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ABSTRACT. The notion of fuzzy compactness degrees is introduced in
L-topological spaces by means of the implication operator of L. An L-set G
is fuzzy compact if and only if its fuzzy compactness degree com(G) = T.
Some properties of fuzzy compactness degrees are investigated. In partic-
ular, when L = [0,1], it is different from corresponding notions presented
by Sostak, E. Lowen and R. Lowen.
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1. INTRODUCTION

The concept of compactness of a [0, 1]-topological space was first introduced by
Chang [!] in terms of open cover. It can be regarded as a successful definition of
compactness in poslat topology from the categorical point of view (see [12, 14]).
Moreover, Gantner et al. introduced a-compactness [3], Lowen introduced fuzzy
compactness, strong fuzzy compactness and ultra-fuzzy compactness [9, 10], Liu
introduced Q-compactness [7], Wang and Zhao introduced N-compactness [19, 21],
and Shi introduced S*-compactness [15]. Shi also present a new definition of fuzzy
compactness in L-topological spaces when L is a complete De Morgan algebra [16].

For the above notions of compactness, an L-fuzzy set is either compact or not.

However, considering measures of compactness, E. Lowen and R. Lowen [11] intro-
duced the notion of the compactness degrees of [0, 1]-topological spaces. G. Jager
generalized it to fuzzy convergence spaces in [6]. Moreover A.P. Sostak [17, 18]

also introduced a definition of the compactness degree ¢(M) for a fuzzy set M in a
[0, 1]-topological space.
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In this paper, a new notion of fuzzy compactness degrees is introduced in L-
topological spaces by means of the implication operator of L. It is different from
those notions in [6, 11, 17].

2. PRELIMINARIES

Throughout this paper, (L,\/, \,’) is a complete De Morgan frame [, 13]. The
smallest element and the largest element in L are denoted by L and T, respectively.

We say that a is wedge below b in L, denoted by a < b, if for every subset D C L,
VD > b implies d > a for some d € D [2]. A complete lattice L is completely
distributive if and only if b = \/{a € L : a < b} for each b € L. For any b € L, define
B(b) = {a € L:a < b}. Some properties of § can be found in [8, 20].

In a complete De Morgan frame L, there exists a binary operation —. Explicitly
the implication is given by

aHb:\/{ceL|a/\c§b}.

It is easy to check the following properties of .

2) a—b=T < a<b;

3) a (N\;bi) = \; (a by);

1) (Vya0) o b= A, (a5 b);

5) (a—c)A(c—b) <awr b

6) a<b=c—a<cr—b
Na<b=b—c<awr c

8) (a—b)A(c—d)<ahcr— bAd.

For a nonempty set X, LX denotes the set of all L-fuzzy sets on X. a denotes
the constant L-fuzzy sets on X taking the value a. An L-topological space is a
pair (X, 7), where 7 is a subfamily of LX which contains L, T and is closed for
any suprema and finite infima. Each member of 7 is called an open L-set and its
quasi-complement is called a closed L-set.

For a subfamily ® C LX, 2(®) denotes the set of all finite subfamilies of ®.

Definition 2.1 ([17, 18]). An L-fuzzy inclusion on X is a mapping C : LX x LX —
LX defined by the equality C(A4,B) = A (A'(x)V B(x)).
zeX

In the sequel, we shall write [ACB] instead of C(A4, B).

Lemma 2.2 ([16]). Let f : X — Y be a set map and f;” : LX — LY is the extension
of f. Then for any P C L, we have that

A (fZ(G)’(y)V V B(y)> = A <G'($)V V ff(B)(:v)>~

yey BEP zeX BeP

3. MEASURES OF FUZZY COMPACTNESS

In order to generalize the notion of compactness to L-topological spaces, we in-
troduced the following notion.
184
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In an L-topological space (X, 7), an L-set G € L¥X is said to be fuzzy compact
[16] if for every family U of open L-sets, it follows that

A (G/(x)v \V A(x)) <V A <G'(x)\/ \V A(x)),

x€eX Aeu yveat) zeX Aey
ie.,
RV ESRVA VA
vea)

According to the above definition, we know that an L-fuzzy set is either compact or
not. But we know that for any a,b € L,

a<b&ea—b=T.

If we define [a < b] = a — b, then a < b always is true to some degree.

Therefore we can naturally introduce the notion of fuzzy compactness degrees as
follows:
Definition 3.1. Let (X,7) be an L-topological space and G € LX. The fuzzy
compactness degree com(G) of G is defined as

com(@) = A [ A\ (G'\/\/A)(x)H V A <G’\/\/A>(m)

Uue2™ \zeX AelU vea) zeX AeV
= A (leeVu]— V [ce\/Y]
uear Vea)

Obviously G is fuzzy compact if and only if com(G) = T.
The following lemma is obvious.

Lemma 3.2. Let (X,7) be an L-topological space and G € L*. Then com(G) > a
if and only if for any U € 27,

(ce\u|na< v6\2/<u> e\

By Lemma 3.2 we can easily obtain the following result.

Theorem 3.3. Let (X, 7) be an L-topological space and G € LX. Then

com(G):\/ aEL:[G&\/U]/\aS \/ [G&\/V} forany U €27

e

It is easy to see that if an L-topology 7 on a set X is finite, then for each G € LX,
com(G) = T. Moreover if X is a singleton set, then for any L-topology on X and
any G € L*, com(G) = T.

Theorem 3.4. For any G, H € L, com(G V H) > com(G) A com(H).
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Proof. By Theorem 3.3 we have
com(GvH)z\/{aeL;[GVHG\/U]MS \/ [G\/H&\/V],VZ/IEQT}

=V {aer:[ce\Juln[HEN U na
<\ [GEVV|A[EE V] e )

ve2)

Z\/{QGL;[Ge\/u]Mg Y {Ga\/v}}A

ve2)

\/{aeL: {H&\/u}mg \/ {Hﬁ\/V},VMGT}
c2(U)
= com(G) A com(H). -

O
Theorem 3.5. For any G € LX and any closed L-set H, com(G A H) > com(G).
Proof. By Theorem 3.3 we have

com(G/\H):\/{aeL: [N SV EEY, [GAHG\/V],WGQT}

ve2)

:\/{aeL:[GaHv\/u]Aag \/ [G&Hv\/v},vumf}
2
> com(Q). -

O

Theorem 3.6. Let f : X — Y be a set map, 71 be an L-topology on X, T9 be an
L-topology on' Y, and f : (X,71) — (Y,72) be continuous. Then com (f; (G)) >
com(G).

Proof. This can be proved from the following inequality.

com(f;"(G))

= A {/\ <ff(G)’(y)V \/ A(y)> -V A (ff(G)’(y)V \/ A(y)>}
Uue2?2 | yey AelU yea) yey Aey

=A< A (G’(swv V ff(A)(x)) -~V A (G’(xw V ff(A)(w)>}
ue2?2 | zeX Aeu yea) zeX A€V

> com(G).

0
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4. THE GENERALIZED TYCHONOFF THEOREM
In this section, we suppose that L be completely distributive.

Lemma 4.1. Let (X, 7) be an L-topological space, n be a subbase of T, and G € L.
Then

com(G):\/ aEL:{GG\/U}/\aS \/ [G&\/V},W/IET’

ve2)

Proof. 1t is obvious that

com(G)S\/ aEL:{GG\/U]/\aS \/ [GGVV},VUE?
vea )

Now we prove that

com(G) = \/QaeL:[cE\u[na< \/ [6E\/V] e
ve2®)
Thus we need to prove that

YU e2 [GEVU]Aa< ) [GCVYV]
= VU e, [GCVU|rna<  [GEVV].

Suppose that there exists ¢ € 27 such that [GC\/U]Aa g \/ [GCVV]. Then
ve2)
there exists b < [GC \/U] Aa such that b £ \/ [GC\/V]. Let
ve2)

r={pucpcro<lac\/Pl oz \/ [GE\/V]

ve2(P)

Then (T, C) is a nonempty partially ordered set and each chain has an upper bound,
hence by Zorn’s Lemma, I" has a maximal element €2. Now we prove that () satisfies
the following conditions:

(i) for every B e 7, if C € Q and C > B, then B € Q;

(ii) if for each B,C € 7, BAC € Q, then B € Q or C € Q.

We only verify (ii). If B ¢ Q and C € Q, then {B}UQ ¢ T and {C}UQ ¢ T.
This implies that b < V [GCVV] and b < V [GCV V]. Hence for
Vea(eu{B}) Vyea(eu{c}h

any r € ((b), there exists Ay, Ag, -+, Apin € Q such that

r< [GCA VAV VA, VB] and r < [GCApi1V Amya VeV Ay VO]
Further we have that

r<[GCALV AV -V Apyn VB] and r < [GCAV Ay V-V Apyn VO
This shows that

r<[GCAIV AV -V Ay V(BAC).
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Therefore we obtain that b < V [GC\/V]. This implies that BA C ¢ Q,

VEa(QU{BAC})
which contradicts B A C' € Q. (ii) is proved.

From (i) and (ii), it is immediate that if D € Q, Py, Py,---,P, € 7 and D >
Py APy A--- A P,, then there exists i(1 <4 < n) such that P; € Q.

Now let us consider n N Q. If b < [GCV/ (nNQ)], then

v\ [ee\V] =V [ee\y],
Vve2nnQ) Vve2()
this contradicts the sense of €2. Therefore we have b £ [GC\/ (n N )]. Hence there
exists 7 € 3(b) such that r £ [GC\/ (nNQ)]. This implies that for any A € nNQ,
there exists an x € X such that r £ G'(z) V A(x).

By b < [GC V], we know that b < (G' Vv \/ Q) (z). Hence there exists D € Q
such that r € 8 (G'(z) v D(z)). Let

D= \/ /\ A;j, where for each i € I, J; is a finite set and A4;; € n.
el jed;
Then there exists ¢ € I such that

ref|G@ v N\ Ay | €[ B(G @)V Aij).

JjeJi Jj€Ji
This implies that r € §(G'(x) V A;j(z)) for each j € J;. By D > A A;; we know
Jjedi
that there is j € J; such that A;; € €, this contradicts »r £ G'(z) V A;;(z). The
proof is obtained. 0

Theorem 4.2. Let (X, 7) be the product of a family of L-topological spaces {(X;, ;) }ier,
and G; € L for anyi € I. Then com | [[ G; | > A com (G;).
el iel

Proof. In order to prove com <H Gi) > A com(G;), let A com(G;) = a. Then
iel icl icl

for any i € I, com (G;) > a. Let n = {P;(D;) | i € I, D; € 7;} be a subbase of 7.

By Lemma 4.1, we only need to prove that for any U € 27,

(4.1) [Haﬁ\/u na< \/ [HGié\/v

iel veaw) Lier

Suppose that & € 27 and b € 3 ([H G;C \/U} /\a). Let
il
JCIu=\JU, Uy={P(B;):B;€Bi C}.
ieJ
Then for any z € X, we have

(4.2)b e f ((H Gi>l(x) v\ A(a:)) =3 (\/ Gyv\ V A(:z:)) .

i€l Aeu i€l ieJ Ael;
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WHIfbep <\/ G;(mz)) for any @ = {z;},c; € X, then obviously
iel

b< \/ lHGﬁ\/V} :
veaw) Liel
This shows that inequality (1) is true.
(2) Suppose that b € <\/ G;(CL‘Z)> for some x = {x;}ier € X. Then b ¢
iel

B (Gi(x;)) for any i € I. Now we prove that there exists k& € J such that b €
B (G (yk) V V Bi(y)) for any yi € Xj. If Vi € J, there exists y; € X; such that

b 8| Gi(ys) v V B(y;) |. Let 2 = {z;}ier such that z; = y; when i € J, z; = x;
BeB;
otherwise. By the following equality

(o)

(\/ Pf(@)(Z)) vV ET(@E)()

ieJ igJ

(\/ G;(yi)) vV G |,

ieJ igJ

/
we obtain that b & 3 ((H G,;> (z)> . Moreover for any 4 € J, by the following fact
iel

b¢ﬁ< \V B(m)) =ﬁ< V Pf(B)(z)) =ﬂ< V A(z)) :
BeB; BeB; AelU;

we have

b Uﬂ(\/ A(z)) =ﬁ<\/ \V A<z>>.

i€d  \AeU; i€J AU,
This implies
!
b 3 ((HGi) (=)v A(z)) :
el Aelu
This yields a contradiction with the formula (2). Thus we obtain the proof that

there exists k € J such that b € 5 (G)(yx) V'V Bi(yk)) for any yi, € Xi. This shows
189
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b< [Gkﬁ \/Bk]. By ¢(Gk) > a > b we can obtain

o<V [acyn)
- \/B) é\x (G v\ Di) )
_ \/( | é{(a;v\/m) (Ps(y))
— A (P,:(G;)v \V P;?(D)> (v)
e veX e,
<

\/
- v (o))

Thus we complete the proof of (1). Therefore com <H Gi) >a= A\ com(G;). O
iel iel

By Theorem 3.6 and Theorem 4.2 we can obtain the following corollary.
Corollary 4.3. Let (X, 1) be the product of a family of L-topological spaces {(X;, T:) }icr-
Then com | [[ T, | = A com (T,), where T, is the largest element in LX.
i€l i€l
5. A COMPARISON OF DIFFERENT COMPACTNESS DEGREES
In this section, we shall compare different notions of fuzzy compactness degrees
in [0, 1]-topological spaces.
In [17, 18], Sostak defined the compactness degree of a fuzzy set as follows:

Definition 5.1. Let (X, 7) be a [0, 1]-topological space and G € [0,1]%. The com-
pactness spectrum C(G) of G is defined as follows:

(@) = be[O,1];bg[G6\/u}:>bg \/ [G&\/V],We?f
ve2)

The number ¢(G) = inf([0, 1]\C(G)) (inf @ = 1) is called the compactness degree of
G.

By Theorem 3.3 and Definition 5.1 we know that ¢(G) < com(G). But in general,
c(G) # com(G). This can be seen from the following example.

Example 5.2. Let X = [a,b] be a closed interval and let
T={T}U{0.5A x4 : A€ d},

where ¢ denotes the natural topology on X. It is easy to check that c(0.5 A xx) =
0.5 < 1=com(0.5A xx). Moreover ¢(T) =0.5 <1 = com(T).
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In [11], E. Lowen and R. Lowen also introduce the notion of compactness degree
of [0, 1]-topological spaces as follows:

Definition 5.3. For a [0, 1]-topological space (X, 7), the compactness degree of X
is defined as

oT) = \/{1—5 VU €27, Va > ¢, /\(\/u) )>a=

zeX

3y € 2 such that /\ (\/ V) >a— 5}

rzeX

Now we compare ¢(T) and com(T).
Theorem 5.4. For a [0, 1]-topological space (X,7), ¢(T) > com(T).

Proof. When ¢(T) = 1, we know that the theorem is true since ¢(T) = 1 if and only
if (X, 7) is fuzzy compact if and only if com(T) = 1. Now we suppose that ¢(T) < 1.
Let

S = {e VL[EQTVa>£/\<\/L{> ) > a=3VeH /\(\/V) >a—£}.
reX

Then ¢(T) =1 —inf S < 1. Hence inf S > 0. In order to prove that ¢(T) > com(T),

take any r with 1 > r > ¢(T). Now we prove r > com(T). Take any s such that

r > s > ¢(T). It is obvious that 0 < 1 —s < 1 —¢(T) = infS. This implies

1—s ¢ S. Hence there exists i € 27 and a > 1 — s such that /\ (VU) (z) > «a, but

vwe24 A (VV)(x) <a—1+s. This implies /\ (\/L{)( )204>oz—(1—7“),
reX
but V A (VV)(z) <a—1+s. Thus we obtaln

ve zeX
A (Vu)@narz VA (VY) @),
zeX veat zeX
This shows r > com(T). By the arbitrariness of r, we shows ¢(T) > com(T). O

In general, ¢(T) # com(T). This can be seen from the following example.

Example 5.5. Let X = N be the set of all natural numbers. For any n € N, define
Ay €[0,1]% by
0.5, if k<m;

An(k) = { 0, if k>n.
Let 7= {L,T,0.5} U{A4, : n € N}. It is easy to check that 7 is a [0, 1]-topology on
X. Tt is easy to check that A \/ A,(k) = 0.5, but for any finite subfamily V of

keX neN
n={4,:neN}, V A V A(k) =0. Therefore com(T) =0. Let
Ve keX A€V

S = {5 wervase \ (Vu)@) za=sved, A (\Vv)@ as}.

zeX reX
191
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Va > 0.5,if A (VU)(z) > a, then we must have T € U, hence 0.5 € S. It is easy

zeX

to see r ¢ S for any r < 0.5. This implies ¢(T) = 0.5. Therefore ¢(T) > com(T).
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