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ABSTRACT. In this paper the direct product of t-norm (A, u)-fuzzy
subrings (ideals) has been discussed. We have proved that if the direct
product of two t-norm (A, p)-fuzzy subsets is a t-norm (A, p)-fuzzy subring
(ideal) then at least one of the ¢t-norm (A, w)-fuzzy subsets must be a ¢-
norm (), w)-fuzzy subring (ideal) and also we introduce the concept of
t-norm (A, p)-fuzzy subsemi-ring and t-norm (A, p)-fuzzy ideals of a semi-
ring which can be regarded as a generalization of fuzzy subsemi-ring and
fuzzy ideals and discuss some related properties.
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1. INTRODUCTION

The notions of fuzzy ideals were introduced by S-Abou-Zaid in 1991 [1, 2]. Using
the notation of a fuzzy subset introduced by Zadeh [19] , W. Liu [10] defined fuzzy
set and fuzzy ideals of a ring. The notion of fuzzy subgroup was introduced by A.
Rosenfeld [14] in his pioneering paper. Subsequently the definition of fuzzy subgroup
was generalized by Negoita and Ralescu [11] and by Anthony and Sherwood [3]
product of fuzzy subgroups were first defined by C. V. Negoita and D. A. Ralescu
[L1]. H. Sherwood [3] also studied product of fuzzy subgroups in a generalized form.
Ray [13] also obtained some results on product of fuzzy subgroups. Fuzzy ideals of a
ring were first introduced by Liu [17]. In this paper Liu [18] introduced the concept
of operations of fuzzy ideals of a ring. Here we have obtained a result relating to
direct product of fuzzy subrings (ideals). Bhakat and Das [8, 9] introduced the
concepts of (€, € Vq)-fuzzy groups and (€, € Vq)-fuzzy subring. Bingxue Yao
[7] introduced the concepts of (A, w)-fuzzy subring. We introduced the notion of
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t-norm (A, p)-fuzzy subsemi-rings. This is an extension of the result of Bingxue Yao
[7]. Tazid Ali [16] introduced the concepts of direct product of fuzzy subring. This
is an extension of the result of X. Arul Selvaraj, D. Sivakumar and B. Anitha [6].
We always assume that 0 < A < pu < 1.

2. PRELIMINARIES
In this section we recall some useful definitions and examples.

Definition 2.1 ([4, 5, 13]). A triangular norm or ¢-norm is a function ¢ : [0,1] x
[0,1] — [0, 1] satisfying the following conditions for each a,b, ¢, d, € [0, 1]:
(i) ¢(0,0) =0,t(a,1) =a
(ii) t(a,b) < t(c,d),whenever a < ¢,b < d;
(i) t(a,b) = (b, a);
(iv) (t(a,b).c) = t(a, (b, c)).
Example 2.2 ([1, 5]). A funcation ¢ : [0,1] x [0,1] — [0, 1] defined as t(a,b) = ab is
a t-norm.

Example 2.3 ([4, 5]). A funcation ¢ : [0, 1] x [0,1] — [0, 1] defined as t(a,b) = aAb
is a t-norm.

Example 2.4 ([4, 5]). A function ¢ : [0,1] x [0,1] — [0, 1] defined as
a if b=1,
t(a,b) = ¢ b if a=1,
0 otherwise

is a t-norm.

Definition 2.5 ([10]). By a fuzzy subset of a set X, we mean a function from X
into [0,1]. The set of all fuzzy subsets of X is called fuzzy power set of X and is
denoted by IX = [0,1]¥.

Definition 2.6 ([16]). A fuzzy subset A of a ring R is said to be a fuzzy subring of
RifVa,beR,

A(a —b) > A(a) AN A(b)

A(ab) > A(a) A A(b)
The set of all fuzzy subrings of R is denoted by I(R).

Definition 2.7 ([16]). A fuzzy subset A of a ring R is called a fuzzy ideal of R if
Va,b€eR,

Afa = b) > A(a) A A(D)

A(ab) = A(a) Vv A(b).
)

Definition 2.8 ([10]). Let A,B be fuzzy subsets of the sets X and Y respectively.
The product of A and B, denoted by A x B, is a fuzzy subset of X x Ydefined as
follows

(A x B)(z,y) = A(z) A B(y), V(z,y) € X x Y.

Definition 2.9. A non empty set R together with two binary operations “+” and
“” is said to be a semiring if
132
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(i) (R,+) is a monoid.

(ii) (R,-) is a semigroup.

(ii) a(b+¢) =ab+ac Va,b,c€ R.
(iv) (a+b)e=ac+bc, Y a,b,ce< R.

Definition 2.10. Let A be a fuzzy set on a set X. A level set A, on X for a € [0, 1]
is defined as A, = {x € X | A(z) > a}.

Definition 2.11. Let A be a fuzzy set of a semiring R. A is said to fuzzy subsemi-
ring (fuzzy ideal) if for all z,y € R

() Alx +3) > Ax) A A(y).

(ii) A(zy) = A(z) A A(y), (Alzy) = A(z) V A(y)).

Definition 2.12. Let A be a fuzzy subset of R. Then A is called a (A, p)-fuzzy
subsemi-ring of RifV z,y € R

(i) Alz+y) VA= Az)ANAy) Ap,

(ii) A(zy) VA > A(x) A A(y) A p.

3. ON DIRECT PRODUCT OF t-NORM (A, p)-FUZZY SUBRINGS

Based on the concepts of On direct product of (A, p)-fuzzy subrings introduced
by X. Arul Selvaraj, D. Sivakumar and B. Anitha [6]. We introduced ¢-norm (A, )
subrings. Let R be a ring with the zero element 0 and S be a ring with the zero
element 0. The product of R and S of t-norm (A, p), denoted by (R x S) V A, is
the set (R x S)V A= {t((r,s),un) | r € R,s € S}. Then (R x S) V A is a ring where
addition, multiplication and inverse are defined as
((r1,81) + (r2,82)) VA = t((r1 + 2, 51 + 52), 1)
(r1,81)(r2,82) VA = t((r17r2, s152), 1) and
—(r,s) VA =t((—r,—s), p).

Then zero element of (R x s) V Ais (0,0') A p.

Definition 3.1. By a t-norm (A, p)-fuzzy subset of a set X, we mean a function
from X into [0,1]. The set of all t-norm (A, p)-fuzzy subsets of X is called ¢-
norm (A, p)-fuzzy power set of X and is denoted by I;_porm (a, 1) (X) =0, 1]¥.

Definition 3.2. A t-norm (A, p)-fuzzy subset A of a ring R is said to be a t-
norm (A, p)-fuzzy subring of R if Va,b € R,

Ala—b)V A > H(H(Ala), A)), 1)

A(ab) V X > t(t(A(a), A(D)), 1)
The set of all t-norm (A, u)-fuzzy subrings of R is denoted by I;_porm (x, u)(R).

Lemma 3.3. If A is a t-norm (X, p)-fuzzy subring of a ring R, then
A0)V A > t(A(r),pn), YV r € R.

Proof. The proof is straightforward and omitted. O

Lemma 3.4. Let A € I;_yorm (x, p)(R). Then A is at-norm (X, p) fuzzy subrings
of R if and only if the level subset Ay is a subring of RV t € Im(u).

Proof. The proof is straightforward and omitted. O
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Definition 3.5. A t-norm (), p)-fuzzy subset A of aring R is called a t-norm (A, p)-
fuzzy ideal of R if Va,b € R,

Ala—Db) VA > t(t(A(a), A(b)), 1)

A(ab) vV A = t((A(a) V A(D)), 1)

Theorem 3.6. A t-norm (\, p)-fuzzy subset A of a ring R is a t-norm (X, p)-fuzzy
ideal of R if and only if the level subset Ay is an ideal of RV t € Im(A).

Proof. The proof is straightforward and omitted. O

Definition 3.7. Let A,B be t-norm (A, p)-fuzzy subsets of the sets X and Y
respectively. The product of A and B , denoted by (A x B) V A, is a t-norm (\, pu)-
fuzzy subset of (X x Y) V A defined as follows

((Ax B)(x,y)) VA = t(t((A(x), B(y))), n), ¥(z,y) € X X Y.

Theorem 3.8. Let A be a t-norm (A, p)-fuzzy subring of the ring R and B be a
t-norm (N, p)-fuzzy subring of the ring S. Then A x B is a t-norm (A, p)-fuzzy
subring of the ring R x S.

Proof. Let ((r1,s1), (r2,82)) VA € (R x S)V A. Then
((r1,81)(r2,82)) VA = t(((r1r2, s182)), ).

[(Ax B)((r1,s1) — (r2,82))] VA= [(A x B)(r1 — 72,81 — $2)] VA
t(A(r1 —r2), B(s1 — s2)), 1) = L(t(A(r1 — r2), p), L(B(s1 = s2), 11))
s A(r2), 1), t(B(s1), B(s2), w)) }s 1)
t(A(r1), B(s1), A(r2), B(s2)), 1t)

)(r1,51), (A x B)(r2, s2)), ).
Also

—
s
X
s3]

=

=

=
3

=
VA

&

=

—
=

V)
»

™)

NV A=[(Ax B)(rira, s182)] VA
), B o) = t(t(A(rir2), p), t(B(s182), 1))
A(ra), 1), t(B(s1), B(s2), 1))

s B(s1), A(r2), B(s2)), 1)

)(r1,81), (A X B)(r2, 52)), ).

(A,

Hence A x B is a t-norm w)-fuzzy subring of R x S. O

Theorem 3.9. Let A be a t-norm (N, p)-fuzzy ideal of the ring R and B be the
t-norm (A, p)-fuzzy ideal of the ring S. Then (A x B) is a t-norm (X, u)-fuzzy ideal
of the ring (R x S).

Proof. 1t is similar to the proof of Theorem 3.8. g

However if A and B are t-norm (A, p)-fuzzy subsets of R and S respectively, such
that A x B is a t-norm (A, u)-fuzzy subring (ideal) of R x S it is not necessarily true
that both A and B are t-norm (A, p)-fuzzy subrings (ideals) of R and S respectively
as is evident from the following example.
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Example 3.10. Consider X; = {.2,.3} and Xo = {.2,.3,.4} be a any set and
A=.1and g =.9. Let A and B be t-norm (\, p)-fuzzy subsets of X; and X,
respectively given by A = {(.2,.7),(.3,.6)} and B = {(.2,.8),(.3,.3),(.4,.7)}. The
t-norm (A, p)-fuzzy subset A x B of R x S is given by

AxB={((.2,.2),.7,((.2,.3),.7),((.2,.4),.7),((-3,.2),.6), ((.3,.3),.6), ((.3, .4), .6) }.

Then A x B is a t-norm (A, p)-fuzzy ideal of R x S but B is not a t-norm (A, u)-
fuzzy ideal of S as B; = {.3} is not an ideal of S. We will show that if A x B is
a t-norm (A, p)-fuzzy subring (ideal) of R x S then at least one of A and B is a
t-norm (A, p)-fuzzy subring (ideal) of R and S.

Theorem 3.11. Let A and B be the t-norm (N, p)-fuzzy subsets of R and S,
respectively. If (A x B) is a t-norm (A, p)-fuzzy subring of R x S, then at least one
of the following statements must hold.

(1) A(0) VA >t(B(s),p),V ses.
(2) B(O)VA >t(A(r),pn), Y reR.
Proof. Since R and S are rings, R x S is also a ring. Let A X B be a t-norm (A, p)-
fuzzy subring of R x S. By contraposition, suppose that none of the statements (1)
and (2) hold. Then we can find r € R and s € S such that A(r) V A > t(B(0), u)
and B(s) V A > t(A(0), u). Now
[((Ax B)(r,s)] VA =t(t(A(r), B(s)), p) = t(t(A(r), u), t )
> t(t(B(0'), ), t(A(0), 1)) = t(t(B(0'), A0)), p)
— (A x B)(0,0'),).
Thus (r,s) € (RxS), (0,0) is the zero of the ring Rx S and Ax B is a t-norm (\, u)-
fuzzy subring of R x S satisfying [(A x B)(r, s)] VA > t(((A x B)(0,0’)), u), which

contradicts the Lemma 3.3. Hence either A(0) VA > ¢(B(s), ), Vs € S or B(0') V A
> t(A(r),p),Y r € R. O

Theorem 3.12. Let A and B be t-norm (X, p)-fuzzy subsets of R and S, respec-
tively. If A x B is a t-norm (A, p)-fuzzy subring of R x S, then either A is a
t-norm (A, p)-fuzzy subring of R or B is a t-norm (A, u)-fuzzy subring of S.

Proof. Suppose A x B is a t-norm (A, p)-fuzzy subring of R x S. Then by Theorem
3.11 one of the following statements hold:

(i) A(0) VA >t(B(s),u),¥seS.

(ii) B(0') VA > t(A(r),p),V r € R.
Suppose (ii) holds. Since R and S are rings, R x S is also a ring with zero element
(0,0”). Let 2,y € R. Then (,0), (y,0") € RxS. Now using the property B(0')VA >
t(A(r), u),¥r € R, we have, Vz,y € R,

Az —y) VA =t(t(A(z — y), B(0)), ) = t(t(A(z — ), B(0' = 0')), 1)
(Ax B)(z —y,0"=0), 1) = t(((A x B)((2,0') = (y,0))), )

(A x B)(x,0'), (A x B)(y,0)), 1)
(A(z), B(0)), (A(y), B(0))), 1)
t(A(z), A(y)), p)-

= #((
> t((
£((
= t(
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Also,

A(zy) v A = t(t(A(zy), B(0')), ) = t(((A x B)(xy,0'0")), p)
t(((A x B)((x,0')(y, 0)), 1)

> H(t((A x B)(z,0'), (A x B)(y,0)), 1)
(t(t(A(x), B(0')), t(A(y), B(0))), 1)

(t(A(z), A(y)), 1)

Hence A is a t-norm (\, p)-fuzzy subring of R. Similarly we can show that, using
the property A(0) VA > t(B(s),p),¥ s € S, B is a t-norm (A, p)-fuzzy Subrlng of
S. O

Theorem 3.13. Let A and B be fuzzy subsets of R and S, respectively. If A x B is
a t-norm (N, p)-fuzzy ideal of R x S, then either A is a t-norm (A, p)-fuzzy ideal
of R or B is a t-norm (A, u)-fuzzy ideal of S.

=t
t

Proof. We have already shown that under the stated condition either A is a t-
norm (A, p)-fuzzy subring of R or B is a t-norm (\, p)-fuzzy subring of S. Suppose
Ais a t-norm (A, p)-fuzzy subring of R. We will show that A is a t-norm (X, pu)-
fuzzy ideal of R. Now using the property B(0') V A > t(A(r),u),r € R, we have,
Vr,y € R

A(zy) V A

(t(A(zy), B(0')), ) = t(((A x B)(xy,0'0)), u)
(((Ax B)((2,0")(y,0))), 1)
(((Ax B)((2,0") V (A x B)(y,0)), 1)
(since A x B is a fuzzy ideal of R x S)
t(((A(z) A B(0')) V (A(y) A B(0))), 1)
t(((A(z) vV A(y)), p)-
Hence A is a t-norm (A, p)-fuzzy ideal of R. O

4
4
4

Y

Corollary 3.14. Let Ay, As, ..., A, be t-norm (A, p)-fuzzy subsets of the rings
Ri1, Ry, ..., R, respectively. If Ay x Ay X ... X A, is a t-norm (A, p)-fuzzy sub-
ring(ideal) of Ry X Ry X ... X Ry, then at least for one i, A;(0;) VA > Ag(x) A u,
Ve € R, k=1,2,...,n where 0; denotes the zero element of R;.

Corollary 3.15. Let Ay, As,..., A, be t-norm (A, p)-fuzzy subsets of the rings
Ri, Ra, ..., Ry, respectively. If Ay x As X ... X Ay is a t-norm (X, p)-fuzzy sub-
ring(ideal) of Ry X Ry X ... X Ry, then at least for one i, A; is a t-norm (A, p)-fuzzy
subring of R;

4. t-NORM (A, @)-FUZZY SUBSEMI-RINGS

Based on the concepts of (A, p)-fuzzy group introduced by Bingxue Yao [7]. We
introduced t-norm (A, w)- subsemi-rings.

Definition 4.1. Let A be a fuzzy subset of R. Then A is called a t-norm (A, u)-fuzzy
subsemi-ring of Rif V z,y € R

(i) Az +y) VA > t(t(A(x), A(y)), 1),
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(i) A(zy) VA = t(t(A(z), A(y)), )

Remark 4.2. A fuzzy subsemi-ring (ideal) is t-norm (A, u)-fuzzy subsemi-ring
(ideal)with A = 0 and g = 0.9 but t-norm (A, p)-fuzzy ideal need not be a fuzzy
ideal.

Proposition 4.3. Let A be fuzzy set of R. Then A is at-norm (A, p)-fuzzy subsemi-
ring if and only if all nonempty Ay is a subsemi-ring of R for all a € (A, pl.

Proof. Let A be a t-norm (A, u)-fuzzy subsemi-ring of R. Let a € (A, p] and z,y €
Agy. Then A(z) > « and A(y) > «. Thus
Az +y) VA= t(A(z), A(y), n) = ta, a, p) = a,
and so z +y € A,. Now we have
Axy) VA = t(A(x), A(y), 1) = t(a, a, p) = a,

which implies that zy € A,. Therefore A, is a subsemi-ring R.

Conversely, let A, be subsemi-ring of R for all o € (A, p], If there exist x,y € R
such that A(z +vy) V A < t(A(z), A(y), ) = «, then A(x +y) < a (since o > ).
Hence z +y ¢ A, for z,y € A,, which contradicts the fact that A, is subsemi-ring
of R. Hence A(x +y) VA > t(A(x), A(y), ) for all z,y € R. Also

A(zy) VA > t(A(x), A(y), 1) > t(a, a, 1) = a.

In fact, suppose A(zy)VA < t(A(z), A(y), 1) = . Then A(zy) < asince z > a. Thus
xy ¢ A, for all x,y € A,. This is a contradiction. So A(zy) V A > t(A(z), A(y), 1)
Therefore A is a t-norm (A, p)-fuzzy subsemi-ring. O

Example 4.4. (Example of a t-norm (A, p)-fuzzy subsemi-ring which is not a fuzzy
subsemi-ring)
Let R be a semiring of positive rational numbers, and let A = 0.2 and p = 0.7

0.8 if =7
A(xz) =40.7 if z is an integer but x # 7
0.3 if z is rational

Clearly A is a (.2,.7)-fuzzy subsemi-ring. But A is not fuzzy subsemi-ring since
A(14) < t(A(T), A(T)).

Definition 4.5. Let A be a fuzzy subset of R. Then A is called a t-norm (A, u)-fuzzy
ideal of R if, V z,y € R

(i) Az +y) V> t(t(A(z), A(y)), 1),
(i) A(zy) VA > t((A(x) V Ay)), 1)-

Proposition 4.6. Let A be fuzzy set of R. Then A is a t-norm (A, w)-fuzzy ideal
of R if and only if non empty Ay is an ideal of R for all o € (X, p).

Proof. Let Abe at-norm (A, p)-fuzzy ideal of R. By Proposition 4.3 A, is a subsemi-
ring. Let x € Ay, y € R. A(zy) VA > t((A(z) V A(r)), ) > a. Thus A(zy) > «a.
Hence zy € A,. Similarly yz € A,. Hence A, is an ideal of R.
Conversely, let A, be an ideal of R for all « € (A, u|. By proposition 4.3, A(x +
y) VA > t(A(z), A(y), p.) If there exist z,y € R such that A(zy) VA < a =
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t((A(z) V A(y)), ) < a, then A(x) V A(y) > o and A(zy) < a. It follows that
x € Ay or y € A, and zy ¢ A,. This is a contradiction since A, is an ideal.
Therefore A is a t-norm (A, p)-fuzzy ideal. O

Theorem 4.7. Let f: Ry — Ry be a epimorphism of semirings. Let B be a fuzzy
subset of Ry. Then B is a t-norm (A, p)-fuzzy ideal (fuzzy subsemi-ring) of R if
and only if f~Y(B) is t-norm (X, u)-fuzzy ideal (fuzzy subsemi-ring) of Ry where
[f~H(B)](z) = B(f(x))Vz € Ry.
Proof. Let B be a t-norm (A, p)-fuzzy ideal of Ry. Then
STHB) (w1 + 22) VA = B(f(z1 4 22) VA) = B(f(#1) + f(z2)) V A
> t(t(B(f (1)), B(f(x2))), 1)
= t(t(fH(B)(x1), fH(B)(@2)), 1)
and
FTHB)(1a2) VA = B(f(x1.22)) VA = B(f(21).f(22)) V A
> t(B(f(z1) vV B(x2)), 1)
= t((f7H(B)(x1) V [TH(B)(x2)), 1)
for all z1,x9 € R. Therefore f~1(B) is a t-norm (\, u)-fuzzy ideal of R;.

Conversely suppose that f~1(B) is a t-norm (A, u)-fuzzy ideal of Ry. Let y1, 92 €
R,. Since f is onto, there exist 21,22 € R such that f(z1) = y; and f(a2) = ys.
Then

By +y2) VA = B(f(z1 +22)) VA= f1(B)(x1 +x2) VA
> H(t(f~H(B) (@), fH(B)(22)), 1)
=t(B(f(z1) V B(f(22)), 1)
= t(t(B(y1), B(y2)), 1)

and
B(yiy2) VA = B(f(z1.22)) VA = fH(B)(x1.22) VA
> t((f7H(B) (1) V fTH(B)(22)), )
= t((B(f(21)) V B(f(x2))), 1)
= t((B(y1) V B(y2)); 1)-
Therefore B is a t-norm (A, p)-fuzzy ideal of Rs. O
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