Annals of Fuzzy Mathematics and Informatics Volume 2, No. 1, (July 2011), pp. 91- 98 ISSN 2093-9310 http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Semicompactness degree in *L*-topological spaces

Zheng Fang

Received 25 January 2011; Accepted 7 March 2011

ABSTRACT. In this paper, we introduce the notion of the degree to which an *L*-fuzzy set is semicompact in an *L*-topological space by means of the implication operator of *L*. An *L*-fuzzy set *G* is semicompact if and only if its semicompactness degree scom $(G) = \top$. Some properties of semicompactness degree are investigated.

2010 AMS Classification: 03E72, 54A40, 54D30

Keywords: *L*-topology, semiopen *L*-set, semicompactness, semicompactness degree.

Corresponding Author: Zheng Fang (fangzhengdq-10163.com)

1. INTRODUCTION

The notion of semicompactness [2] was introduced in L-topological spaces by Kudri in [4]. However Kudri's semicompactness relies on the structure of L and L is required to be completely distributive. Subsequently Shi introduced a new definition of semicompactness in L-topological spaces by means of semiopen L-sets and their inequality (see [5]). This definition does not rely on the structure of basis lattice Land no distributivity in L is required.

For the above notions of semicompactness, an L-fuzzy set is either semicompact or not. Considering fuzziness degree of semicompactness, we shall introduce the concept of the fuzzy semicompactness degree of an L-fuzzy set in L-topological spaces by means of the implication operator of L.

2. Preliminaries

Throughout this paper, $(L, \bigvee, \bigwedge, ')$ is a complete De Morgan frame [3]. The smallest element and the largest element in L are denoted by \bot and \top , respectively.

In a complete De Morgan frame L, there exists a binary operation \mapsto . Explicitly the implication is given by

$$a \mapsto b = \bigvee \{ c \in L \mid a \land c \le b \}.$$

It is easy to check the following properties of \mapsto .

- (1) $(a \mapsto b) \ge c \Leftrightarrow a \land c \le b;$
- (2) $a \mapsto b = \top \Leftrightarrow a \le b;$
- (3) $a \mapsto (\bigwedge_i b_i) = \bigwedge_i (a \mapsto b_i);$
- $\begin{array}{l} (4) \quad (\bigvee_i a_i) \mapsto b = \bigwedge_i (a_i \mapsto b); \\ (5) \quad (a \mapsto c) \land (c \mapsto b) \leq a \mapsto b; \end{array}$
- (5) $(a \mapsto c) \land (c \mapsto b) \leq a \mapsto b$ (6) $a \leq b \Rightarrow c \mapsto a \leq c \mapsto b$.
- (7) $a \le b \Rightarrow b \mapsto c \le a \mapsto c$.
- (8) $(a \mapsto b) \land (c \mapsto d) \le a \land c \mapsto b \land d.$

For a nonempty set X, L^X denotes the set of all *L*-fuzzy sets on X. <u>*a*</u> denotes the constant *L*-fuzzy sets on X taking the value a.

An *L*-topological space is a pair (X, τ) , where τ is a subfamily of L^X which contains $\underline{\perp}, \underline{\top}$ and is closed for any suprema and finite infima. Each member of τ is called an open *L*-set and its quasi-complement is called a closed *L*-set.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ . $2^{[\Phi]}$ denotes the set of all countable subfamilies of Φ .

Definition 2.1 ([1]). An *L*-set *G* in an *L*-space (X, τ) is called semiopen if there exists $A \in \mathcal{T}$ such that $A \leq G \leq cl(A)$. *G* is called semiclosed if *G'* is semiopen.

Definition 2.2. Let (X, τ_1) and (Y, τ_2) be two *L*-spaces. A map $f : (X, \tau_1) \to (Y, \tau_2)$ is said to be

- (1) semicontinuous [1] if $f_L^{\leftarrow}(G)$ is semiopen in (X, τ_1) for every open L-set G in (Y, τ_2) .
- (2) irresolute [8] if $f_L^{\leftarrow}(G)$ is semiopen in (X, τ_1) for every semiopen *L*-set *G* in (Y, τ_2) .
- (3) strong irresolute [5] if $f_L^{\leftarrow}(G)$ is open in (X, τ_1) for every semiopen L-set G in (Y, τ_2) .

Definition 2.3 ([7]). An *L*-fuzzy inclusion on *X* is a mapping $\widetilde{\subset} : L^X \times L^X \to L$ defined by the equality $\widetilde{\subset}(A, B) = \bigwedge_{x \in X} (A'(x) \lor B(x)).$

In the sequel, we shall write $[A \widetilde{\subset} B]$ instead of $\widetilde{\subset} (A, B)$. It is evident that for ordinary subsets A and B of a set X, if $A \subseteq B$, then $[A \widetilde{\subset} B] = 1$, and $[A \widetilde{\subset} B] = 0$ otherwise. Moreover we have the following properties:

- (1) $[A\widetilde{\subset}B] \wedge [A\widetilde{\subset}C] = [A\widetilde{\subset}B \wedge C];$
- (2) $[A \lor B \widetilde{\subset} C] = [A \widetilde{\subset} C] \land [B \widetilde{\subset} C].$

Lemma 2.4 ([6, 7]). Let $f : X \to Y$ be a set map and $f_L^{\to} : L^X \to L^Y$ be the extension of f (see [3]). Then for any $\mathcal{P} \subseteq L^Y$, we have that

$$\bigwedge_{y \in Y} \left(f_L^{\to}(G)'(y) \lor \bigvee_{B \in \mathcal{P}} B(y) \right) = \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right),$$

i.e.,

$$\left[f_L^{\to}(G)\widetilde{\subset}\bigvee\mathcal{P}\right] = \left[G\widetilde{\subset}f_L^{\leftarrow}\left(\bigvee\mathcal{P}\right)\right].$$
92

Definition 2.5 ([5]). Let (X, τ) be an *L*-topological space. An *L*-set $G \in L^X$ is called (countably) semicompact if for every (countable) family \mathcal{U} of semiopen *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right),$$

i.e.,

$$\left[G\widetilde{\subset}\bigvee\mathcal{U}\right]\leq\bigvee_{\mathcal{V}\in2^{(\mathcal{U})}}\left[G\widetilde{\subset}\bigvee\mathcal{V}\right].$$

Definition 2.6 ([5]). Let (X, τ) be an *L*-topological space. An *L*-set $G \in L^X$ is said to have the semi-Lindelöf property or be a semi-Lindelöf *L*-set if for every family \mathcal{U} of semiopen *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Definition 2.7 ([7]). Let (X, τ) be an *L*-topological space and $G \in L^X$. The compactness degree com(*G*) of *G* is defined as

$$\operatorname{com}(G) = \bigwedge_{\mathcal{U} \in 2^{\tau}} \left(\bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{U}} A \right)(x) \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{V}} A \right)(x) \right)$$
$$= \bigwedge_{\mathcal{U} \in 2^{\tau}} \left(\left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right).$$

Definition 2.8 ([7]). Let (X, τ) be an *L*-topological space and $G \in L^X$. The countable compactness degree $\operatorname{ccom}(G)$ of G is defined as

$$\operatorname{ccom}(G) = \bigwedge_{\mathcal{U}\in 2^{[\tau]}} \left(\bigwedge_{x\in X} \left(G' \lor \bigvee_{A\in\mathcal{U}} A \right)(x) \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{x\in X} \left(G' \lor \bigvee_{A\in\mathcal{V}} A \right)(x) \right)$$
$$= \bigwedge_{\mathcal{U}\in 2^{[\tau]}} \left(\left[G\widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \left[G\widetilde{\subset} \bigvee \mathcal{V} \right] \right).$$

Definition 2.9 ([7]). Let (X, τ) be an *L*-topological space and $G \in L^X$. The degree Lp(G) to which G has the Lindelöf property is defined as

$$\begin{split} \mathrm{Lp}(G) &= \bigwedge_{\mathcal{U} \in 2^{\tau}} \left(\bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{U}} A \right)(x) \mapsto \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{V}} A \right)(x) \right) \\ &= \bigwedge_{\mathcal{U} \in 2^{\tau}} \left(\left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right). \end{split}$$

$$\begin{split} & 93 \end{split}$$

3. The semicompactness degree of L-sets

Let τ_s denote the set of all semiopen *L*-sets in τ . Based on Definitions 2.5 and 2.6, we can naturally introduce the notion of semicompactness degree as follows:

Definition 3.1. Let (X, τ) be an *L*-topological space and $G \in L^X$. The semicompactness degree scom(G) of G is defined as

$$\operatorname{scom}(G) = \bigwedge_{\mathcal{U} \in 2^{\tau_s}} \left(\bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{U}} A \right)(x) \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{V}} A \right)(x) \right)$$
$$= \bigwedge_{\mathcal{U} \in 2^{\tau_s}} \left(\left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right).$$

Obviously G is semicompact if and only if $scom(G) = \top$. Since an open L-set is semiopen, we easily obtain the following result.

Theorem 3.2. Let (X, τ) be an L-topological space and $G \in L^X$. Then $scom(G) \leq com(G)$.

The next lemma is obvious.

Lemma 3.3. Let (X, τ) be an L-topological space and $G \in L^X$. Then $\operatorname{scom}(G) \ge a$ if and only if for any $\mathcal{U} \in 2^{\tau_s}$,

$$\left[G\widetilde{\subset}\bigvee\mathcal{U}\right]\wedge a\leq\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}}\left[G\widetilde{\subset}\bigvee\mathcal{V}\right].$$

By Lemma 3.3 we can easily obtain the following characterization of the semicompactness degree.

Theorem 3.4. Let (X, τ) be an L-topological space and $G \in L^X$. Then

$$\operatorname{scom}(G) = \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \quad for \ any \ \ \mathcal{U} \in 2^{\tau_s} \right\}.$$

Now we consider some properties of semicompactness degree.

Theorem 3.5. For any $G, H \in L^X$, $\operatorname{scom}(G \lor H) \ge \operatorname{scom}(G) \land \operatorname{scom}(H)$.

Proof. By Theorem 3.4 we have

$$\begin{split} \operatorname{scom}(G \lor H) \\ &= \bigvee \left\{ a \in L : \left[G \lor H \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \lor H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{(\tau_s)} \right\} \\ &= \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land \left[H \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \\ &\leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \land \left[H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{(\tau_s)} \right\} \\ &\geq \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right\} \land \\ &\qquad \bigvee \left\{ a \in L : \left[H \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{(\tau_s)} \right\} \\ &= \operatorname{scom}(G) \land \operatorname{scom}(H). \end{split}$$

This completes the proof.

Theorem 3.6. For any $G \in L^X$ and any semiclosed L-set H, $scom(G \wedge H) \ge scom(G)$.

Proof. By Theorem 3.4 we have

$$\begin{split} &\operatorname{scom}(G \wedge H) \\ &= \bigvee \left\{ a \in L : \left[G \wedge H \widetilde{\subset} \bigvee \mathcal{U} \right] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \wedge H \widetilde{\subset} \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{(\tau_s)} \right\} \\ &= \bigvee \left\{ a \in L : \left[G \widetilde{\subset} H' \vee \bigvee \mathcal{U} \right] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} H' \vee \bigvee \mathcal{V} \right], \forall \mathcal{U} \in 2^{(\tau_s)} \right\} \\ &\geq \operatorname{scom}(G). \end{split}$$

This completes the proof.

Theorem 3.7. Let $f : X \to Y$ be a set map, τ_1 be an L-topology on X, τ_2 be an L-topology on Y, and $f : (X, \tau_1) \to (Y, \tau_2)$ be irresolute. Then scom $(f_L^{\to}(G)) \ge$ scom(G).

Proof. Let $(\tau_1)_s$ and $(\tau_2)_s$ denote respectively the sets of all semiopen L-sets in τ_1 and τ_2 . By means of Lemma 2.4, we can obtain the following inequality.

$$\begin{split} & \operatorname{scom}(f_{L}^{\rightarrow}(G)) \\ &= \bigwedge_{\mathcal{U}\in 2^{((\tau_{2})_{S})}} \left\{ \bigwedge_{y\in Y} \left(f_{L}^{\rightarrow}(G)'(y) \lor \bigvee_{A\in\mathcal{U}} A(y) \right) \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{y\in Y} \left(f_{L}^{\rightarrow}(G)'(y) \lor \bigvee_{A\in\mathcal{V}} A(y) \right) \right\} \\ & = \bigwedge_{\mathcal{U}\in 2^{((\tau_{2})_{S})}} \left\{ \bigwedge_{x\in X} \left(G'(x) \lor \bigvee_{A\in\mathcal{U}} f_{L}^{\leftarrow}(A)(x) \right) \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{x\in X} \left(G'(x) \lor \bigvee_{A\in\mathcal{V}} f_{L}^{\leftarrow}(A)(x) \right) \right\} \\ & \geq \operatorname{scom}(G). \end{split}$$

This completes the proof.

$$\Box$$

Analogously we can prove the following two results.

Theorem 3.8. Let $f : X \to Y$ be a set map, τ_1 be an L-topology on X, τ_2 be an L-topology on Y, and $f : (X, \tau_1) \to (Y, \tau_2)$ be semicontinuous. Then $\operatorname{com}(f_L^{\to}(G)) \ge \operatorname{scom}(G)$.

Theorem 3.9. Let $f: X \to Y$ be a set map, τ_1 be an L-topology on X, τ_2 be an L-topology on Y, and $f: (X, \tau_1) \to (Y, \tau_2)$ be strong irresolute. Then scom $(f_L^{\to}(G)) \ge$ com(G).

4. The countable semicompactness degree of L-sets

Analogous to the last section, we can naturally introduce the notion of countable semicompactness degree and the degree to which an *L*-set has the semi-Lindelöf property as follows:

Definition 4.1. Let (X, τ) be an *L*-topological space and $G \in L^X$. The countable semicompactness degree sccom(G) of G is defined as

$$\operatorname{sccom}(G) = \bigwedge_{\mathcal{U}\in 2^{[\tau_s]}} \left(\bigwedge_{x\in X} \left(G' \lor \bigvee_{A\in\mathcal{U}} A \right)(x) \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{x\in X} \left(G' \lor \bigvee_{A\in\mathcal{V}} A \right)(x) \right)$$
$$= \bigwedge_{\mathcal{U}\in 2^{[\tau_s]}} \left(\left[G\widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \left[G\widetilde{\subset} \bigvee \mathcal{V} \right] \right).$$

Definition 4.2. Let (X, τ) be an *L*-topological space and $G \in L^X$. The degree slp(G) to which G has semi-Lindelöf property is defined as

$$slp(G) = \bigwedge_{\mathcal{U} \in 2^{\tau_s}} \left(\bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{U}} A \right)(x) \mapsto \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G' \lor \bigvee_{A \in \mathcal{V}} A \right)(x) \right)$$
$$= \bigwedge_{\mathcal{U} \in 2^{\tau_s}} \left(\left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \right).$$

Obviously G is countably semicompact if and only if $\operatorname{sccom}(G) = \top$, and G has the semi-Lindelöf property if and only if $\operatorname{slp}(G) = \top$.

Analogous to Theorem 3.2 we easily obtain the following result.

Theorem 4.3. Let (X, τ) be an L-topological space and $G \in L^X$. Then $\operatorname{sccom}(G) \leq \operatorname{ccom}(G)$, $\operatorname{slp}(G) \leq \operatorname{Lp}(G)$.

The next theorem is obvious.

Theorem 4.4. Let (X, τ) be an L-topological space and $G \in L^X$. Then $\operatorname{scom}(G) = \operatorname{sccom}(G) \wedge \operatorname{slp}(G)$.

Analogous to the last section we can easily obtain the following some results.

Theorem 4.5. Let (X, τ) be an L-topological space and $G \in L^X$. Then

$$\operatorname{sccom}(G) = \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \text{ for any } \mathcal{U} \in 2^{[\tau_s]} \right\}$$

and

$$\operatorname{slp}(G) = \bigvee \left\{ a \in L : \left[G \widetilde{\subset} \bigvee \mathcal{U} \right] \land a \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \left[G \widetilde{\subset} \bigvee \mathcal{V} \right] \text{ for any } \mathcal{U} \in 2^{\tau_s} \right\}.$$

Theorem 4.6. For any $G, H \in L^X$, we have

 $\operatorname{sccom}(G \lor H) \ge \operatorname{sccom}(G) \land \operatorname{sccom}(H) \text{ and } \operatorname{slp}(G \lor H) \ge \operatorname{slp}(G) \land \operatorname{slp}(H).$

Theorem 4.7. For any $G \in L^X$ and any semiclosed L-set H, we have

 $\operatorname{sccom}(G \wedge H) \ge \operatorname{sccom}(G) \text{ and } \operatorname{slp}(G \wedge H) \ge \operatorname{slp}(G).$

Theorem 4.8. Let $f: X \to Y$ be a set map, τ_1 be an L-topology on X, τ_2 be an L-topology on Y, and $f: (X, \tau_1) \to (Y, \tau_2)$ be irresolute. Then $\operatorname{sccom}(f_L^{\to}(G)) \geq \operatorname{sccom}(G)$ and $\operatorname{slp}(f_L^{\to}(G)) \geq \operatorname{slp}(G)$.

Theorem 4.9. Let $f: X \to Y$ be a set map, τ_1 be an L-topology on X, τ_2 be an L-topology on Y, and $f: (X, \tau_1) \to (Y, \tau_2)$ be semicontinuous. Then $\operatorname{ccom}(f_L^{\to}(G)) \geq \operatorname{sccom}(G)$ and $\operatorname{Lp}(f_L^{\to}(G)) \geq \operatorname{slp}(G)$.

Theorem 4.10. Let $f : X \to Y$ be a set map, τ_1 be an L-topology on X, τ_2 be an L-topology on Y, and $f : (X, \tau_1) \to (Y, \tau_2)$ be strong irresolute. Then $\operatorname{sccom}(f_L^{\to}(G)) \ge \operatorname{ccom}(G)$ and $\operatorname{slp}(f_L^{\to}(G)) \ge \operatorname{Lp}(G)$.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [2] C. Dorsett, Semi-compact R_1 and product spaces, Bull. Malays. Math. Sci. Soc. 3(2) (1980) 15–19.
- U. Höhle, S.E. Rodabaugh, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers (Boston/ Dordrecht/ London) 3 (1999) 91–116.
- [4] S. R. T. Kudri, Semicompactness and S^{*}-closedness in L-fuzzy topological spaces, Fuzzy Sets and Systems 109 (2000) 223–231.
- [5] F. G. Shi, Semicompactness in L-topological spaces, Int. J. Math. Math. Sci. 2005 (2005) 1869–1878.
- [6] F. G. Shi, A new definition of fuzzy compactness, Fuzzy Sets and Systems 158 (2007) 1486– 1495.

- [7] F. G. Shi, Measures of countable fuzzy compactness and fuzzy Lindelöf property, Bull. Allahabad Math. Soc. 25 (2010) 47–56.
- [8] T. H. Yalvac, Semi interior and semi closure of fuzzy sets. J. Math. Anal. Appl. 132 (1988) 356–364.

ZHENG FANG (fangzhengdq-10163.com) – Editorial Department of Journal, Daqing Normal University, Daqing, Heilongjiang 163712, P.R. China