Annals of Fuzzy Mathematics and Informatics Volume 2, No. 2, (October 2011), pp. 183- 192 ISSN 2093-9310 http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Measures of compactness in *L*-topological spaces

Fu-Gui Shi

Received 31 March 2011; Accepted 1 May 2011

ABSTRACT. The notion of fuzzy compactness degrees is introduced in L-topological spaces by means of the implication operator of L. An L-set G is fuzzy compact if and only if its fuzzy compactness degree $\operatorname{com}(G) = \top$. Some properties of fuzzy compactness degrees are investigated. In particular, when L = [0, 1], it is different from corresponding notions presented by Šostak, E. Lowen and R. Lowen.

2010 AMS Classification: 03E72, 54A40, 54D30

Keywords: *L*-topology, Complete De Morgan frame, Implication operator, Fuzzy compactness, Fuzzy compactness degree.

Corresponding Author: Fu-Gui Shi (fuguishi@bit.edu.cn)

1. INTRODUCTION

The concept of compactness of a [0, 1]-topological space was first introduced by Chang [1] in terms of open cover. It can be regarded as a successful definition of compactness in poslat topology from the categorical point of view (see [12, 14]). Moreover, Gantner et al. introduced α -compactness [3], Lowen introduced fuzzy compactness, strong fuzzy compactness and ultra-fuzzy compactness [9, 10], Liu introduced *Q*-compactness [7], Wang and Zhao introduced *N*-compactness [19, 21], and Shi introduced *S*^{*}-compactness [15]. Shi also present a new definition of fuzzy compactness in *L*-topological spaces when *L* is a complete De Morgan algebra [16].

For the above notions of compactness, an *L*-fuzzy set is either compact or not. However, considering measures of compactness, E. Lowen and R. Lowen [11] introduced the notion of the compactness degrees of [0, 1]-topological spaces. G. Jäger generalized it to fuzzy convergence spaces in [6]. Moreover A.P. Šostak [17, 18] also introduced a definition of the compactness degree c(M) for a fuzzy set M in a [0, 1]-topological space.

In this paper, a new notion of fuzzy compactness degrees is introduced in Ltopological spaces by means of the implication operator of L. It is different from those notions in [6, 11, 17].

2. Preliminaries

Throughout this paper, $(L, \bigvee, \bigwedge, ')$ is a complete De Morgan frame [4, 13]. The smallest element and the largest element in L are denoted by \perp and \top , respectively.

We say that a is wedge below b in L, denoted by $a \prec b$, if for every subset $D \subseteq L$, $\bigvee D \geq b$ implies $d \geq a$ for some $d \in D$ [2]. A complete lattice L is completely distributive if and only if $b = \bigvee \{a \in L : a \prec b\}$ for each $b \in L$. For any $b \in L$, define $\beta(b) = \{a \in L : a \prec b\}$. Some properties of β can be found in [8, 20].

In a complete De Morgan frame L, there exists a binary operation \mapsto . Explicitly the implication is given by

$$a \mapsto b = \bigvee \{ c \in L \mid a \land c \le b \}.$$

It is easy to check the following properties of \mapsto .

- (1) $(a \mapsto b) > c \Leftrightarrow a \land c < b;$ (2) $a \mapsto b = \top \Leftrightarrow a \leq b;$
- $\begin{array}{ll} (3) & a \mapsto (\bigwedge_i b_i) = \bigwedge_i (a \mapsto b_i); \\ (4) & (\bigvee_i a_i) \mapsto b = \bigwedge_i (a_i \mapsto b); \end{array}$
- (5) $(a \mapsto c) \land (c \mapsto b) \le a \mapsto b;$
- (6) $a \leq b \Rightarrow c \mapsto a \leq c \mapsto b$.
- (7) $a \leq b \Rightarrow b \mapsto c \leq a \mapsto c$.
- (8) $(a \mapsto b) \land (c \mapsto d) \le a \land c \mapsto b \land d.$

For a nonempty set X, L^X denotes the set of all L-fuzzy sets on X. a denotes the constant L-fuzzy sets on X taking the value a. An L-topological space is a pair (X, τ) , where τ is a subfamily of L^X which contains \perp , \perp and is closed for any suprema and finite infima. Each member of τ is called an open L-set and its quasi-complement is called a closed L-set.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ .

Definition 2.1 ([17, 18]). An *L*-fuzzy inclusion on *X* is a mapping $\widetilde{\subset} : L^X \times L^X \to \mathcal{L}^X$ L^X defined by the equality $\widetilde{\subset}(A,B) = \bigwedge_{x \in Y} (A'(x) \lor B(x)).$

In the sequel, we shall write $[A \widetilde{\subset} B]$ instead of $\widetilde{\subset} (A, B)$.

Lemma 2.2 ([16]). Let $f: X \to Y$ be a set map and $f_L^{\to}: L^X \to L^Y$ is the extension of f. Then for any $\mathcal{P} \subseteq L^X$, we have that

$$\bigwedge_{y \in Y} \left(f_L^{\rightarrow}(G)'(y) \lor \bigvee_{B \in \mathcal{P}} B(y) \right) = \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right).$$

3. Measures of fuzzy compactness

In order to generalize the notion of compactness to L-topological spaces, we introduced the following notion.

In an *L*-topological space (X, τ) , an *L*-set $G \in L^X$ is said to be fuzzy compact [16] if for every family \mathcal{U} of open *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right),$$

i.e.,

$$\left[G\widetilde{\subset}\bigvee\mathcal{U}\right]\leq\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}}\left[G\widetilde{\subset}\bigvee\mathcal{V}\right].$$

According to the above definition, we know that an *L*-fuzzy set is either compact or not. But we know that for any $a, b \in L$,

$$a \leq b \Leftrightarrow a \mapsto b = \top.$$

If we define $[a \leq b] = a \mapsto b$, then $a \leq b$ always is true to some degree.

Therefore we can naturally introduce the notion of fuzzy compactness degrees as follows:

Definition 3.1. Let (X, τ) be an *L*-topological space and $G \in L^X$. The fuzzy compactness degree com(*G*) of *G* is defined as

$$\operatorname{com}(G) = \bigwedge_{\mathcal{U} \in 2^{\tau}} \left(\bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{U}} A \right)(x) \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{V}} A \right)(x) \right)$$
$$= \bigwedge_{\mathcal{U} \in 2^{\tau}} \left(\left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right).$$

Obviously G is fuzzy compact if and only if $com(G) = \top$. The following lemma is obvious.

Lemma 3.2. Let (X, τ) be an L-topological space and $G \in L^X$. Then $com(G) \ge a$ if and only if for any $\mathcal{U} \in 2^{\tau}$,

$$\left[G\widetilde{\subset}\bigvee\mathcal{U}\right]\wedge a\leq\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}}\left[G\widetilde{\subset}\bigvee\mathcal{V}\right].$$

By Lemma 3.2 we can easily obtain the following result.

Theorem 3.3. Let (X, τ) be an L-topological space and $G \in L^X$. Then

$$\operatorname{com}(G) = \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \text{ for any } \mathcal{U} \in 2^{\tau} \right\}.$$

`

It is easy to see that if an *L*-topology τ on a set *X* is finite, then for each $G \in L^X$, $\operatorname{com}(G) = \top$. Moreover if *X* is a singleton set, then for any *L*-topology on *X* and any $G \in L^X$, $\operatorname{com}(G) = \top$.

Theorem 3.4. For any $G, H \in L^X$, $\operatorname{com}(G \lor H) \ge \operatorname{com}(G) \land \operatorname{com}(H)$.

Proof. By Theorem 3.3 we have

$$\begin{aligned} \operatorname{com}(G \lor H) &= \bigvee \left\{ a \in L : \left[G \lor H \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \lor H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\tau} \right\} \\ &= \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land \left[H \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \\ &\leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \land \left[H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\tau} \right\} \\ &\geq \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right\} \land \\ &\qquad \bigvee \left\{ a \in L : \left[H \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\tau} \right\} \\ &= \operatorname{com}(G) \land \operatorname{com}(H). \end{aligned}$$

Theorem 3.5. For any $G \in L^X$ and any closed L-set H, $com(G \wedge H) \ge com(G)$. *Proof.* By Theorem 3.3 we have

$$\operatorname{com}(G \wedge H) = \bigvee \left\{ a \in L : \left[G \wedge H \widetilde{\subset} \bigvee \mathcal{U} \right] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \wedge H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\tau} \right\}$$
$$= \bigvee \left\{ a \in L : \left[G \widetilde{\subset} H \lor \bigvee \mathcal{U} \right] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} H \lor \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\tau} \right\}$$
$$\geq \operatorname{com}(G).$$

Theorem 3.6. Let $f : X \to Y$ be a set map, τ_1 be an L-topology on X, τ_2 be an L-topology on Y, and $f : (X, \tau_1) \to (Y, \tau_2)$ be continuous. Then $\operatorname{com}(f_L^{\to}(G)) \geq \operatorname{com}(G)$.

 $\mathit{Proof.}$ This can be proved from the following inequality. $\operatorname{com}(f_L^{\rightarrow}(G))$

$$= \bigwedge_{\mathcal{U}\in 2^{T_2}} \left\{ \bigwedge_{y\in Y} \left(f_L^{\rightarrow}(G)'(y) \vee \bigvee_{A\in\mathcal{U}} A(y) \right) \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{y\in Y} \left(f_L^{\rightarrow}(G)'(y) \vee \bigvee_{A\in\mathcal{V}} A(y) \right) \right\}$$
$$= \bigwedge_{\mathcal{U}\in 2^{T_2}} \left\{ \bigwedge_{x\in X} \left(G'(x) \vee \bigvee_{A\in\mathcal{U}} f_L^{\leftarrow}(A)(x) \right) \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{x\in X} \left(G'(x) \vee \bigvee_{A\in\mathcal{V}} f_L^{\leftarrow}(A)(x) \right) \right\}$$
$$\geq \operatorname{com}(G).$$

4. The Generalized Tychonoff Theorem

In this section, we suppose that L be completely distributive.

Lemma 4.1. Let (X, τ) be an L-topological space, η be a subbase of τ , and $G \in L^X$. Then

$$\operatorname{com}(G) = \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\eta} \right\}.$$

Proof. It is obvious that

$$\operatorname{com}(G) \leq \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\eta} \right\}.$$

Now we prove that

$$\operatorname{com}(G) \ge \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\eta} \right\}.$$

Thus we need to prove that

$$\begin{aligned} \forall \mathcal{U} \in 2^{\eta}, \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \wedge a &\leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \\ \Rightarrow \quad \forall \mathcal{U} \in 2^{\tau}, \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \wedge a &\leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right]. \end{aligned}$$

Suppose that there exists $\mathcal{U} \in 2^{\tau}$ such that $[G \subset \bigvee \mathcal{U}] \land a \not\leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \subset \bigvee \mathcal{V}]$. Then there exists $b \leq [G \subset \bigvee \mathcal{U}] \land a$ such that $b \not\leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \subset \bigvee \mathcal{V}]$. Let

$$\Gamma = \left\{ \mathcal{P} : \mathcal{U} \subseteq \mathcal{P} \subseteq \tau, \ b \le \left[G \widetilde{\subset} \bigvee \mathcal{P} \right], \ b \not\le \bigvee_{\mathcal{V} \in 2^{(\mathcal{P})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right\}$$

Then (Γ, \subseteq) is a nonempty partially ordered set and each chain has an upper bound, hence by Zorn's Lemma, Γ has a maximal element Ω . Now we prove that Ω satisfies the following conditions:

(i) for every $B \in \tau$, if $C \in \Omega$ and $C \ge B$, then $B \in \Omega$;

(ii) if for each $B, C \in \tau, B \land C \in \Omega$, then $B \in \Omega$ or $C \in \Omega$.

We only verify (ii). If $B \notin \Omega$ and $C \notin \Omega$, then $\{B\} \cup \Omega \notin \Gamma$ and $\{C\} \cup \Omega \notin \Gamma$. This implies that $b \leq \bigvee_{\mathcal{V} \in 2^{(\Omega \cup \{B\})}} [G \subset \mathcal{V} \mathcal{V}]$ and $b \leq \bigvee_{\mathcal{V} \in 2^{(\Omega \cup \{C\})}} [G \subset \mathcal{V} \mathcal{V}]$. Hence for any $r \in \beta(b)$, there exists $A_1, A_2, \cdots, A_{m+n} \in \Omega$ such that $r \leq [G \subset A_1 \lor A_2 \lor \cdots \lor A_m \lor B]$ and $r \leq [G \subset A_{m+1} \lor A_{m+2} \lor \cdots \lor A_{m+n} \lor C]$. Further we have that

 $r \leq \begin{bmatrix} G \widetilde{\subset} A_1 \lor A_2 \lor \cdots \lor A_{m+n} \lor B \end{bmatrix} \text{ and } r \leq \begin{bmatrix} G \widetilde{\subset} A_1 \lor A_2 \lor \cdots \lor A_{m+n} \lor C \end{bmatrix}.$ This shows that

$$r \leq \left[G \widetilde{\subset} A_1 \lor A_2 \lor \cdots \lor A_{m+n} \lor (B \land C) \right].$$
187

Therefore we obtain that $b \leq \bigvee_{\mathcal{V} \in 2^{(\Omega \cup \{B \land C\})}} [G \subset \bigvee \mathcal{V}]$. This implies that $B \land C \notin \Omega$, which contradicts $B \land C \in \Omega$. (ii) is proved.

From (i) and (ii), it is immediate that if $D \in \Omega$, $P_1, P_2, \dots, P_n \in \tau$ and $D \ge P_1 \wedge P_2 \wedge \dots \wedge P_n$, then there exists $i(1 \le i \le n)$ such that $P_i \in \Omega$.

Now let us consider $\eta \cap \Omega$. If $b \leq [G \in \bigvee (\eta \cap \Omega)]$, then

$$b \leq \bigvee_{\mathcal{V} \in 2^{(\eta \land \Omega)}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \leq \bigvee_{\mathcal{V} \in 2^{(\Omega)}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right],$$

this contradicts the sense of Ω . Therefore we have $b \not\leq [G \subset \bigvee (\eta \cap \Omega)]$. Hence there exists $r \in \beta(b)$ such that $r \not\leq [G \subset \bigvee (\eta \cap \Omega)]$. This implies that for any $A \in \eta \cap \Omega$, there exists an $x \in X$ such that $r \not\leq G'(x) \lor A(x)$.

By $b \leq [G \subset \bigvee \Omega]$, we know that $b \leq (G' \lor \bigvee \Omega)(x)$. Hence there exists $D \in \Omega$ such that $r \in \beta(G'(x) \lor D(x))$. Let

$$D = \bigvee_{i \in I} \bigwedge_{j \in J_i} A_{ij}, \text{ where for each } i \in I, J_i \text{ is a finite set and } A_{ij} \in \eta.$$

Then there exists $i \in I$ such that

$$r \in \beta\left(G'(x) \lor \bigwedge_{j \in J_i} A_{ij}(x)\right) \subseteq \bigcap_{j \in J_i} \beta\left(G'(x) \lor A_{ij}(x)\right).$$

This implies that $r \in \beta(G'(x) \lor A_{ij}(x))$ for each $j \in J_i$. By $D \ge \bigwedge_{j \in J_i} A_{ij}$ we know that there is $j \in J_i$ such that $A_{ij} \in \Omega$, this contradicts $r \not\leq G'(x) \lor A_{ij}(x)$. The proof is obtained.

Theorem 4.2. Let (X, τ) be the product of a family of L-topological spaces $\{(X_i, \tau_i)\}_{i \in I}$, and $G_i \in L^{X_i}$ for any $i \in I$. Then $\operatorname{com}\left(\prod_{i \in I} G_i\right) \ge \bigwedge_{i \in I} \operatorname{com}(G_i)$.

Proof. In order to prove $\operatorname{com}\left(\prod_{i\in I}G_i\right) \geq \bigwedge_{i\in I}\operatorname{com}\left(G_i\right)$, let $\bigwedge_{i\in I}\operatorname{com}\left(G_i\right) = a$. Then for any $i\in I$, $\operatorname{com}\left(G_i\right)\geq a$. Let $\eta = \{P_i^{\leftarrow}(D_i)\mid i\in I, D_i\in\tau_i\}$ be a subbase of τ . By Lemma 4.1, we only need to prove that for any $\mathcal{U}\in 2^{\eta}$,

(4.1)
$$\left[\prod_{i\in I}G_{i}\widetilde{\subset}\bigvee\mathcal{U}\right]\wedge a\leq\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}}\left[\prod_{i\in I}G_{i}\widetilde{\subset}\bigvee\mathcal{V}\right]$$

Suppose that $\mathcal{U} \in 2^{\eta}$ and $b \in \beta \left(\left| \prod_{i \in I} G_i \subset \bigvee \mathcal{U} \right| \land a \right)$. Let

$$J \subseteq I, \ \mathcal{U} = \bigcup_{i \in J} \mathcal{U}_i, \ \ \mathcal{U}_i = \{P_i^{\leftarrow}(B_i) : B_i \in \mathcal{B}_i \subseteq \tau_i\}.$$

Then for any $x \in X$, we have

$$(4.2)b \in \beta\left(\left(\prod_{i \in I} G_i\right)'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right) = \beta\left(\bigvee_{i \in I} G_i'(x_i) \lor \bigvee_{i \in J} \bigvee_{A \in \mathcal{U}_i} A(x)\right).$$

$$188$$

(1) If
$$b \in \beta\left(\bigvee_{i \in I} G'_i(x_i)\right)$$
 for any $x = \{x_i\}_{i \in I} \in X$, then obviously
$$b \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[\prod_{i \in I} G_i \widetilde{\subset} \bigvee \mathcal{V}\right].$$

This shows that inequality (1) is true.

(2) Suppose that $b \notin \beta\left(\bigvee_{i \in I} G'_i(x_i)\right)$ for some $x = \{x_i\}_{i \in I} \in X$. Then $b \notin \beta\left(G'_i(x_i)\right)$ for any $i \in I$. Now we prove that there exists $k \in J$ such that $b \in \beta\left(G'_k(y_k) \lor \bigvee \mathcal{B}_k(y_k)\right)$ for any $y_k \in X_k$. If $\forall i \in J$, there exists $y_i \in X_i$ such that $b \notin \beta \left(G'_i(y_i) \lor \bigvee_{B \in \mathcal{B}_i} B(y_i) \right)$. Let $z = \{z_i\}_{i \in I}$ such that $z_i = y_i$ when $i \in J$, $z_i = x_i$ otherwise. By the following equality

$$\begin{split} \left(\prod_{i\in I}G_i\right)'(z) &= \left(\bigvee_{i\in J}P_i^{\leftarrow}(G_i')(z)\right) \vee \left(\bigvee_{i\notin J}P_i^{\leftarrow}(G_i')(z)\right) \\ &= \left(\bigvee_{i\in J}G_i'(y_i)\right) \vee \left(\bigvee_{i\notin J}G_i'(x_i)\right), \end{split}$$

we obtain that $b \notin \beta\left(\left(\prod_{i \in I} G_i\right)'(z)\right)$. Moreover for any $i \in J$, by the following fact

$$b \notin \beta \left(\bigvee_{B \in \mathcal{B}_i} B(y_i)\right) = \beta \left(\bigvee_{B \in \mathcal{B}_i} P_i^{\leftarrow}(B)(z)\right) = \beta \left(\bigvee_{A \in \mathcal{U}_i} A(z)\right),$$

we have

$$b \notin \bigcup_{i \in J} \beta \left(\bigvee_{A \in \mathcal{U}_i} A(z) \right) = \beta \left(\bigvee_{i \in J} \bigvee_{A \in \mathcal{U}_i} A(z) \right).$$

This implies

$$b \not\in \beta \left(\left(\prod_{i \in I} G_i \right)'(z) \lor \bigvee_{A \in \mathcal{U}} A(z) \right).$$

This yields a contradiction with the formula (2). Thus we obtain the proof that there exists $k \in J$ such that $b \in \beta(G'_k(y_k) \lor \bigvee \mathcal{B}_k(y_k))$ for any $y_k \in X_k$. This shows 189

 $b \leq [G_k \widetilde{\subset} \bigvee \mathcal{B}_k]$. By $c(G_k) \geq a \geq b$ we can obtain

$$b \leq \bigvee_{\mathcal{D}_{k} \in 2^{(\mathcal{B}_{k})}} \left[G_{k} \widetilde{\subset} \bigvee \mathcal{D}_{k} \right]$$

$$= \bigvee_{\mathcal{D}_{k} \in 2^{(\mathcal{B}_{k})}} \bigwedge_{y_{k} \in X_{k}} \left(G'_{k} \lor \bigvee \mathcal{D}_{k} \right) (y_{i})$$

$$= \bigvee_{\mathcal{D}_{k} \in 2^{(\mathcal{B}_{k})}} \bigwedge_{y \in X} \left(G'_{k} \lor \bigvee \mathcal{D}_{k} \right) (P_{k}(y))$$

$$= \bigvee_{\mathcal{D}_{k} \in 2^{(\mathcal{B}_{k})}} \bigwedge_{y \in X} \left(P_{k}^{\leftarrow}(G'_{k}) \lor \bigvee_{D \in \mathcal{D}_{k}} P_{k}^{\leftarrow}(D) \right) (y)$$

$$\leq \bigvee_{\mathcal{D}_{k} \in 2^{(\mathcal{B}_{k})}} \bigwedge_{y \in X} \left(\left(\prod_{i \in I} G_{i} \right)' \lor \bigvee_{D \in \mathcal{D}_{k}} P_{k}^{\leftarrow}(D) \right) (y)$$

$$\leq \bigvee_{\mathcal{V}_{k} \in 2^{(\mathcal{U}_{k})}} \bigwedge_{y \in X} \left(\left(\prod_{i \in I} G_{i} \right)' \lor \bigvee \mathcal{V}_{k} \right) (y).$$

Thus we complete the proof of (1). Therefore $\operatorname{com}\left(\prod_{i\in I}G_i\right) \ge a = \bigwedge_{i\in I}\operatorname{com}\left(G_i\right)$. \Box

By Theorem 3.6 and Theorem 4.2 we can obtain the following corollary.

Corollary 4.3. Let (X, τ) be the product of a family of L-topological spaces $\{(X_i, \tau_i)\}_{i \in I}$. Then $\operatorname{com}\left(\prod_{i \in I} \underline{\top}_i\right) = \bigwedge_{i \in I} \operatorname{com}(\underline{\top}_i)$, where $\underline{\top}_i$ is the largest element in L^{X_i} .

5. A COMPARISON OF DIFFERENT COMPACTNESS DEGREES

In this section, we shall compare different notions of fuzzy compactness degrees in [0, 1]-topological spaces.

In [17, 18], Šostak defined the compactness degree of a fuzzy set as follows:

Definition 5.1. Let (X, τ) be a [0, 1]-topological space and $G \in [0, 1]^X$. The compactness spectrum C(G) of G is defined as follows:

$$C(G) = \left\{ b \in [0,1] : b \leq \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \Rightarrow b \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{\tau} \right\}.$$

The number $\mathbf{c}(G) = \inf([0,1] \setminus C(G))$ (inf $\emptyset = 1$) is called the compactness degree of G.

By Theorem 3.3 and Definition 5.1 we know that $\mathbf{c}(G) \leq \operatorname{com}(G)$. But in general, $\mathbf{c}(G) \neq \operatorname{com}(G)$. This can be seen from the following example.

Example 5.2. Let X = [a, b] be a closed interval and let

$$\tau = \{\underline{\top}\} \cup \{0.5 \land \chi_A : A \in \delta\},\$$

where δ denotes the natural topology on X. It is easy to check that $\mathbf{c}(0.5 \wedge \chi_X) = 0.5 < 1 = \operatorname{com}(0.5 \wedge \chi_X)$. Moreover $\mathbf{c}(\underline{\top}) = 0.5 < 1 = \operatorname{com}(\underline{\top})$.

In [11], E. Lowen and R. Lowen also introduce the notion of compactness degree of [0, 1]-topological spaces as follows:

Definition 5.3. For a [0,1]-topological space (X, τ) , the compactness degree of X is defined as

$$\begin{split} c(\underline{\top}) &= \bigvee \left\{ 1 - \varepsilon : \forall \mathcal{U} \in 2^{\tau}, \forall \alpha > \varepsilon, \bigwedge_{x \in X} \left(\bigvee \mathcal{U} \right)(x) \ge \alpha \Rightarrow \\ & \exists \mathcal{V} \in 2^{\mathcal{U}} \text{ such that } \bigwedge_{x \in X} \left(\bigvee \mathcal{V} \right)(x) \ge \alpha - \varepsilon \right\}. \end{split}$$

Now we compare $c(\underline{\top})$ and $\operatorname{com}(\underline{\top})$.

Theorem 5.4. For a [0,1]-topological space (X,τ) , $c(\underline{\top}) \ge \operatorname{com}(\underline{\top})$.

Proof. When $c(\underline{\top}) = 1$, we know that the theorem is true since $c(\underline{\top}) = 1$ if and only if (X, τ) is fuzzy compact if and only if $com(\underline{\top}) = 1$. Now we suppose that $c(\underline{\top}) < 1$. Let

$$S = \left\{ \varepsilon : \forall \mathcal{U} \in 2^{\tau}, \forall \alpha > \varepsilon, \bigwedge_{x \in X} \left(\bigvee \mathcal{U} \right)(x) \ge \alpha \Rightarrow \exists \mathcal{V} \in 2^{\mathcal{U}}, \bigwedge_{x \in X} \left(\bigvee \mathcal{V} \right)(x) \ge \alpha - \varepsilon \right\}$$

Then $c(\underline{\top}) = 1 - \inf S < 1$. Hence $\inf S > 0$. In order to prove that $c(\underline{\top}) \ge \operatorname{com}(\underline{\top})$, take any r with $1 > r > c(\underline{\top})$. Now we prove $r > \operatorname{com}(\underline{\top})$. Take any s such that $r > s > c(\underline{\top})$. It is obvious that $0 < 1 - s < 1 - c(\underline{\top}) = \inf S$. This implies $1 - s \notin S$. Hence there exists $\mathcal{U} \in 2^{\tau}$ and $\alpha > 1 - s$ such that $\bigwedge_{x \in X} (\bigvee \mathcal{U})(x) \ge \alpha$, but $\forall \mathcal{V} \in 2^{\mathcal{U}}, \bigwedge_{x \in X} (\bigvee \mathcal{V})(x) < \alpha - 1 + s$. This implies $\bigwedge_{x \in X} (\bigvee \mathcal{U})(x) \ge \alpha > \alpha - (1 - r)$, but $\bigvee_{\mathcal{V} \in 2^{\mathcal{U}}} \bigwedge_{x \in X} (\bigvee \mathcal{V})(x) \le \alpha - 1 + s$. Thus we obtain

$$\bigwedge_{x \in X} \left(\bigvee \mathcal{U} \right)(x) \land r \not\leq \bigvee_{\mathcal{V} \in 2^{\mathcal{U}}} \bigwedge_{x \in X} \left(\bigvee \mathcal{V} \right)(x).$$

This shows $r > \operatorname{com}(\underline{\top})$. By the arbitrariness of r, we shows $c(\underline{\top}) \ge \operatorname{com}(\underline{\top})$. \Box

In general, $c(\underline{\top}) \neq \operatorname{com}(\underline{\top})$. This can be seen from the following example.

Example 5.5. Let $X = \mathbb{N}$ be the set of all natural numbers. For any $n \in \mathbb{N}$, define $A_n \in [0,1]^X$ by

$$A_n(k) = \begin{cases} 0.5, & \text{if } k \le n; \\ 0, & \text{if } k > n. \end{cases}$$

Let $\tau = \{\underline{\perp}, \underline{\top}, \underline{0.5}\} \cup \{A_n : n \in \mathbb{N}\}$. It is easy to check that τ is a [0, 1]-topology on X. It is easy to check that $\bigwedge_{k \in X} \bigvee_{n \in \mathbb{N}} A_n(k) = 0.5$, but for any finite subfamily \mathcal{V} of $\eta = \{A_n : n \in \mathbb{N}\}, \bigvee_{\mathcal{V} \in 2^{\eta}} \bigwedge_{k \in X} \bigvee_{A \in \mathcal{V}} A(k) = 0$. Therefore $\operatorname{com}(\underline{\top}) = 0$. Let $S = \left\{ \varepsilon : \forall \mathcal{U} \in 2^{\tau}, \forall \alpha > \varepsilon, \bigwedge_{x \in X} \left(\bigvee \mathcal{U}\right)(x) \ge \alpha \Rightarrow \exists \mathcal{V} \in 2^{\mathcal{U}}, \bigwedge_{x \in X} \left(\bigvee \mathcal{V}\right)(x) \ge \alpha - \varepsilon \right\}.$ 191 $\forall \alpha > 0.5$, if $\bigwedge_{x \in X} (\bigvee \mathcal{U})(x) \ge \alpha$, then we must have $\underline{\top} \in \mathcal{U}$, hence $0.5 \in S$. It is easy to see $r \notin S$ for any r < 0.5. This implies $c(\underline{\top}) = 0.5$. Therefore $c(\underline{\top}) > \operatorname{com}(\underline{\top})$.

Acknowledgements. The project is supported by the National Natural Science Foundation of China (61074151) and (10971242).

References

- [1] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-193.
- [2] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice, Indagationes Mathematicae (Proceedings) 85 (1982) 403–414.
- [3] T.E. Gantner, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978) 547–562.
- [4] G. Gierz et al., A compendium of continuous lattices, Springer, Berlin, 1980.
- [5] U. Höhle, S.E. Rodabaugh, eds, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Boston/ Dordrecht/ London, Volume 3, 1999.
- [6] G. Jäger, Degrees of compactness in fuzzy convergence spaces, Fuzzy Sets and Systems 125 (2002) 167–175.
- [7] Y.M. Liu, Compactness and Tychonoff theorem in fuzzy topological spaces, Acta Mathematica Sinica 24 (1981) 260–268.
- [8] Y.M. Liu and M.K. Luo, Fuzzy topology, World Scientific Publishing, Singapore, 1997.
- [9] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976) 621–633.
- [10] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64 (1978) 446–454.
- [11] E. Lowen and R. Lowen, On measures of compactness in fuzzy topological spaces, J. Math. Anal. Appl. 131 (1988) 329–340.
- [12] S.E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40 (1991) 297– 345.
- [13] S.E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies, in [5], 91–116.
- [14] S.E. Rodabaugh, Separation axioms: Representation theorem, compactness, and compactifications, in [5], 481–552.
- [15] F.-G. Shi, A new notion of fuzzy compactness in L-topological spaces, Inform. Sci 173 (2005) 35–48.
- [16] F.-G. Shi, A new definition of fuzzy compactness, Fuzzy Sets and Systems 158 (2007) 1486– 1495.
- [17] A.P. Šostak, On compactness and connectedness degrees of fuzzy sets in fuzzy topological spaces, in: General Topology and its Relations to Modern Analysis and Algebra, Heldermann Verlag Berlin 1988.
- [18] A.P. Šostak, Two decades of fuzzy topology: basic ideas, notions and results, Russian Math. Surveys 44 (1989) 125–186.
- [19] G.J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94 (1983) 1–23.
- [20] G.J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems 47 (1992) 351– 376.
- [21] D.S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128 (1987) 64–70.

<u>FU-GUI SHI</u> (fuguishi@bit.edu.cn) – Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, P.R. China