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Abstract. The notion of fuzzy compactness degrees is introduced in
L-topological spaces by means of the implication operator of L. An L-set G
is fuzzy compact if and only if its fuzzy compactness degree com(G) = >.
Some properties of fuzzy compactness degrees are investigated. In partic-
ular, when L = [0, 1], it is different from corresponding notions presented

by S̆ostak, E. Lowen and R. Lowen.

2010 AMS Classification: 03E72, 54A40, 54D30

Keywords: L-topology, Complete De Morgan frame, Implication operator, Fuzzy
compactness, Fuzzy compactness degree.

Corresponding Author: Fu-Gui Shi (fuguishi@bit.edu.cn)

1. Introduction

The concept of compactness of a [0, 1]-topological space was first introduced by
Chang [1] in terms of open cover. It can be regarded as a successful definition of
compactness in poslat topology from the categorical point of view (see [12, 14]).
Moreover, Gantner et al. introduced α-compactness [3], Lowen introduced fuzzy
compactness, strong fuzzy compactness and ultra-fuzzy compactness [9, 10], Liu
introduced Q-compactness [7], Wang and Zhao introduced N -compactness [19, 21],
and Shi introduced S∗-compactness [15]. Shi also present a new definition of fuzzy
compactness in L-topological spaces when L is a complete De Morgan algebra [16].

For the above notions of compactness, an L-fuzzy set is either compact or not.
However, considering measures of compactness, E. Lowen and R. Lowen [11] intro-
duced the notion of the compactness degrees of [0, 1]-topological spaces. G. Jäger
generalized it to fuzzy convergence spaces in [6]. Moreover A.P. S̆ostak [17, 18]
also introduced a definition of the compactness degree c(M) for a fuzzy set M in a
[0, 1]-topological space.
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In this paper, a new notion of fuzzy compactness degrees is introduced in L-
topological spaces by means of the implication operator of L. It is different from
those notions in [6, 11, 17].

2. Preliminaries

Throughout this paper, (L,
∨

,
∧

,′ ) is a complete De Morgan frame [4, 13]. The
smallest element and the largest element in L are denoted by ⊥ and >, respectively.

We say that a is wedge below b in L, denoted by a ≺ b, if for every subset D ⊆ L,∨
D ≥ b implies d ≥ a for some d ∈ D [2]. A complete lattice L is completely

distributive if and only if b =
∨
{a ∈ L : a ≺ b} for each b ∈ L. For any b ∈ L, define

β(b) = {a ∈ L : a ≺ b}. Some properties of β can be found in [8, 20].
In a complete De Morgan frame L, there exists a binary operation 7→. Explicitly

the implication is given by

a 7→ b =
∨
{c ∈ L | a ∧ c ≤ b}.

It is easy to check the following properties of 7→.
(1) (a 7→ b) ≥ c ⇔ a ∧ c ≤ b;
(2) a 7→ b = > ⇔ a ≤ b;
(3) a 7→ (

∧
i bi) =

∧
i (a 7→ bi);

(4) (
∨

i ai) 7→ b =
∧

i (ai 7→ b);
(5) (a 7→ c) ∧ (c 7→ b) ≤ a 7→ b;
(6) a ≤ b ⇒ c 7→ a ≤ c 7→ b.
(7) a ≤ b ⇒ b 7→ c ≤ a 7→ c.
(8) (a 7→ b) ∧ (c 7→ d) ≤ a ∧ c 7→ b ∧ d.

For a nonempty set X, LX denotes the set of all L-fuzzy sets on X. a denotes
the constant L-fuzzy sets on X taking the value a. An L-topological space is a
pair (X, τ), where τ is a subfamily of LX which contains ⊥, > and is closed for
any suprema and finite infima. Each member of τ is called an open L-set and its
quasi-complement is called a closed L-set.

For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ.

Definition 2.1 ([17, 18]). An L-fuzzy inclusion on X is a mapping ⊂̃ : LX ×LX →
LX defined by the equality ⊂̃(A,B) =

∧
x∈X

(A′(x) ∨B(x)).

In the sequel, we shall write [A⊂̃B] instead of ⊂̃(A,B).

Lemma 2.2 ([16]). Let f : X → Y be a set map and f→L : LX → LY is the extension
of f . Then for any P ⊆ LX , we have that

∧
y∈Y

(
f→L (G)′(y) ∨

∨
B∈P

B(y)

)
=
∧

x∈X

(
G′(x) ∨

∨
B∈P

f←L (B)(x)

)
.

3. Measures of fuzzy compactness

In order to generalize the notion of compactness to L-topological spaces, we in-
troduced the following notion.
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In an L-topological space (X, τ), an L-set G ∈ LX is said to be fuzzy compact
[16] if for every family U of open L-sets, it follows that

∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
,

i.e., [
G⊂̃

∨
U
]
≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
.

According to the above definition, we know that an L-fuzzy set is either compact or
not. But we know that for any a, b ∈ L,

a ≤ b ⇔ a 7→ b = >.

If we define [a ≤ b] = a 7→ b, then a ≤ b always is true to some degree.
Therefore we can naturally introduce the notion of fuzzy compactness degrees as

follows:
Definition 3.1. Let (X, τ) be an L-topological space and G ∈ LX . The fuzzy
compactness degree com(G) of G is defined as

com(G) =
∧
U∈2τ

∧
x∈X

(
G′ ∨

∨
A∈U

A

)
(x) 7→

∨
V∈2(U)

∧
x∈X

(
G′ ∨

∨
A∈V

A

)
(x)


=
∧
U∈2τ

[G⊂̃∨U
]
7→

∨
V∈2(U)

[
G⊂̃

∨
V
] .

Obviously G is fuzzy compact if and only if com(G) = >.
The following lemma is obvious.

Lemma 3.2. Let (X, τ) be an L-topological space and G ∈ LX . Then com(G) ≥ a
if and only if for any U ∈ 2τ ,[

G⊂̃
∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
.

By Lemma 3.2 we can easily obtain the following result.

Theorem 3.3. Let (X, τ) be an L-topological space and G ∈ LX . Then

com(G) =
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]

for any U ∈ 2τ

 .

It is easy to see that if an L-topology τ on a set X is finite, then for each G ∈ LX ,
com(G) = >. Moreover if X is a singleton set, then for any L-topology on X and
any G ∈ LX , com(G) = >.

Theorem 3.4. For any G, H ∈ LX , com(G ∨H) ≥ com(G) ∧ com(H).
185



Fu-Gui Shi/Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 2, 183–192

Proof. By Theorem 3.3 we have

com(G ∨H) =
∨a ∈ L :

[
G ∨H⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G ∨H⊂̃

∨
V
]
,∀U ∈ 2τ


=
∨{

a ∈ L :
[
G⊂̃

∨
U
]
∧
[
H⊂̃

∨
U
]
∧ a

≤
∨
V∈2(U)

[
G⊂̃

∨
V
]
∧
[
H⊂̃

∨
V
]
,∀U ∈ 2τ

}

≥
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]∧

∨a ∈ L :
[
H⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
H⊂̃

∨
V
]
,∀U ∈ 2τ


= com(G) ∧ com(H).

�

Theorem 3.5. For any G ∈ LX and any closed L-set H, com(G ∧H) ≥ com(G).

Proof. By Theorem 3.3 we have

com(G ∧H) =
∨a ∈ L :

[
G ∧H⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G ∧H⊂̃

∨
V
]
,∀U ∈ 2τ


=
∨a ∈ L :

[
G⊂̃H ∨

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃H ∨

∨
V
]
,∀U ∈ 2τ


≥ com(G).

�

Theorem 3.6. Let f : X → Y be a set map, τ1 be an L-topology on X, τ2 be an
L-topology on Y , and f : (X, τ1) → (Y, τ2) be continuous. Then com (f→L (G)) ≥
com(G).

Proof. This can be proved from the following inequality.

com(f→L (G))

=
∧
U∈2T2

∧
y∈Y

(
f→L (G)′(y) ∨

∨
A∈U

A(y)

)
7→

∨
V∈2(U)

∧
y∈Y

(
f→L (G)′(y) ∨

∨
A∈V

A(y)

)
=

∧
U∈2T2

∧
x∈X

(
G′(x) ∨

∨
A∈U

f←L (A)(x)

)
7→

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

f←L (A)(x)

)
≥ com(G).

�
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4. The Generalized Tychonoff Theorem

In this section, we suppose that L be completely distributive.

Lemma 4.1. Let (X, τ) be an L-topological space, η be a subbase of τ , and G ∈ LX .
Then

com(G) =
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
,∀U ∈ 2η

 .

Proof. It is obvious that

com(G) ≤
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
,∀U ∈ 2η

 .

Now we prove that

com(G) ≥
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
,∀U ∈ 2η

 .

Thus we need to prove that

∀U ∈ 2η,
[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]

⇒ ∀U ∈ 2τ ,
[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
.

Suppose that there exists U ∈ 2τ such that
[
G⊂̃

∨
U
]
∧ a 6≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
. Then

there exists b ≤
[
G⊂̃

∨
U
]
∧ a such that b 6≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
. Let

Γ =

P : U ⊆ P ⊆ τ, b ≤
[
G⊂̃

∨
P
]
, b 6≤

∨
V∈2(P)

[
G⊂̃

∨
V
] .

Then (Γ,⊆) is a nonempty partially ordered set and each chain has an upper bound,
hence by Zorn’s Lemma, Γ has a maximal element Ω. Now we prove that Ω satisfies
the following conditions:

(i) for every B ∈ τ , if C ∈ Ω and C ≥ B, then B ∈ Ω;
(ii) if for each B,C ∈ τ , B ∧ C ∈ Ω, then B ∈ Ω or C ∈ Ω.
We only verify (ii). If B 6∈ Ω and C 6∈ Ω, then {B} ∪ Ω 6∈ Γ and {C} ∪ Ω 6∈ Γ.

This implies that b ≤
∨

V∈2(Ω∪{B})

[
G⊂̃

∨
V
]

and b ≤
∨

V∈2(Ω∪{C})

[
G⊂̃

∨
V
]
. Hence for

any r ∈ β(b), there exists A1, A2, · · · , Am+n ∈ Ω such that

r ≤
[
G⊂̃A1 ∨A2 ∨ · · · ∨Am ∨B

]
and r ≤

[
G⊂̃Am+1 ∨Am+2 ∨ · · · ∨Am+n ∨ C

]
.

Further we have that

r ≤
[
G⊂̃A1 ∨A2 ∨ · · · ∨Am+n ∨B

]
and r ≤

[
G⊂̃A1 ∨A2 ∨ · · · ∨Am+n ∨ C

]
.

This shows that

r ≤
[
G⊂̃A1 ∨A2 ∨ · · · ∨Am+n ∨ (B ∧ C)

]
.
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Therefore we obtain that b ≤
∨

V∈2(Ω∪{B∧C})

[
G⊂̃

∨
V
]
. This implies that B ∧ C 6∈ Ω,

which contradicts B ∧ C ∈ Ω. (ii) is proved.
From (i) and (ii), it is immediate that if D ∈ Ω, P1, P2, · · · , Pn ∈ τ and D ≥

P1 ∧ P2 ∧ · · · ∧ Pn, then there exists i(1 ≤ i ≤ n) such that Pi ∈ Ω.
Now let us consider η ∩ Ω. If b ≤

[
G⊂̃

∨
(η ∩ Ω)

]
, then

b ≤
∨

V∈2(η∧Ω)

[
G⊂̃

∨
V
]
≤

∨
V∈2(Ω)

[
G⊂̃

∨
V
]
,

this contradicts the sense of Ω. Therefore we have b 6≤
[
G⊂̃

∨
(η ∩ Ω)

]
. Hence there

exists r ∈ β(b) such that r 6≤
[
G⊂̃

∨
(η ∩ Ω)

]
. This implies that for any A ∈ η ∩ Ω,

there exists an x ∈ X such that r 6≤ G′(x) ∨A(x).
By b ≤

[
G⊂̃

∨
Ω
]
, we know that b ≤ (G′ ∨

∨
Ω) (x). Hence there exists D ∈ Ω

such that r ∈ β (G′(x) ∨D(x)). Let

D =
∨
i∈I

∧
j∈Ji

Aij , where for each i ∈ I, Ji is a finite set and Aij ∈ η.

Then there exists i ∈ I such that

r ∈ β

G′(x) ∨
∧

j∈Ji

Aij(x)

 ⊆
⋂

j∈Ji

β (G′(x) ∨Aij(x)) .

This implies that r ∈ β (G′(x) ∨Aij(x)) for each j ∈ Ji. By D ≥
∧

j∈Ji

Aij we know

that there is j ∈ Ji such that Aij ∈ Ω, this contradicts r 6≤ G′(x) ∨ Aij(x). The
proof is obtained. �

Theorem 4.2. Let (X, τ) be the product of a family of L-topological spaces {(Xi, τi)}i∈I ,

and Gi ∈ LXi for any i ∈ I. Then com
(∏

i∈I

Gi

)
≥
∧
i∈I

com (Gi).

Proof. In order to prove com
(∏

i∈I

Gi

)
≥
∧
i∈I

com (Gi), let
∧
i∈I

com (Gi) = a. Then

for any i ∈ I, com (Gi) ≥ a. Let η = {P←i (Di) | i ∈ I,Di ∈ τi} be a subbase of τ .
By Lemma 4.1, we only need to prove that for any U ∈ 2η,[∏

i∈I

Gi⊂̃
∨
U

]
∧ a ≤

∨
V∈2(U)

[∏
i∈I

Gi⊂̃
∨
V

]
.(4.1)

Suppose that U ∈ 2η and b ∈ β

([∏
i∈I

Gi⊂̃
∨
U
]
∧ a

)
. Let

J ⊆ I, U =
⋃
i∈J

Ui, Ui = {P←i (Bi) : Bi ∈ Bi ⊆ τi} .

Then for any x ∈ X, we have

b ∈ β

((∏
i∈I

Gi

)′
(x) ∨

∨
A∈U

A(x)

)
= β

(∨
i∈I

G′i(xi) ∨
∨
i∈J

∨
A∈Ui

A(x)

)
.(4.2)
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(1) If b ∈ β

(∨
i∈I

G′i(xi)
)

for any x = {xi}i∈I ∈ X, then obviously

b ≤
∨
V∈2(U)

[∏
i∈I

Gi⊂̃
∨
V

]
.

This shows that inequality (1) is true.

(2) Suppose that b 6∈ β

(∨
i∈I

G′i(xi)
)

for some x = {xi}i∈I ∈ X. Then b 6∈

β (G′i(xi)) for any i ∈ I. Now we prove that there exists k ∈ J such that b ∈
β (G′k(yk) ∨

∨
Bk(yk)) for any yk ∈ Xk. If ∀i ∈ J , there exists yi ∈ Xi such that

b 6∈ β

(
G′i(yi) ∨

∨
B∈Bi

B(yi)

)
. Let z = {zi}i∈I such that zi = yi when i ∈ J , zi = xi

otherwise. By the following equality

(∏
i∈I

Gi

)′
(z) =

(∨
i∈J

P←i (G′i)(z)

)
∨

∨
i 6∈J

P←i (G′i)(z)


=

(∨
i∈J

G′i(yi)

)
∨

∨
i 6∈J

G′i(xi)

 ,

we obtain that b 6∈ β

((∏
i∈I

Gi

)′
(z)

)
. Moreover for any i ∈ J , by the following fact

b 6∈ β

( ∨
B∈Bi

B(yi)

)
= β

( ∨
B∈Bi

P←i (B)(z)

)
= β

( ∨
A∈Ui

A(z)

)
,

we have

b 6∈
⋃
i∈J

β

( ∨
A∈Ui

A(z)

)
= β

(∨
i∈J

∨
A∈Ui

A(z)

)
.

This implies

b 6∈ β

((∏
i∈I

Gi

)′
(z) ∨

∨
A∈U

A(z)

)
.

This yields a contradiction with the formula (2). Thus we obtain the proof that
there exists k ∈ J such that b ∈ β (G′k(yk) ∨

∨
Bk(yk)) for any yk ∈ Xk. This shows
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b ≤
[
Gk⊂̃

∨
Bk

]
. By c(Gk) ≥ a ≥ b we can obtain

b ≤
∨

Dk∈2(Bk)

[
Gk⊂̃

∨
Dk

]
=

∨
Dk∈2(Bk)

∧
yk∈Xk

(
G′k ∨

∨
Dk

)
(yi)

=
∨

Dk∈2(Bk)

∧
y∈X

(
G′k ∨

∨
Dk

)
(Pk(y))

=
∨

Dk∈2(Bk)

∧
y∈X

(
P←k (G′k) ∨

∨
D∈Dk

P←k (D)

)
(y)

≤
∨

Dk∈2(Bk)

∧
y∈X

((∏
i∈I

Gi

)′
∨
∨

D∈Dk

P←k (D)

)
(y)

≤
∨

Vk∈2(Uk)

∧
y∈X

((∏
i∈I

Gi

)′
∨
∨
Vk

)
(y).

Thus we complete the proof of (1). Therefore com
(∏

i∈I

Gi

)
≥ a =

∧
i∈I

com (Gi) . �

By Theorem 3.6 and Theorem 4.2 we can obtain the following corollary.

Corollary 4.3. Let (X, τ) be the product of a family of L-topological spaces {(Xi, τi)}i∈I .

Then com
(∏

i∈I

>i

)
=
∧
i∈I

com (>i), where >i is the largest element in LXi .

5. A comparison of different compactness degrees

In this section, we shall compare different notions of fuzzy compactness degrees
in [0, 1]-topological spaces.

In [17, 18], S̆ostak defined the compactness degree of a fuzzy set as follows:

Definition 5.1. Let (X, τ) be a [0, 1]-topological space and G ∈ [0, 1]X . The com-
pactness spectrum C(G) of G is defined as follows:

C(G) =

b ∈ [0, 1] : b ≤
[
G⊂̃

∨
U
]
⇒ b ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
,∀U ∈ 2τ

 .

The number c(G) = inf([0, 1]\C(G)) (inf ∅ = 1) is called the compactness degree of
G.

By Theorem 3.3 and Definition 5.1 we know that c(G) ≤ com(G). But in general,
c(G) 6= com(G). This can be seen from the following example.

Example 5.2. Let X = [a, b] be a closed interval and let

τ = {>} ∪ {0.5 ∧ χA : A ∈ δ},
where δ denotes the natural topology on X. It is easy to check that c(0.5 ∧ χX) =
0.5 < 1 = com(0.5 ∧ χX). Moreover c(>) = 0.5 < 1 = com(>).
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In [11], E. Lowen and R. Lowen also introduce the notion of compactness degree
of [0, 1]-topological spaces as follows:

Definition 5.3. For a [0, 1]-topological space (X, τ), the compactness degree of X
is defined as

c(>) =
∨{

1− ε : ∀U ∈ 2τ ,∀α > ε,
∧

x∈X

(∨
U
)

(x) ≥ α ⇒

∃V ∈ 2U such that
∧

x∈X

(∨
V
)

(x) ≥ α− ε

}
.

Now we compare c(>) and com(>).

Theorem 5.4. For a [0, 1]-topological space (X, τ), c(>) ≥ com(>).

Proof. When c(>) = 1, we know that the theorem is true since c(>) = 1 if and only
if (X, τ) is fuzzy compact if and only if com(>) = 1. Now we suppose that c(>) < 1.
Let

S =

{
ε : ∀U ∈ 2τ ,∀α > ε,

∧
x∈X

(∨
U
)

(x) ≥ α ⇒ ∃V ∈ 2U ,
∧

x∈X

(∨
V
)

(x) ≥ α− ε

}
.

Then c(>) = 1− inf S < 1. Hence inf S > 0. In order to prove that c(>) ≥ com(>),
take any r with 1 > r > c(>). Now we prove r > com(>). Take any s such that
r > s > c(>). It is obvious that 0 < 1 − s < 1 − c(>) = inf S. This implies
1−s 6∈ S. Hence there exists U ∈ 2τ and α > 1−s such that

∧
x∈X

(
∨
U) (x) ≥ α, but

∀V ∈ 2U ,
∧

x∈X

(
∨
V) (x) < α − 1 + s. This implies

∧
x∈X

(
∨
U) (x) ≥ α > α − (1 − r),

but
∨
V∈2U

∧
x∈X

(
∨
V) (x) ≤ α− 1 + s. Thus we obtain

∧
x∈X

(∨
U
)

(x) ∧ r 6≤
∨
V∈2U

∧
x∈X

(∨
V
)

(x).

This shows r > com(>). By the arbitrariness of r, we shows c(>) ≥ com(>). �

In general, c(>) 6= com(>). This can be seen from the following example.

Example 5.5. Let X = N be the set of all natural numbers. For any n ∈ N, define
An ∈ [0, 1]X by

An(k) =
{

0.5, if k ≤ n;
0, if k > n.

Let τ = {⊥,>, 0.5} ∪ {An : n ∈ N}. It is easy to check that τ is a [0, 1]-topology on
X. It is easy to check that

∧
k∈X

∨
n∈N

An(k) = 0.5, but for any finite subfamily V of

η = {An : n ∈ N},
∨
V∈2η

∧
k∈X

∨
A∈V

A(k) = 0. Therefore com(>) = 0. Let

S =

{
ε : ∀U ∈ 2τ ,∀α > ε,

∧
x∈X

(∨
U
)

(x) ≥ α ⇒ ∃V ∈ 2U ,
∧

x∈X

(∨
V
)

(x) ≥ α− ε

}
.
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∀α > 0.5, if
∧

x∈X

(
∨
U) (x) ≥ α, then we must have > ∈ U , hence 0.5 ∈ S. It is easy

to see r 6∈ S for any r < 0.5. This implies c(>) = 0.5. Therefore c(>) > com(>).
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