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Abstract. In this paper, we introduce the notion of the degree to
which an L-fuzzy set is semicompact in an L-topological space by means
of the implication operator of L. An L-fuzzy set G is semicompact if
and only if its semicompactness degree scom(G) = >. Some properties of
semicompactness degree are investigated.
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1. Introduction

The notion of semicompactness [2] was introduced in L-topological spaces by
Kudri in [4]. However Kudri’s semicompactness relies on the structure of L and L is
required to be completely distributive. Subsequently Shi introduced a new definition
of semicompactness in L-topological spaces by means of semiopen L-sets and their
inequality (see [5]). This definition does not rely on the structure of basis lattice L
and no distributivity in L is required.

For the above notions of semicompactness, an L-fuzzy set is either semicompact
or not. Considering fuzziness degree of semicompactness, we shall introduce the
concept of the fuzzy semicompactness degree of an L-fuzzy set in L-topological
spaces by means of the implication operator of L.

2. Preliminaries

Throughout this paper, (L,
∨

,
∧

,′ ) is a complete De Morgan frame [3]. The
smallest element and the largest element in L are denoted by ⊥ and >, respectively.

In a complete De Morgan frame L, there exists a binary operation 7→. Explicitly
the implication is given by

a 7→ b =
∨
{c ∈ L | a ∧ c ≤ b}.
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It is easy to check the following properties of 7→.
(1) (a 7→ b) ≥ c ⇔ a ∧ c ≤ b;
(2) a 7→ b = > ⇔ a ≤ b;
(3) a 7→ (

∧
i bi) =

∧
i (a 7→ bi);

(4) (
∨

i ai) 7→ b =
∧

i (ai 7→ b);
(5) (a 7→ c) ∧ (c 7→ b) ≤ a 7→ b;
(6) a ≤ b ⇒ c 7→ a ≤ c 7→ b.
(7) a ≤ b ⇒ b 7→ c ≤ a 7→ c.
(8) (a 7→ b) ∧ (c 7→ d) ≤ a ∧ c 7→ b ∧ d.

For a nonempty set X, LX denotes the set of all L-fuzzy sets on X. a denotes
the constant L-fuzzy sets on X taking the value a.

An L-topological space is a pair (X, τ), where τ is a subfamily of LX which
contains ⊥, > and is closed for any suprema and finite infima. Each member of τ is
called an open L-set and its quasi-complement is called a closed L-set.

For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ. 2[Φ]

denotes the set of all countable subfamilies of Φ.

Definition 2.1 ([1]). An L-set G in an L-space (X, τ) is called semiopen if there
exists A ∈ T such that A ≤ G ≤ cl(A). G is called semiclosed if G′ is semiopen.

Definition 2.2. Let (X, τ1) and (Y, τ2) be two L-spaces. A map f : (X, τ1) → (Y, τ2)
is said to be

(1) semicontinuous [1] if f←L (G) is semiopen in (X, τ1) for every open L-set G
in (Y, τ2).

(2) irresolute [8] if f←L (G) is semiopen in (X, τ1) for every semiopen L-set G in
(Y, τ2).

(3) strong irresolute [5] if f←L (G) is open in (X, τ1) for every semiopen L-set G
in (Y, τ2).

Definition 2.3 ([7]). An L-fuzzy inclusion on X is a mapping ⊂̃ : LX × LX → L
defined by the equality ⊂̃(A,B) =

∧
x∈X

(A′(x) ∨B(x)).

In the sequel, we shall write [A⊂̃B] instead of ⊂̃(A,B). It is evident that for
ordinary subsets A and B of a set X, if A ⊆ B, then [A⊂̃B] = 1, and [A⊂̃B] = 0
otherwise. Moreover we have the following properties:

(1) [A⊂̃B] ∧ [A⊂̃C] = [A⊂̃B ∧ C];
(2) [A ∨B⊂̃C] = [A⊂̃C] ∧ [B⊂̃C].

Lemma 2.4 ([6, 7]). Let f : X → Y be a set map and f→L : LX → LY be the
extension of f (see [3]). Then for any P ⊆ LY , we have that∧

y∈Y

(
f→L (G)′(y) ∨

∨
B∈P

B(y)

)
=
∧

x∈X

(
G′(x) ∨

∨
B∈P

f←L (B)(x)

)
,

i.e., [
f→L (G)⊂̃

∨
P
]

=
[
G⊂̃f←L

(∨
P
)]

.
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Definition 2.5 ([5]). Let (X, τ) be an L-topological space. An L-set G ∈ LX is
called (countably) semicompact if for every (countable) family U of semiopen L-sets,
it follows that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
,

i.e., [
G⊂̃

∨
U
]
≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
.

Definition 2.6 ([5]). Let (X, τ) be an L-topological space. An L-set G ∈ LX is said
to have the semi-Lindelöf property or be a semi-Lindelöf L-set if for every family U
of semiopen L-sets, it follows that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2[U]

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

Definition 2.7 ([7]). Let (X, τ) be an L-topological space and G ∈ LX . The
compactness degree com(G) of G is defined as

com(G) =
∧
U∈2τ

∧
x∈X

(
G′ ∨

∨
A∈U

A

)
(x) 7→

∨
V∈2(U)

∧
x∈X

(
G′ ∨

∨
A∈V

A

)
(x)


=
∧
U∈2τ

[G⊂̃∨U
]
7→

∨
V∈2(U)

[
G⊂̃

∨
V
] .

Definition 2.8 ([7]). Let (X, τ) be an L-topological space and G ∈ LX . The
countable compactness degree ccom(G) of G is defined as

ccom(G) =
∧
U∈2[τ]

∧
x∈X

(
G′ ∨

∨
A∈U

A

)
(x) 7→

∨
V∈2(U)

∧
x∈X

(
G′ ∨

∨
A∈V

A

)
(x)


=

∧
U∈2[τ]

[G⊂̃∨U
]
7→

∨
V∈2(U)

[
G⊂̃

∨
V
] .

Definition 2.9 ([7]). Let (X, τ) be an L-topological space and G ∈ LX . The degree
Lp(G) to which G has the Lindelöf property is defined as

Lp(G) =
∧
U∈2τ

∧
x∈X

(
G′ ∨

∨
A∈U

A

)
(x) 7→

∨
V∈2[U]

∧
x∈X

(
G′ ∨

∨
A∈V

A

)
(x)


=
∧
U∈2τ

[G⊂̃∨U
]
7→

∨
V∈2[U]

[
G⊂̃

∨
V
] .
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3. The semicompactness degree of L-sets

Let τs denote the set of all semiopen L-sets in τ . Based on Definitions 2.5 and
2.6, we can naturally introduce the notion of semicompactness degree as follows:

Definition 3.1. Let (X, τ) be an L-topological space and G ∈ LX . The semicom-
pactness degree scom(G) of G is defined as

scom(G) =
∧
U∈2τs

∧
x∈X

(
G′ ∨

∨
A∈U

A

)
(x) 7→

∨
V∈2(U)

∧
x∈X

(
G′ ∨

∨
A∈V

A

)
(x)


=

∧
U∈2τs

[G⊂̃∨U
]
7→

∨
V∈2(U)

[
G⊂̃

∨
V
] .

Obviously G is semicompact if and only if scom(G) = >.
Since an open L-set is semiopen, we easily obtain the the following result.

Theorem 3.2. Let (X, τ) be an L-topological space and G ∈ LX . Then scom(G) ≤
com(G).

The next lemma is obvious.

Lemma 3.3. Let (X, τ) be an L-topological space and G ∈ LX . Then scom(G) ≥ a
if and only if for any U ∈ 2τs ,

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]
.

By Lemma 3.3 we can easily obtain the following characterization of the semi-
compactness degree.

Theorem 3.4. Let (X, τ) be an L-topological space and G ∈ LX . Then

scom(G) =
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]

for any U ∈ 2τs

 .

Now we consider some properties of semicompactness degree.

Theorem 3.5. For any G, H ∈ LX , scom(G ∨H) ≥ scom(G) ∧ scom(H).
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Proof. By Theorem 3.4 we have

scom(G ∨H)

=
∨a ∈ L :

[
G ∨H⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G ∨H⊂̃

∨
V
]
,∀U ∈ 2(τs)


=
∨{

a ∈ L :
[
G⊂̃

∨
U
]
∧
[
H⊂̃

∨
U
]
∧ a

≤
∨
V∈2(U)

[
G⊂̃

∨
V
]
∧
[
H⊂̃

∨
V
]
,∀U ∈ 2(τs)

}

≥
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]∧

∨a ∈ L :
[
H⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
H⊂̃

∨
V
]
,∀U ∈ 2(τs)


= scom(G) ∧ scom(H).

This completes the proof. �

Theorem 3.6. For any G ∈ LX and any semiclosed L-set H, scom(G ∧ H) ≥
scom(G).

Proof. By Theorem 3.4 we have

scom(G ∧H)

=
∨a ∈ L :

[
G ∧H⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G ∧H⊂̃

∨
V
]
,∀U ∈ 2(τs)


=
∨a ∈ L :

[
G⊂̃H ′ ∨

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃H ′ ∨

∨
V
]
,∀U ∈ 2(τs)


≥ scom(G).

This completes the proof. �

Theorem 3.7. Let f : X → Y be a set map, τ1 be an L-topology on X, τ2 be an
L-topology on Y , and f : (X, τ1) → (Y, τ2) be irresolute. Then scom (f→L (G)) ≥
scom(G).

Proof. Let (τ1)s and (τ2)s denote respectively the sets of all semiopen L-sets in τ1

and τ2. By means of Lemma 2.4, we can obtain the following inequality.
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scom(f→L (G))

=
∧

U∈2((τ2)s)

∧
y∈Y

(
f→L (G)′(y) ∨

∨
A∈U

A(y)

)
7→

∨
V∈2(U)

∧
y∈Y

(
f→L (G)′(y) ∨

∨
A∈V

A(y)

)
=

∧
U∈2((τ2)s)

∧
x∈X

(
G′(x) ∨

∨
A∈U

f←L (A)(x)

)
7→

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

f←L (A)(x)

)
≥ scom(G).

This completes the proof. �

Analogously we can prove the following two results.

Theorem 3.8. Let f : X → Y be a set map, τ1 be an L-topology on X, τ2 be an
L-topology on Y , and f : (X, τ1) → (Y, τ2) be semicontinuous. Then com (f→L (G)) ≥
scom(G).

Theorem 3.9. Let f : X → Y be a set map, τ1 be an L-topology on X, τ2 be an L-
topology on Y , and f : (X, τ1) → (Y, τ2) be strong irresolute. Then scom (f→L (G)) ≥
com(G).

4. The countable semicompactness degree of L-sets

Analogous to the last section, we can naturally introduce the notion of countable
semicompactness degree and the degree to which an L-set has the semi-Lindelöf
property as follows:

Definition 4.1. Let (X, τ) be an L-topological space and G ∈ LX . The countable
semicompactness degree sccom(G) of G is defined as

sccom(G) =
∧
U∈2[τs]

∧
x∈X

(
G′ ∨

∨
A∈U

A

)
(x) 7→

∨
V∈2(U)

∧
x∈X

(
G′ ∨

∨
A∈V

A

)
(x)


=

∧
U∈2[τs]

[G⊂̃∨U
]
7→

∨
V∈2(U)

[
G⊂̃

∨
V
] .

Definition 4.2. Let (X, τ) be an L-topological space and G ∈ LX . The degree
slp(G) to which G has semi-Lindelöf property is defined as

slp(G) =
∧
U∈2τs

∧
x∈X

(
G′ ∨

∨
A∈U

A

)
(x) 7→

∨
V∈2[U]

∧
x∈X

(
G′ ∨

∨
A∈V

A

)
(x)


=

∧
U∈2τs

[G⊂̃∨U
]
7→

∨
V∈2[U]

[
G⊂̃

∨
V
] .

Obviously G is countably semicompact if and only if sccom(G) = >, and G has
the semi-Lindelöf property if and only if slp(G) = >.

Analogous to Theorem 3.2 we easily obtain the the following result.
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Theorem 4.3. Let (X, τ) be an L-topological space and G ∈ LX . Then sccom(G) ≤
ccom(G), slp(G) ≤ Lp(G).

The next theorem is obvious.

Theorem 4.4. Let (X, τ) be an L-topological space and G ∈ LX . Then scom(G) =
sccom(G) ∧ slp(G).

Analogous to the last section we can easily obtain the following some results.

Theorem 4.5. Let (X, τ) be an L-topological space and G ∈ LX . Then

sccom(G) =
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2(U)

[
G⊂̃

∨
V
]

for any U ∈ 2[τs]

 .

and

slp(G) =
∨a ∈ L :

[
G⊂̃

∨
U
]
∧ a ≤

∨
V∈2[U]

[
G⊂̃

∨
V
]

for any U ∈ 2τs

 .

Theorem 4.6. For any G, H ∈ LX , we have

sccom(G ∨H) ≥ sccom(G) ∧ sccom(H) and slp(G ∨H) ≥ slp(G) ∧ slp(H).

Theorem 4.7. For any G ∈ LX and any semiclosed L-set H, we have

sccom(G ∧H) ≥ sccom(G) and slp(G ∧H) ≥ slp(G).

Theorem 4.8. Let f : X → Y be a set map, τ1 be an L-topology on X, τ2 be an
L-topology on Y , and f : (X, τ1) → (Y, τ2) be irresolute. Then sccom (f→L (G)) ≥
sccom(G) and slp (f→L (G)) ≥ slp(G).

Theorem 4.9. Let f : X → Y be a set map, τ1 be an L-topology on X, τ2 be an L-
topology on Y , and f : (X, τ1) → (Y, τ2) be semicontinuous. Then ccom (f→L (G)) ≥
sccom(G) and Lp (f→L (G)) ≥ slp(G).

Theorem 4.10. Let f : X → Y be a set map, τ1 be an L-topology on X, τ2 be an L-
topology on Y , and f : (X, τ1) → (Y, τ2) be strong irresolute. Then sccom (f→L (G)) ≥
ccom(G) and slp (f→L (G)) ≥ Lp(G).
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