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ABSTRACT. In this paper we study the concept of (L, ®)-smooth topoge-
nous structures in the framework of (L, ®)-smooth topologies and (L, ®)-
smooth quasi-proximities. Some fundamental properties of them are stud-
ied. The relationship between (L, ®)-smooth topogenous structures and
(L, ®)-smooth quasi-uniformities is established.
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1. INTRODUCTION

Katsaras and Petalas [10] introduced the concept of fuzzy syntopogenous struc-
tures as the foundations of the theories of Chang fuzzy topological spaces [3], Hutton
fuzzy uniform spaces [5], Katsaras fuzzy proximity spaces [6, 7]. Katsaras [3, 9] de-
veloped the notions of a fuzzy syntopogenous structures in the sense of Lowen fuzzy
topological spaces [13], Lowen fuzzy uniform spaces [14] and Artico-Moresco fuzzy
proximity spaces [I, 2]. Moreover, Sostak [21] and Ramadan [16] expanded a fuzzy
syntopogenous structures in the sense of Sostak fuzzy topological spaces [20]. Sostak
[20] introduced the notion of ( L, A)-fuzzy topological spaces as a generalization of
L-topological spaces [13]. Hohle and Sostak substitute a complete quasi-monoidal
lattice (or GL -monoid) instead of a completely distributive lattice or an unit in-
terval. Ramadan et al [18] introduce the concept of L-fuzzy topogenous spaces and
L-fuzzy quasi- uniform spaces.

In this paper, we introduce the (L,®)-smooth topogenous spaces in the sense of

Sostak fuzzy topological spaces [20], Samanta fuzzy proximities and unformities [19],
and Yue et al. fuzzy quasi-uniform spaces [22]. It is different from the definitions of
L-fuzzy topogenous structures [8, 9, 16, 17, 18, 19]. We study a natural relationship

between (L, ®)-fuzzy topogenous structures and (L, ®)-fuzzy quasi-uniformities..
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2. PRELIMINARIES

Throughout this paper, let X be a nonempty set. L = (L, <,V,®, ’,0,1) denotes
a completely distributive lattice with order-reversing involution ’ which has the least
and greatest elements,say 0 and 1, respectively. Let LX be the family of all L-fuzzy
subsets of X. For a« € L, a@(z) = a for all z € X.

Definition 2.1 ([1]). A triple (L ,<,®) is called a strictly two-sided, commutative
quantal (stsc-quantale, for short) iff it satisfies the following properties:

(L1) (L,®) is a commutative semigroup.

(L2) a = a® 1, for each a € L.

(L3) ® is distributive over arbitrary joins, i.e., ( V ai> ©b= V(a; ®b).

Sy i€l

Remark 2.2 ([1]). (1) Each frame is a stsc-quantale. In particular, the unit interval
([0,1], <, A,0,1) is a stsc-quantales.
(2) Every continuous t-norm T on ([0, 1], <,¢) with ® =t is a stsc-quantales.
(3) Every GL-monoid is a stsc-quantale.
(4) Let (L, <,®) be a stsc-quantale. For each z,y € L, we define

x—>y:\/{z€L\x®z§y}.
Then it satisfies Galois correspondence, that is,
oy <zen(y—2).

(5) (L,<,®,®,*) is a stsc-quantale with an order-reversing involution * defined
by @y = (z* ®y*)* unless otherwise specified.

Definition 2.3 ([1]). A stsc-quantale (L, <,®,*) is called a complete MV-algebra
iff it satisfies the following property:
(MV) (x —y) wy=2a Vy, Vr,y€ L  which is defined as
r—y=V{zel|lzoz<y}, z* =z—-0.

Lemma 2.4 ([1]). Let (L,<,0,®,*) be a stsc-quantale with an order-reversing
involution *. For each x,y,z € L,{y; | i € T} C L, we have the following properties:
1) Ify<z then (z0y)<(x0z) and (z®y) < (zd z2).
rOy<zANy<zVy < z Dy.
3) Nier ¥i = (Vier ¥i)" and Viery; = (Nieryi)*.
4) =@ (Nieryi) = Nier (T @ yi).
5 (:l: \/ y)oO(z Vw)<(x Vz)V (yow) <(zd2)V (y Ow).
6) z © (z—y) <y and x%y<(y%z)%(xﬂz).
7) If x* =2 — 0, then x—>y—y — x*
8) If x* =2 — 0, then O (z* @ y*) < y*.
If L is a complete MV-algebra, then
roOy=(r—y"), (dy) =" -y,
(z@2)0y<z®(yoz),
oy oow) <(z02) e (youw),
z® (Vier ¥i) = Vier(r ® y;) and
T © (Nier ¥i) = Nier(z © ¥;)-
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All algebraic operations on L can be extended pointwise to the set LX as follows:
(1) A< piff M) < plz), Vo € X.
(2) (\©p)(@) = A(z) © u(x), Va € X.
3) (A= p)(zx) = Az) = p(x),Vr € X.

Definition 2.5 ([4, 12, 15] ). A map 7 : LX — L is called an (L, ®)-smooth
topology if it satisfies the following conditions:

(o1) 7(0) =7(1) =1,

(02) 7(p1 © p2) = 7(p1) O 7(p2), ¥ pur, po € LY.

(03) 7(Vierpi) > Niert(pi) for any {u;}ier C L*.

The pair (X, 7) is called an (L, ®)-smooth topological spaces.

Let 7y and 75 be (L, ®)-smooth topologies on X. We say that 7 is finer than 75 (7
is coarser than 1), denoted by 7 < 7, if 7(\) < 7 ()\) for all A € L¥.

Let (X,7) and (Y, 72) be (L,®)-smooth topological spaces.

A function f : (X, 1) — (Y, 72) is called (L, ®)-smooth continuous map if 72 (A) <
i (f71(N\) for all A € LY.

From [1, 5, 10, 11], let Qx denote the family of all functions f: L¥* — LX with
the following properties:

(a) f(0) =0 and p < f(u), for every u € LX.

(b) f(Vser i) = Viep f(pi), for {piyier € L
For f € Qx, the function f_1 € Qx is defined by

=Nl fo) <u'}.
For f,g € Qx, we define, for all u € LX,
(f©9) () = N{f(u) vV glpa) | ma Vv pa =}, fog(u) = flg(w).
Then f © g, fog € Qx.

Lemma 2.6. For every f,g,h, f1,91 € Qx, the following properties hold:

Flu) <piff (o) < -
Let a function f17: LX — LX be defined by

st = { ] ;:;gigf

(8) (fogt=ftog!
) (fogoh=folgoh)
When L = (L, <,V,0,,0,1) = (L, <,V,A,/,0,1) we have the definition
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Definition 2.7 ([4, 19]). A function U : Qx — L is said to be an (L, A)-smooth
quasi-uniformity on X if it satisfies the following conditions:

(FQUI) If f < g, then U(f) < U(g).

(FQU2) U(fAg) > U(f)NU(g), for each f,g € Qx.

(FQUS) For each f € O, V{U(g) | 909 < f} > U(F).

(FQU4) There exists f € Qx such that U(f) = 1.

The pair (X,U) is said to be (L, A)-smooth quasi-uniform space. The (L, N)-
smooth quasi-uniform space (X,U) is called an (L, A)-smooth uniform space if it
satisfies

(FU) For each f € Qx, \V{U(g) | g < f~'} = U(f).

Let U; and Us be two (L, A)-smooth (quasi-)uniformities on X. U is finer than Us
(‘or Us is coarser than Uy) , denoted by Uy < Uy, iff for any f € Qx, Ua(f) < UL(f).

Remark 2.8. (1) Let (X,U) be an (L, A)-smooth quasi-uniform space. Put
U ={f €Qx |U(f)>r}

for each r € L — {1}, where L = [0,1] , then i, is a Hunton fuzzy uniformity on X
(see [5]).

(2) Let (X,U) be an (L, A)-smooth quasi-uniform space. By (FQU1), (FQU2)
and Lemma 2.6(2), we have U(fAg) = U(f)NU(g), where L = [0, 1].

(3) If (X,U) is an (L, A)-smooth uniform space, then, by (FU), (FQU1) and
Lemma 2.6(3), we have U(f) =U(f1).

(4) Let (X,U) be an (L, A)-smooth quasi-uniform space. By Lemma 2.6(6) and
(FQU4), since f < f71 for all f € Qx, we have U(fr7) = 1.

3. (L,®)-SMOOTH TOPOGENOUS SPACES AND (L, ®)-SMOOTH QUASI-UNIFORM
SPACES

Definition 3.1. A function 7 : LX x LX — L is called an (L, ®)-smooth topoge-
nous structure on X if it satisfies the following axioms for any A, A1, Aa, , pt1, pto €

1) =n(0,0) = 1.

n(A, 1) # 0, then A < p.

A<y and gy < g, then n(Ay, 1) < n(A, p).
(M VA2, 1) = m(A, 1) © n(A2, ).

(A b1 © p2) = n(A, 1) © (A, p2).

< non where, for any A\, u € LX,

non(\u) =\ A v)©nw,w).
velLX

The pair (X, n) is called the (L, ®)-smooth topogenous space.
The (L, ®)-smooth topogenous structure 7 is called symmetric if n = n® where

n° (A p) = 77(/1/7>‘I)7 VA e Lx.
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Let ;1 and 73 be two (L,®)-smooth topogenous structures on X. n; is finer
than 79 (12 is coarser than 7)), denoted by ny < ny, if na(A, ) < m (A, p) for each
\ € LX.

Remark 3.2. Let (X,n) be an (L, ®)-smooth topogenous space. Then
(1) From (T3),(T4) and (T5), we have the following conditions:

(T4)" (A1 V Az, 1) = n(A1, 1) © (A2, ).

(T5)" n(A, p1 © p2) = n(A, p1) © n(A, p2).
(2) If L =1[0,1] and ® = A we put 5, = {(A\, ) € LX x LX | n(\, ) > r} for each
r € L — {1}. Define (\, ) € n, iff A < p. Then 7, is a Katsaras fuzzy topogenous
structure on X.

Example 3.3. We define a function 7 : LX x LX — L, where L = [0,1] and ® = A
as follows
1, ifx=0orpu=1,
nAp) =< 3, H0#AXN<pu#T,
0, otherwise.

Then 7 is an (L, ®)-smooth topogenous structure on X because for 0 # X < pu # 1,
o 2 o . .
non(A, i) = n(X, p) An(u, p) = 5, other cases and other conditions are easily proved.

Theorem 3.4. Let (X,U) be an (L, ®)-smooth quasi-uniform space. Define

me( p) = \{UF) | (1) < p}.

Then (X, my) is an (L, ®)-smooth topogenous space. If (X,U) is an (L, ®)-smooth
uniform space, (X,my) is a symmetric (L, ®)-smooth topogenous space.

Proof. (T1) There exists f € Qx such that U(f) = 1. Since f(1) =T and f(0) =0,
171,{(1, 1) = 172,{(0,0) =1.

(T2) If e (p, p) # 0, then there exists f € Qx such that U(f) # 0 and f(u) < p.
It implies p < p.

(T3) If A < Ay and py < p, then for each f € Qx with f(A1) < p1, we have
FO) < f(M) < < pe Thus, (A ) < mu(d, p).

(T4) Suppose there exist A;, Ao, p € LX such that

(A1 V Az, 1) 2 (A, ) © mu(Ars o).

From the definition of ny(A;, ) for i € {1,2}, there exists f; € Qx with f;(A\;) < p
such that

M (A1 V Ao, ) 2 U(f1) ©U(f2).
On the other hand, since (f1 ® f2)(A1 V A2) < fi(A1) V fa(A2) < i,
(AL V Az, 1) > U(f1 © fa).

Since U(f1 @ f2) > U(f1) © U(f2), it is a contradiction. Thus, my (A1 V Ag, p) >

M (A1, 1) © (A, ).
(T5) Suppose there exist A, u1, 2 € LX such that

(A, 1 © p2) 2 mu(X, ) © mu(, pe).
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From the definition of ny (A, p;) for i € {1,2}, there exists f; € Qx with f;(N\) < py
such that

Nu(A, 1 © po) 2 U(f1) O U(f2).
Since (f1 © f2)(A) < f1(A) © fa(A) < p1 © pa, (A 1 © p2) > U(f1 © f2). Since
U(f1 O f2) > U(f1) ©U(f2), it is a contradiction.
(T6) Suppose there exist i, p € LX such that
M © (s ) Z 1 (ts p)-
From the definition of ny(u, p), there exists f € Qx with f(u) < p such that

M o mu (i, p) 2 U(f)-

Since \/{U(g) | gog < f} > U(f), there exists g € Qx with go g(u) < f(u) < p
such that

M © (i, p) 2 U(9)-
On the other hand, since g(u) = f(1) and g o g(p) < p, we have

(s g()) > U(g), mu(g(p),p) > U(g).

Hence g o mye(p, p) > U(g). Tt is a contradiction.

Let (X,U) be an (L,®)-smooth uniform space. From Lemma 2.6(5) , since
f(u) < piff f71(p") < also U(f) =U(f"), we have ny = 1. Hence (X, my) is a
symmetric (L, ®)-smooth topogenous space. O

Lemma 3.5. Let (X,n) be an (L, ®)-smooth topogenous space. Let

1’ ={(n,p) € L* < L¥ [ n(p, p) # 0}.
For every (u, p) € n°, we define fup: LX — LX as follows:
0 ifA=0,
FupN ={ p #0#£A<,
1 otherwise.

Then we have the following statements.
(1) fﬂ)p S QX,

(2) IfAX<p,v<pand f., € Qx, then fu., < fx,-

(3) For each f, ,, there exists v € L™ such that f,.,0 fu, = fu,p-

(4) If (X,n) is a symmetric (L, ®)-smooth topogenous space and f, , € Qx, then
)
)

-1
(f/t,p = forw-
(5) For each i =1,...,n, fu, » with (1, p;) € n°, denote

F={JC{l.,n} A<\ 1
JjeJ

and put 7; =\ ;¢ ; pj for any nonempty subset J of {1,...,n}. Then

0 if A=0,
Nt fpipiN) =8 Njers T # 2,
1 if T =o.
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Proof. (1) From the definition of f, ,, we have f, ,(0) = 0. If 0 # A < p, then
fup(N) = p. Since (u,p) € n°, that is, n(u,p) # 0, by (T2), u < p. Hence
A< fup(N). IEX £ p, then A < f, ,(A\) = 1. It follows that A < f, ,(\). Finally, we
easily show that f, ,(\,;cp ¥) = Vier fu,p(vi) from the following two conditions:
(@) Viervi <piff vy <pforallieTl,
(b) Viepvi £ piff vy £ p for some i € T,
Hence f, , € Qx.

(2) From definitions of f, , and f\ ,, it is trivial.

(3) From (T6), since 1o n(w, p) =V, epx (n(p,v) © n(v,p)) = n(u, p) # 0, there
exists v € LX such that n(p,v) # 0 and n(v,p) # 0. Hence f,.,f., € Qx.
Moreover, it is easily proved f, , 0 fu..(A) = fu,(A) for any A € LX.

(4) Since (X, n) is a symmetric (L, ®)-smooth topogenous space and f, , € Qx,
then n(u, p) = n(p’, i) # 0. Tt follows that f, .+ € Qx. We show that (f,.,) "' (\) =
forw(N) for all A € LY from the following statements (a), (b) and (c):

(a) Tf A =0,then (f,0) " (0) = A{v | fup() ST} =0= fyr 0 (0).

(b) If 0 # A < o/, then, by the definition of f, ,, we have

Tup(W) <N A f,,00) <p iff V' <p.

~ —

Hence .
(Fup)” () =Ny e LY | fu,(') <X}
“AveL¥ [VE
_ !
=u
= fpl)”/(A),
(c) If XN £ p/ and f, () < XN, then , by the definition of f, ,, we only have
fup(V)=0. It implies that v = 1. Hence (fu’p)_l()\) = fow(N) =1
(5) If A = 0 or ' = @, then it is trivial. We only show that for T' # &,

A?:lfﬂupi()‘) = /\JGF TJ-
Suppose Af_y fuipi(A) £ Ajer 7. Since I' # @, there exist J € T' with A <
Ve 1y such that

/\ fﬂixﬂi<)\) ﬁ TJ-
i=1
Put for i € {1,...,n},
\ { AOp; ifield,

0 otherwise .
Since A = VieJ Ai and \; < p; for all ¢ € J, we obtain

A o) <V fuio. ) <\ pi = 7.
i=1 i=1

ieJ
It is a contradiction. Hence A_; fu, p;(A) < Ajer 77
Suppose Ai; fui.pi(A) 2 Ajer 7. There exist A; € LX with A = \/;; A; such

that
(\/ flli7pi(Ai)> z /\ TJ-
=1

Jer
213
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Put v = V| fuips(Ni) and K = {k € {1,...,n} | px < v}. We obtain 75 < v. If
i ¢ K, then p; £ v. Hence f,, ,,(\;) = 0, which implies \; = 0.
If k € K, then Ay < py, because f, o (M) # 1. It implies that

A=V =V < Vo
i=1

keK keK
Then there exists K € I' such that

\/ JuipiNi) =v > 7R > /\ .
i=1

Ker
It is a contradiction. Hence A7 fu, ., (A) > A jcr 7. O

Example 3.6. For each i = 1,2, f,, ,, with (1;,p;) € n", we have

0 ifA=0,
p1©pz if0#N< A pa,
Juror © fuzipa(A) = . A AL
p2 A< pa, AL
prVpe XS Vops, ML, AL pa,
1 otherwise.

Remark 3.7. Let (X,n) be an (L, ®)-smooth-fuzzy topogenous space. Define a
function U, : Qx — L by

n
un(f) = \/ { /\ n(ﬂi:pi) | /\zn:lfuupi < f} .
i=1
where the \/ is taken over every finite family {f,, ,, | ¢ = 1,...,n}. Then U, is
an (L, ®)-smooth quasi-uniformity on X. If (X,n) is a symmetric (L, ®)-smooth
topogenous space, U, is an (L, ®)-smooth uniformity on X.

Definition 3.8. The (L, ®)-smooth quasi-uniform space (X,U) is said to be com-
patible with (L, ®)-smooth topogenous space (X, n) if ny = 7.

The class II(n) denotes the family of all (L, ®)-smooth quasi-uniformities which
are compatible with a given (L, ®)-smooth topogenous structure 7.

Theorem 3.9. Let (X,n) be an (L,®)-smooth topogenous space and the (L,®)-
smooth topogenous structure ny, induced by Uy,. Then we have:

(1) nu, =n, that is, U, € TI(n).

(2) Uy, is the coarsest member of II(n).
Proof. (1) First, we will show that my, > 1. If n(u,p) = 0, then it is trivial. If
n(p, p) # 0, then by Lemma 3.5(1), there exists f,, € Qx such that U,(f.,) >
n(u, p) from Remark 3.7. Tt follows that f, ,(1) = p, from Theorem 3.4, ny, (1, p) >

Uy (fyu,p)- Hence my, > n.
Suppose that my, £ n. Then there exist u,p € L% such that

(3.1) M, (1 p) Z (ks p)-
214
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From the definition of my, (1, p), there exists f € Qx with f(u) < p such that

Uy (f) £, p)-

From the definition of U,), there exists a finite family {f,, ,,
that

m
(3.2) I\ (i pi) % 0w, p)-

i=1
On the other hand, put I' = {J C {1,..m} | p < V;;pu;}. I I' = &, then
A%y fuips () =1 < p. Thus, p =1, and n(u, p) > n(1,1) = 1. It is a contradiction
for the equation (3.1). If p = 0, by 0y, (1, p) # 0 and (T2), u = 0. Hence 7(0,0) = 1.
It is a contradiction for the equation (3.1). If I' # @ and p # 0, by Lemma 3.5(5),
then there exists I' = {J C {1,...,m} | p < \/,c; p1;} such that

A Fuioi )= N\ 71 < p.
=1

Jerl

Ny fuipe < f} such

Hence p > A jcr(Vjesp;). Moreover, we have pu < Ajer(Vjesp;). Since

n(\/jGJ/J'jv\/jGJpj /\ szpz
i=1

we have
m

(s p) =0 N\ Vieans), \ (Vieaps) =\ nlui, pi)-
Jer Jer i=1
It is a contradiction for the equation (3.2). Therefore n > my, .
(2) By (1), we have that U, is compatible with 1. Let &/ be an arbitrary member
of II(n). We will show that U, (f) <U(f) for all f € Qx.
Suppose that there exists f € 0x such that

Uy(f) £U(S).
There exists a finite family {f,, 5, | Aieq fuipi < [} such that

/\ n(is pi) ZUS).
=1

Since U € II(n), that is, n(ui, pi) = M, pi) for i = 1,...,m, there exists g; € Qx
with g;(p;) < p; such that

(3.3) N\ Ulg) 2U).

On the other hand, put g = A~, g;. Since g;(1;) < p;, by the definition of f,, ,.,
we have g; < fu, p,- It follows that

m m
9=Ng <N\ fup < I
i=1 1=1

Hence U(f) > U(g) > N~ U(g;). It is a contradiction for the equation (3.3). O
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Example 3.10. Define a function n: LX x LX — L, where L = [0,1] and ® = A
as follows:

1 ifA=0o0rp=1,
nAp) =3 3 H0#XN< X} L# 1> X

0 otherwise

where x 4 is a characteristic function of A. Then (X, n) is L-fuzzy topogenous space.
From Remark 3.7, we can obtain a quasi-uniformity i, : x — L on X as follows:

it f=fig,
if fX{z}aX{m} < f 7é fT,P

otherwise.

Uy(f) =

S who

If 0 # X < X{2y and T # p1 > X {4y, then, by Lemma 3.5(2), fy,, x(sy < fru- Hence
N, (A, 1) = % By a similar method, we have my, = 7.
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