1, hb2, hb3, hb4) = (4.8, 4.9, 5.1, 5.2).
Fuzzy unit stock holding cost is ”more or less than 2.00” cost per item per year for
the buyer

h̃v = (hv1, hv2, hv3, hv4) = (1.8, 1.9, 2.1, 2.2).
Fuzzy order processing cost is ”more or less than 1400” Cost unit per time for the
buyer

Ũ = (U1, U2, U3, U4) = (1380, 1390, 1410, 1420).
Fuzzy setup cost is ”more or less than 200” per production run for the vendor

S̃ = (Sv1 , Sv2 , Sv3 , Sv4) = (180, 190, 210, 220).
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Fuzzy purchase price is ”more or less than 10” per units
P̃ = (P1, P2, P3, P4) = (9.8, 9.8, 10.1, 10.2).

Fuzzy fixed transportation cost is ”more or less than 300” per shipment
F̃ = (F1, F2, F3, F4) = (280, 290, 310, 320).

Fuzzy carrying cost is ”more or less than 0.15” per dollar per year
Ĩ = (I1, I2, I3, I4) = (0.13, 0.14, 0.16, 0.17).

Fuzzy production quantity
Q̃ = (Q1, Q2, Q3, Q4) with 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4.

Replace the above fuzzy parameter values into formula, we find the optimal fuzzy
production quantity,

Q̃∗ = (1274.07, 1229.67, 1149.48, 1075.56),
Q̃∗ = 1183.08.

The minimization fuzzy total production inventory cost for both the vender and
buyer is

J̃TC(n, Q, L0)∗ = (4533.13, 4918.92, 5122.23, 5232.53).

Conclusion

This paper presents two fuzzy models for an optimal integrated inventory model
and minimizing the total expected cost of the buyer and the vendor under conditions
of order processing time production and permissible delay in payments. In the first
model demand production cost, purchase cost, annual demand, set up cost per pro-
duction run for the vender, unit stock-holding cost per item per year for the vender
and for the buyer, size of each shipment from the vender to the buyer, transporta-
tion cost, carrying cost represented by fuzzy number while Q is treated as a fixed
constant. In the second model Q is also represented as a fuzzy number. For each
fuzzy model; a method of defuzzification, graded mean integration representation is
applied to find the estimate of total expected cost of the buyer and the vender in
the fuzzy type and then corresponding optimal order netsize is derived to maximize
the total profit.
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