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ABSTRACT. In this paper, we introduce the notion of the degree to
which an L-fuzzy set is semicompact in an L-topological space by means
of the implication operator of L. An L-fuzzy set G is semicompact if
and only if its semicompactness degree scom(G) = T. Some properties of
semicompactness degree are investigated.
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1. INTRODUCTION

The notion of semicompactness [2] was introduced in L-topological spaces by
Kudri in [4]. However Kudri’s semicompactness relies on the structure of L and L is
required to be completely distributive. Subsequently Shi introduced a new definition
of semicompactness in L-topological spaces by means of semiopen L-sets and their
inequality (see [5]). This definition does not rely on the structure of basis lattice L
and no distributivity in L is required.

For the above notions of semicompactness, an L-fuzzy set is either semicompact
or not. Considering fuzziness degree of semicompactness, we shall introduce the
concept of the fuzzy semicompactness degree of an L-fuzzy set in L-topological
spaces by means of the implication operator of L.

2. PRELIMINARIES

Throughout this paper, (L,\/,\,) is a complete De Morgan frame [3]. The
smallest element and the largest element in L are denoted by | and T, respectively.

In a complete De Morgan frame L, there exists a binary operation —. Explicitly
the implication is given by

aHb:\/{cEL|a/\c§b}.
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It is easy to check the following properties of .

2) a—b=T < a<b

3) a’_’(/\ibi):/\z‘ (a— bi);
2) (V,0) — b= A a; — b
5) (a—c)A(c—b) <ar b
6) a<b=>cr—a<cr—b.
7)
)

For a nonempty set X, LX denotes the set of all L-fuzzy sets on X. a denotes
the constant L-fuzzy sets on X taking the value a.

An L-topological space is a pair (X, 7), where 7 is a subfamily of LX which
contains _L, T and is closed for any suprema and finite infima. Each member of 7 is
called an open L-set and its quasi-complement is called a closed L-set.

For a subfamily ® C LX, 2(®) denotes the set of all finite subfamilies of ®. 2%
denotes the set of all countable subfamilies of ®.

Definition 2.1 ([1]). An L-set G in an L-space (X, 7) is called semiopen if there
exists A € T such that A < G < cl(A). G is called semiclosed if G’ is semiopen.

Definition 2.2. Let (X, 1) and (Y, 72) be two L-spaces. Amap [ : (X,71) — (Y, 72)
is said to be

(1) semicontinuous [1] if f; (G) is semiopen in (X, 71) for every open L-set G

in (Y, 7).

(2) irresolute [8] if f; (G) is semiopen in (X, 71) for every semiopen L-set G in
(Y, 72).

(3) strong irresolute [5] if f; (G) is open in (X, 71) for every semiopen L-set G
in (Y, 72).

Definition 2.3 ([7]). An L-fuzzy inclusion on X is a mapping C : LX x LX — L
defined by the equality C(A, B) = A (4'(z) Vv B(z)).

rzeX

In the sequel, we shall write [ACB] instead of C(A, B). It is evident that for
ordinary subsets A and B of a set X, if A C B, then [ACB] = 1, and [ACB] =0
otherwise. Moreover we have the following properties:

(1) [ACB] A[ACC] = [ACB A CJ;

(2) [AV BCC] = [ACC] A [BCC).

Lemma 2.4 ([6, 7]). Let f : X — Y be a set map and f;* : LX — LY be the
extension of f (see [3]). Then for any P C LY, we have that

A (fF(G)’(y)V V B(?J)) = A <G'(fﬂ)v V ff(B)(w)>,

yey BeP zeX BeP

ie.,

[ff(G)&\/P} - [G&f; (\/P)] .

92



Zheng Fang/Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 1, 91-98

Definition 2.5 ([7]). Let (X,7) be an L-topological space. An L-set G € L¥ is
called (countably) semicompact if for every (countable) family I of semiopen L-sets,
it follows that

/\ (G’(m)\/ \/ A(m)) < \/ /\ (G'(m)\/ \/ A(x)),
zeX Aelu vea) zeX Aey
ce\Vu| <\ e\
ve)

Definition 2.6 ([7]). Let (X, 7) be an L-topological space. An L-set G € L is said
to have the semi-Lindel6f property or be a semi-Lindelof L-set if for every family U
of semiopen L-sets, it follows that

A (G’(x)\/ \/ A@)) <V (G’(a:)\/ \/ A@)).

rzeX AeU vealul zeX Aey

Definition 2.7 ([7]). Let (X,7) be an L-topological space and G € L. The
compactness degree com(G) of G is defined as

com(@) = A [ A\ (G'\/\/A)(x)H V A <G’\/\/A>(x)

Uue2™ \zeX AeU vea) zeX AeV

- A [Ga\/u}H \/ [G&\/v}

uezr yea)

Definition 2.8 ([7]). Let (X,7) be an L-topological space and G € L. The
countable compactness degree ccom(G) of G is defined as

ccom(@) = N | A (G’\/ \ A) @- \V A (G’\/ \/ A) (z)

ue2ltl \zeXx AeU veaW) zeX Aey
= A {[eeVu]~ V [ce\Y]
ue2l] ve2)

Definition 2.9 ([7]). Let (X, 7) be an L-topological space and G € LX. The degree
Lp(G) to which G has the Lindeldf property is defined as

Lp@) = A | A\ (G'v\/A)(I)H V A (G’\/\/A)(x)

ue2™ \zeX Aeu vealul zeX Aey

_ ué\y [G& \/u} = v¥w [G& \/ V]
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3. THE SEMICOMPACTNESS DEGREE OF L-SETS

Let 74 denote the set of all semiopen L-sets in 7. Based on Definitions 2.5 and
2.6, we can naturally introduce the notion of semicompactness degree as follows:

Definition 3.1. Let (X, 7) be an L-topological space and G € LX. The semicom-
pactness degree scom(G) of G is defined as

scom(@) = N | A (G’\/ \V A) @ V. A <G’\/ \/ A) ()

Ue2s \zex Acu Veaw) zeX Acy

= A (leeVu]~ V [ce\Y]

Ue2Ts Ve

Obviously G is semicompact if and only if scom(G) = T.
Since an open L-set is semiopen, we easily obtain the the following result.

Theorem 3.2. Let (X,7) be an L-topological space and G € L. Then scom(G) <
com(G).

The next lemma is obvious.

Lemma 3.3. Let (X,7) be an L-topological space and G € L. Then scom(G) > a
if and only if for any U € 27+,

G\ u|nas< v6\2/<u> [E=AVA%E

By Lemma 3.3 we can easily obtain the following characterization of the semi-
compactness degree.

Theorem 3.4. Let (X, 7) be an L-topological space and G € LX. Then

scom(G):\/ aEL:[Ga\/U}/\aS \/ [G&\/V} for any U €27

vea)
Now we consider some properties of semicompactness degree.

Theorem 3.5. For any G, H € L, scom(G V H) > scom(G) A scom(H).
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Proof. By Theorem 3.4 we have

scom(G V H)

:\/ aEL:[G\/Ha\/U]/\aS \/ [GVHé\/V]»VUGQ(Ts)
yeaw)

:\/{aEL:{G&\/U}/\[HE\/L[}/\a
<V [ee\v|a[HE\ V] e}

ve2)
>\/{acL:[Ge\ulra< \/ [GE\/V]in
ye2t)
\Saer: [mEVuU|ra< \/ [HE\/ V] vu 2™
yeat)
= scom(G) A scom(H).
This completes the proof. O

Theorem 3.6. For any G € LX and any semiclosed L-set H, scom(G A H) >
scom(Q).

Proof. By Theorem 3.4 we have

scom(G A H)

=\{acr:|Grue\Julna< \/ [GrHE/ V] U2

ve2)

=\/JacL: [G&H’v\/u] na< \/ [G&H’v\/v} VU € 2
yea)
> scom(G).

This completes the proof. O

Theorem 3.7. Let f : X — Y be a set map, 71 be an L-topology on X, 75 be an
L-topology on Y, and f : (X, m1) — (Y, 72) be irresolute. Then scom (f;’(G)) >
scom(Q).

Proof. Let (11)s and (72)s denote respectively the sets of all semiopen L-sets in 7y
and 1. By means of Lemma 2.4, we can obtain the following inequality.
95



Zheng Fang/Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 1, 91-98

scom(f7"(G))
= A {/\ (fF(G)’(y)v \/ A(y)) -V A (fi(G)’(yw \/ A(y))}
ue2((v2)s) | yey Aeu vealt) yey Aey

= A {/\ (G'(:r)v \V f{(A)(m)) -V A (G’(x)v V ff(A)(:r)>}

ue2l(m2)s) | z€X AeUu vead) zeX Aev
> scom(G).
This completes the proof. O

Analogously we can prove the following two results.

Theorem 3.8. Let f: X — Y be a set map, 71 be an L-topology on X, 75 be an
L-topology onY , and f : (X, 1) — (Y, 12) be semicontinuous. Then com (f;”(G)) >
scom(G).

Theorem 3.9. Let f: X — Y be a set map, 71 be an L-topology on X, 7o be an L-
topology on'Y, and f : (X, 1) — (Y, 72) be strong irresolute. Then scom (f;"(G)) >
com(G).

4. THE COUNTABLE SEMICOMPACTNESS DEGREE OF L-SETS

Analogous to the last section, we can naturally introduce the notion of countable
semicompactness degree and the degree to which an L-set has the semi-Lindelof
property as follows:

Definition 4.1. Let (X,7) be an L-topological space and G' € LX. The countable
semicompactness degree sccom(G) of G is defined as

sccom(G) = N\ [ A (G’v \V A) @\ A (G’v \V A) (z)

Ue2ltsl \zeX AeU veaW) zeX Aey
= A ([eeVu]~ V [ce\V]
uec2lrsl ye2t)

Definition 4.2. Let (X,7) be an L-topological space and G € LX. The degree
slp(G) to which G has semi-Lindelof property is defined as

sp@) = N | A\ <G’\/\/A>(x)»—> VA <G’v\/A>(a:)

Uue2ms \ze€X AelUd veolul zeX A€ey

= A [eeVul~ V [ce\/V]
Uears Vel
Obviously G is countably semicompact if and only if sccom(G) = T, and G has
the semi-Lindelof property if and only if slp(G) = T.
Analogous to Theorem 3.2 we easily obtain the the following result.
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Theorem 4.3. Let (X,7) be an L-topological space and G € L*. Then sccom(G) <
ccom(G), slp(G) < Lp(G).

The next theorem is obvious.

Theorem 4.4. Let (X,7) be an L-topological space and G € LX. Then scom(G) =
sccom(G) Aslp(G).

Analogous to the last section we can easily obtain the following some results.

Theorem 4.5. Let (X, 7) be an L-topological space and G € LX. Then

sccom(G) = \/ a€L: [G& \/U} ANa < \/ [G& \/V] for any U e 207
vea)

and

Slp(G):\/ aeL:[G&\/U}/\ag \/ [G&\/V} for any U € 27

vealu]
Theorem 4.6. For any G, H € LX, we have
sccom(G V H) > sccom(G) Asccom(H) and slp(GV H) > slp(G) Aslp(H).
Theorem 4.7. For any G € LX and any semiclosed L-set H, we have
sccom(G A H) > sccom(G) and slp(G A H) > slp(G).

Theorem 4.8. Let f : X — Y be a set map, 71 be an L-topology on X, T5 be an
L-topology on Y, and f : (X,71) — (Y, 72) be irresolute. Then sccom (f;”(G)) >
sccom(G) and slp (f77(G)) > slp(G).

Theorem 4.9. Let f: X — Y be a set map, 71 be an L-topology on X, 1o be an L-
topology on Y, and f : (X, 7)) — (Y, 72) be semicontinuous. Then ccom (f;(G)) >
sccom(G) and Lp (f;7(G)) > slp(G).

Theorem 4.10. Let f : X — Y be a set map, 71 be an L-topology on X, 7o be an L-
topology onY , and f : (X, ) — (Y, 72) be strong irresolute. Then sccom (f7(G)) >
ccom(G) and slp (f;”(G)) > Lp(G).
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