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Abstract. This paper preambles decentralized ordering model with
fuzzy parameters for fuzzy replenishment order quantity. The fuzzy to-
tal cost of this model under the fuzzy arithmetical operations of function
principle is stipulated. Our ultimate aim is to find optimal solution of
this model by using graded mean integration representation method for
defuzzifying fuzzy total cost and by using extension of Lagrangian method
for solving inequality constraint problem. In addition, when the fuzzy
parameters (fuzzy fixed cost, fuzzy variable purchase cost, fuzzy demand
quantity, fuzzy travelling distance, fuzzy carrying charge, fuzzy safety fac-
tor, fuzzy variation of the lead time, fuzzy fixed cost of transportation,
fuzzy variable cost) are all crisp real numbers. The optimal solutions of
our stated model can be utilized to meet ancient decentralized ordering
model.
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1. Introduction

The decentralized ordering model is a constructive extension of the classic opti-
mal economic order quantity model. Several attempts have been made to extend
the EOQ model to different conditions. For this purpose, a few authors incorpo-
rated transportation costs into the lot size determination analysis. Burwell et al [3]
developed a model for determining the reseller’s lot size and price assuming that
there are freight and all unit quantity discount break points in the pricing schedule
offered by the supplier. Gupta [9] considered a situation in which a fixed cost is
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incurred for a transport node such as a truck that has a fixed load capacity. He de-
veloped a model to determine the optimal lot size, which minimizes the sum of the
inventory holding, ordering and transportation cost. Zhao et al [16] introduced the
problem of evaluating the optimal ordering quantity in a supplier-customer model
by considering the transportation cost.

In [1], Alireza Madadi, Mary E. Kurz and Jalal Ashayeri addressed specific inven-
tory management decisions with transportation cost consideration in a multi-level
environment consisting of a supplier-warehouse-retailer. A two-level supply chain
consisting of a warehouse (distribution centre) and N retailers is considered in our
model.

Figure 1. The structure of the model

Each retailer and the warehouse have a set of control parameters that affects the
performance of other components. Each retailer’s costs include transportation cost,
cost of replenishment, carrying cost and cost of stock-out. We adopt the model of
Daganzo [8] for one-to-many distribution model transportation cost and Burns et
al. [2] for distribution strategy to minimize transportation cost.

In the decentralized ordering model each individual level tries to optimize its own
total cost. The optimal lot size formula is

Q∗
j =

√
2Dj(Aj + αw + twdwj )

Vjrj

Inventory control of goods or products is a very important part of logistic systems,
common to all economic sectors such as agriculture, industry, trade and business.
Very large costs are incurred as a result of replenishment actions, shortages and the
use of managerial and clerical time in making and routinely implementing inventory
management decisions. Thus, properly designed decision rules, based on mathemat-
ical modeling, can lead to substantial benefits. The major problem in inventory
control can be summed up by the two fundamental questions (i) when should a
replenishment order be placed? And (ii) how much should be ordered? In the real

172



W. Ritha et al./Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 2, 171–181

world, the parameters and variables in inventory model may be almost uncertain
datum. In 1987, Park [12] used fuzzy set concept to treat the inventory problem
with fuzzy inventory cost under arithmetic operations of Extension Principle. In
1996, Chen et al. [5] introduced backorder fuzzy inventory model under Function
Principle. In [7], Chen and Hsieh discussed fuzzy inventory model for crisp order
quantity or for fuzzy order quantity with generalized trapezoidal fuzzy number.

In the crisp inventory models, all the parameters in the total cost are known and
have definite values without ambiguity, as well as the real variable of the total cost is
positive. But in the reality, it is not so sure. Hence it is needed to consider the fuzzy
inventory models. In order to simplify the calculation of trapezoidal fuzzy number,
we use Chen’s Function Principle [4] instead of Extension Principle to calculate the
fuzzy total replenishment inventory cost of our proposed model. Function Principle
is proposed as the fuzzy arithmetical operations of fuzzy numbers in 1985.

Also the principle is turnout that it does not change the type of membership
function under fuzzy arithmetical operations of fuzzy number. In the fuzzy sense, it
is reasonable to discuss the grade of each point of support set of fuzzy number for
representing fuzzy number. Therefore, Chen and Hsieh’s Graded Mean Integration
Representation method [6] adopted grade as the important degree of each point of
support set of generalized fuzzy number. With this reason, we use it to defuzzify the
trapezoidal fuzzy total cost of each retailer. In fuzzy decentralized ordering model
for crisp replenishment order quantity, the first derivative of fuzzy total cost of each
retailer is used to solve the optimal replenishment order quantity. Furthermore, the
algorithm of Extension of the Lagrangian method [15] is used to solve inequality
constrains in fuzzy decentralized ordering model for replenishment order quantity.
Moreover, we consider an example of an organisation for fuzzy replenishment order
quantity.

Economic lot size models have been studied extensively since Harris [10] pre-
sented the famous EOQ formula in 1913. Five years later, the economic production
quantity (EPQ) inventory model was proposed by Taft [14]. However, in recent
years, both academicians and researchers have shown an increasing level of interest
in finding alternatives ways to solve inventory models. In [11] Hsieh introduced the
fuzzy production inventory models in which fuzzy parameters and fuzzy production
quantity or fuzzy order quantity are all trapezoidal fuzzy numbers.

In this paper, we introduce the fuzzy decentralized ordering models in which
fuzzy parameters and fuzzy replenishment order quantity are all trapezoidal fuzzy
numbers.

1.1. Notations used.
N Number of retailers
j Retailer index (j = 1, 2 . . . , N)
Q̃j Fuzzy replenishment order quantity in units of retailer j

Ãj Fuzzy fixed cost of order at the retailers (not per unit)($)
Ṽj Fuzzy variable purchase cost of item at retailer j ($)
Sj reorder point at retailer j

D̃j Fuzzy Demand quantity (yearly) observed by retailer j
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d̃wj Fuzzy travelling distance from warehouse to retailer j (km)
r̃j Fuzzy carrying charge in % of unit value at retailer j (per year)
K̃j Fuzzy safety factor at retailer j
σ̃jLwj Fuzzy variation of the lead time from warehouse to retailer j
α̃w Fuzzy fixed cost of transportation per order from warehouse to

retailer j (small value for all retailers)
t̃w Fuzzy variable cost of transportation from warehouse to retailer j

T̃Cj(Qj) Fuzzy total cost for retailer j

P
(
T̃Cj(Qj)

)
Defuzzified value of fuzzy total cost P

(
T̃Cj(Qj)

)
for retailer j

Q̃∗
j Fuzzy optimal value of Qj

1.2. Assumptions.

(i) A continuous review (S, Q) policy for all of the retailers.
(ii) Initial inventory position is assumed to be zero.
(iii) The inventory position at each retailer decreases, an amount Qj will be ordered.
(iv) All of the retailers use a similar service level say P1 [13] that determines the

probability of no stock-out per order cycle.
(v) Lost sales are not considered in the model.
(vi) The resulting inventory position will be strictly larger than Sj and smaller than

or equal to Sj + Qj .
(vii) Lead-time demand is normally distributed with average µjLwj and variance

σ2
jLwj at each retailer j.

2. Methodology

2.1. Fuzzy Numbers. Any fuzzy subset of the real line R, whose membership
function µÃ satisfies the following conditions, is a generalized fuzzy number Ã

(1) µÃ(x) is a continuous mapping from R to the closed interval [0, 1].
(2) µÃ(x) = 0, −∞ < x ≤ a1,
(3) µÃ(x) = L(x) is strictly increasing on [a1, a2],
(4) µÃ(x) = wA, a2 ≤ x ≤ a3,
(5) µÃ(x)= R(x) is strictly decreasing on [a3, a4],
(6) µÃ(x) = 0, a4 ≤ x < ∞,where 0 < wA ≤ 1, and a1, a2, a3 and a4 are

real numbers. Also this type of generalized fuzzy number be denoted as
Ã = (a1, a2, a3, a4;wA)LR. When wA = 1, it can be simplified as Ã =
(a1, a2, a3, a4)LR.

2.2. Trapezoidal Fuzzy Number. The fuzzy number Ã = (a1, a2, a3, a4), where
a1 < a2 < a3 < a4 and defined on R is called the trapezoidal fuzzy number, if the
membership function Ã is given by
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µÃ(x) =



0; x < a1 or x > a4

(x− a1)
(a2 − a1)

; a1 ≤ x < a2

1; a2 ≤ x < a3

(x− a4)
(a3 − a4)

; a3 ≤ x ≤ a4

Figure 2.

2.3. The Function Principle. The function principle was introduced by Chen [4]
to treat fuzzy arithmetical operations. This principle is used for the operation of
addition, multiplication, subtraction and division of fuzzy numbers.

Suppose Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) are two trapezoidal fuzzy
numbers. Then

(1) The addition of Ã and B̃ is Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),
where a1, a2, a3, a4, b1, b2, b3 and b4 are any real numbers.

(2) The multiplication of Ã and B̃ is Ã⊗ B̃ = (c1, c2, c3, c4),
where T = {a1b1, a1b4, a4b1, a4b4}, T1 = {a2b2, a2b3, a3b2, a3b3},
c1 = minT , c2 = minT1, c3 = maxT1, c4 = maxT . If a1, a2, a3, a4, b1, b2,
b3 and b4 are all non zero positive real numbers, then
Ã⊗ B̃ = {a1b1, a2b2, a3b3, a4b4}

(3) −B̃ = (−b4,−b3,−b2,−b1), then the subtraction of Ã and B̃ is

Ã	 B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1),

where a1, a2, a3, a4, b1, b2, b3 and b4 are any real numbers.
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(4) 1
B̃

= B̃−1 =
(

1
b4

, 1
b3

, 1
b2

, 1
b1

)
, where b1, b2, b3 and b4 are all positive real

numbers. If a1, a2, a3, a4, b1, b2, b3 and b4 are all non-zero positive real
numbers, then the division of Ã and B̃ is Ã� B̃ =

(
a1
b4

, a2
b3

, a3
b2

, a4
b1

)
(5) Let k ∈ R then

k ⊗ Ã =

{
(ka1, ka2, ka3, ka4), if k ≥ 0
(ka4, ka3, ka2, ka1), if k < 0

2.4. Graded Mean Integration Representation Method. If Ã = (a1, a2, a3,

a4; wA)LR is a generalized fuzzy number then the defuzzified value P
(
Ã
)

by graded
mean integration representation method is given by

P
(
Ã
)

=

wA∫
0

h

(
L−1(h) + R

−1(h)
2

)
dh

/ wA∫
0

hdh with 0 < h ≤ wA and 0 < wA ≤ 1.

If Ã = (a1, a2, a3, a4) is a trapezoidal number, then the graded mean integration
representation of Ã by above formula is

P
(
Ã
)

=

1∫
0

h

(
a1 + a4 + (a2 − a1 − a4 + a3)h

2

)
dh

/ 1∫
0

hdh

P
(
Ã
)

=
a1 + 2a2 + 2a3 + a4

6

2.5. Extension of the Lagrangian Method. In [15], Taha discussed how to solve
the optimum solution of non-linear programming problem with equality constraints
by using Lagrangian Method and showed how the Lagrangian Method may be ex-
tended to solve inequality constraints. The general idea of extending the lagrangian
procedure is that if the unconstrained optimum of problem does not satisfy all the
constraints, the constrained optimum must occur at a boundary point of the solution
space.

Suppose that the problem is given by
Minimize y = f(x)
Subject to gi(x) ≥ 0, i = 1, 2, . . . ,m.
The non-negativity constraints x ≥ 0, if any are included in the m constraints.

Then the procedure of extension of the Lagrangian Method involves the following
steps.

Step (1): Solve the unconstrained problem. Minimize y = f(x). If the resulting
optimum satisfies all the constraints, stop because all constraints are redundant.
Otherwise, set k = 1 and go to Step 2.

Step (2): Activate any k constraints (i.e., convert them into equality) and optimize
f(x) subject to the k active constraints by the Lagrangian Method. If the resulting
solution is feasible with respect to the remaining constraints, stop; it is a local
optimum. Otherwise, activate another set of k-constraints and repeat the step. If
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all sets of active constraints taken k at a time are considered without encountering
a feasible solution, go to Step 3.

Step (3): If k = m, stop : no feasible solution exists. Otherwise, set k = k + 1 and
go to Step 2.

3. Fuzzy Mathematical Model

Suppose Ã = (a1, a2, a3, a4), D̃j = (dj1 , dj2 , dj3 , dj4), Ṽj = (vj1 , vj2 , vj3 , vj4), α̃w =
(αw1 , αw2 , αw3 , αw4), r̃j = (rj1 , rj2 , rj3 , rj4), d̃wj

= (dwj1 , dwj2 , dwj3 , dwj4), k̃j =
(kj1 , kj2 , kj3 , kj4), σ̃jLwj = (σjLwj1

, σjLwj2
, σjLwj3

, σjLwj4
), t̃w = (tw1 , tw2 , tw3 , tw4),

Q̃j = (qj1 , qj2 , qj3 , qj4) are non negative trapezoidal fuzzy numbers based on the
above assumptions, fuzzy model can be represented as

˜TCj (Qj) =
(
Ãj ⊗ D̃j

)
� Q̃j +

[(
Q̃j � 2

)
⊕
(
K̃j ⊗ σ̃jLwj

)]
⊗ ṽj ⊗ r̃j ⊕

(
α̃w ⊕

(
t̃w ⊗ d̃wj

))
⊗ D̃j � Q̃j

T̃Cj (Qj) =
{

aj1dj1

qj4

+
(qj1

2
+ kj1σjLwj1

)
vj1rj1 + (αw1 + tw1dwj1)

dj1

qj4

,

aj2dj2

qj3

+
(qj2

2
+ kj2σjLwj2

)
vj2rj2 + (αw2 + tw2dwj2)

dj2

qj3

,

aj3dj3

qj2

+
(qj3

2
+ kj3σjLwj3

)
vj3rj3 + (αw3 + tw3dwj3)

dj3

qj2

,

aj4dj4

qj1

+
(qj4

2
+ kj4σjLwj4

)
vj4rj4 + (αw4 + tw4dwj4)

dj4

qj1

}
By Graded Mean Integration, solve the unconstrained problem
Minimize

P
(
T̃Cj (Qj)

)
=

1
6

{
aj1dj1

qj4

+
(qj1

2
+ kj1σjLwj1

)
vj1rj1 + (αw1 + tw1dwj1)

dj1

qj4

+
2aj2dj2

qj3

+ 2
(qj2

2
+ kj2σjLwj2

)
vj2rj2 + (αw2 + tw2dwj2)

dj2

qj3

+
2aj3dj3

qj2

+ 2
(qj3

2
+ kj3σjLwj3

)
vj3rj3 + (αw3 + tw3dwj3)

dj3

qj2

+
aj4dj4

qj1

+
(qj4

2
+ kj4σjLwj4

)
vj4rj4 + (αw4 + tw4dwj4)

dj4

qj1

}
with 0 < qj1 ≤ qj2 ≤ qj3 ≤ qj4 .

Differentiate P
(
T̃Cj (Qj)

)
partially with respect to qj1 , qj2 , qj3 and qj4 :

∂P

∂qj1

= 0 ⇒ qj1 =

√
2dj4 (aj4 + αw4 + tw4dwj4)

vj1rj1

,

∂P

∂qj2

= 0 ⇒ qj2 =

√
4dj3 (aj3 + αw3 + tw3dwj3)

2vj2rj2

,
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∂P

∂qj3

= 0 ⇒ qj3 =

√
4dj2 (aj2 + αw2 + tw2dwj2)

2vj3rj3

and

∂P

∂qj4

= 0 ⇒ qj4 =

√
2dj1 (aj1 + αw1 + tw1dwj1)

vj4rj4

.

The above show that with qj1 > qj2 > qj3 > qj4 , it does not satisfy the constraint
with 0 < qj1 ≤ qj2 ≤ qj3 ≤ qj4 , set k = 1 and go to Step 2.

Convert the inequality constraint into equality constraint qj2 − qj1 = 0 and op-

timize P
(
T̃Cj (Qj)

)
subject to qj2 − qj1 = 0 by the Lagrangian Method. We have

Lagrangian function is L(qj1 , qj2 , qj3 , qj4 , λ) = P
(
T̃Cj (Qj)

)
− λ(qj2 − qj1). Let all

the partial derivatives equal to zero and solve qj1 , qj2 , qj3 and qj4 , then we get

qj1 = qj2 =

√
2 {2dj3 (aj3 + αw3 + tw3dwj3) + dj4 (aj4 + αw4 + tw4dwj4)}

vj1rj1 + 2vj2rj2

qj3 =

√
4dj2 (aj2 + αw2 + tw2dwj2)

2vj3rj3

, and qj4 =

√
2dj1 (aj1 + αw1 + tw1dwj1)

vj4rj4

The above show that qj3 > qj4 , it does not satisfy the constraint 0 < qj1 ≤ qj2 ≤
qj3 ≤ qj4 , it is not a local optimum. Set k = 2 and go to Step 3.

Step 3: Convert the inequality constraint into equality constraint qj2 − qj1 = 0 and

qj3 − qj2 = 0. We optimize P
(
T̃Cj (Qj)

)
subject to qj2 − qj1 = 0 and qj3 − qj2 = 0

by the Lagrangian Method. Then the Lagrangian function is

L(qj1 , qj2 , qj3 , qj4 , λ1, λ2) = P
(
T̃Cj (Qj)

)
− λ1(qj2 − qj1)− λ2(qj3 − qj2).

Let all the partial derivatives equal to zero and solve qj1 , qj2 , qj3 and qj4 , then we
get

qj1 = qj2 = qj3 =

√
2(2X + 2Y + 2Z)

vj1rj1 + 2vj2rj2 + 2vj3rj3

and qj4 =

√
2W

vj4rj4

where

W = dj1 (aj1 + αw1 + tw1dwj1) , X = dj2 (aj2 + αw2 + tw2dwj2) ,

Y = dj3 (aj3 + αw3 + tw3dwj3) and Z = dj4 (aj4 + αw4 + tw4dwj4) .

The above result show that qj1 > qj4 does not satisfy the constraint 0 < qj1 ≤ qj2 ≤
qj3 ≤ qj4 , it is not a local optimum. Set k = 3 and go to Step 4.

Step 4: Convert the inequality constraint into equality constraints qj2 − qj1 = 0,

qj3 − qj2 = 0 and qj4 − qj3 = 0. We optimize P
(
T̃Cj (Qj)

)
subject to qj2 − qj1 = 0,
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qj3 − qj2 = 0 and qj4 − qj3 = 0 by the Lagrangian Method. The Lagrangian function
is

L(qj1 , qj2 , qj3 , qj4 , λ1, λ2, λ3)

= P
(
T̃Cj (Qj)

)
− λ1(qj2 − qj1)− λ2(qj3 − qj2)− λ3(qj4 − qj3).

Let all the partial derivatives equal to zero and solve qj1 , qj2 , qj3 and qj4 , then we
get

(3.1) qj1 = qj2 = qj3 = qj4 =

√
2(W + 2X + 2Y + Z)

vj1rj1 + 2vj2rj2 + 2vj3rj3 + vj4rj4

Because the above solution Q̃j = (qj1 , qj2 , qj3 , qj4) satisfies all inequality constraints,
the procedure terminates with Q̃j as a local optimum solution to the problem.

Since the above local optimum solution is the only one feasible solution of graded
mean integration formula, so it is an optimum solution of the inventory model
with fuzzy replenishment order quantity according to extension of the Lagrangian
Method.

Let qj1 = qj2 = qj3 = qj4 = qj . Then the optimal fuzzy replenishment order
quantity is Q̃∗

j =
(
q∗j , q∗j , q

∗
j , q

∗
j

)
, where

(3.2) q∗j =

√
2(W + 2X + 2Y + Z)

vj1rj1 + 2vj2rj2 + 2vj3rj3 + vj4rj4

4. Numerical Example

The purchase manager of an organisation has collected the following data for one
of the A-class items:
Fuzzy fixed cost of order (not per unit, only in dollars) at the retailer j:

Ãj = (95, 100, 100, 105)

Fuzzy variable purchase cost of item (in dollars) at retailer j:

Ṽj = (85.5, 90, 90, 94.5)

Fuzzy Demand quantity (yearly) observed by retailer j:

D̃j = (814.15, 857, 857, 899.85)

Fuzzy fixed cost of transportation per order (in dollars) from warehouse to retailer
j:

α̃w = (95, 100, 100, 105)
Fuzzy travelling distance (in km) from warehouse to retailer j:

d̃wj = (14.25, 15, 15, 15.75)

Fuzzy variable cost of transportation from warehouse to retailer j :

t̃w = (14.25, 15, 15, 15.75)

Fuzzy carrying charge in % of unit value (per year) at retailer j:

r̃j = (0.95, 1, 1, 1.05)
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Fuzzy safety factor at retailer j:

K̃j = (1.558, 1.64, 1.64, 1.772)

Fuzzy variation of the lead time from warehouse to retailer j:

σ̃jLwj = (2.775, 2.9, 2.9, 3.045)

Determine the Economic lot size.

Solution. Here we can use a general rule for trapezoidal fuzzy numbers as
“Value of X” = (0.95X, X, X, 1.05X)
Fuzzy replenishment order quantity Q̃j = (qj1 , qj2 , qj3 , qj4) with
0 < qj1 ≤ qj2 ≤ qj3 ≤ qj4 .
Formula (3.1) is an optimum solution of the inventory model with fuzzy replen-

ishment order quantity.
By extension of the Lagrangian Method.
Let qj1 = qj2 = qj3 = qj4 = qj , then the optimal fuzzy replenishment order

quantity is Q̃∗
j= ( q∗j , q∗j , q∗j , q∗j )

Substitute the given fuzzy parameter values in formula (3.2), we obtain the opti-
mal fuzzy replenishment order quantity Q̃∗

j = (90.00, 90.00, 90.00, 90.00).

5. Conclusion

In the fuzzy environment, it may be possible to discuss the fuzzy decentralized or-
dering model with trapezoidal fuzzy numbers for fuzzy replacements order quantity.
In addition, we find that the optimal fuzzy replacement quantity Q̃∗

j=
(
q∗j , q∗j , q

∗
j , q

∗
j

)
is the special type of trapezoidal fuzzy number. Hence the optimal solution of our
stipulated model can be effective to meet the conventional decentralized ordering
model. Thus this fuzzy decentralized ordering model is practical and very useful in
the real world. The model presented here can be extended to include a multi-item
multi-level inventory model or true costs of transportation, like environmental costs,
or costs of return flow due to lack of demand (excess inventory) or customer returns.
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