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Abstract. Two laws of randomness are necessary and sufficient to
describe a normal fuzzy number. Trying to impose one single probability
law on an interval on which a possibility law has been defined is absolutely
illogical. This is the reason why the attempts of establishing a principle
of consistency between probability and possibility have not yielded any
fruitful result till this day. We are hereby nullifying all heuristic works
that had been published in the last forty five years in this context the
world over. For a normal fuzzy number [a, b, c], the partial presence of an
element x in the interval [a, c] is either a probability distribution function
F (x) defined in a ≤ x < b, or a complementary probability distribution
function (1−G(x)) where G(x) is a probability distribution function defined
in b ≤ x < c. In other words, possibility is indeed probability in disguise.
Thus fuzziness is measure theoretic on its own right. We need not define a
fuzzy measure, in the entire interval [a, c], which is not actually a measure
in the classical sense. We need to correct this mathematical blunder as
early as possible to fetch the mathematics of fuzziness back into the right
path.
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1. Introduction

Lotfi Zadeh’s discovery of the concept of fuzziness forty five years ago as a com-
petitor of randomness was an epoch making event in the history of mathematics.
However, into the mathematics of fuzziness there entered a blunder right at the start.
Researchers had tried to infer a probability law from a given possibility law, and
also to infer a possibility law from a given probability law. In course of time, it was
concluded that an inference of that kind is not possible. Hence it was decided that
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probability and possibility are not conceptually related. Three probability - possi-
bility consistency principles have meanwhile been proposed, none of them actually
leading to any definite conclusion. Indeed had there been any logic in trying to infer
one single probability law from a given possibility law, there should have been just
one such consistency principle, and not three. In the process, it was declared that
fuzzy sets do not conform to measure theoretic formalisms because of non-fulfillment
of the additivity postulate required to define a measure, and therefore a definition
of a fuzzy measure was constructed. What had followed thereafter sometimes defied
earthly logic. All sorts of weird mathematical formalisms started to appear in the
literature thereafter. Mathematics should follow logic; it must never be the other
way around. In the case of defining a fuzzy measure, logic has unfortunately been
forced to follow mathematics. In the meantime, the mathematics fraternity got di-
vided into two distinct groups of people: those who work on fuzzy mathematics,
and those who do not believe a word of it. A time came when the nonbelievers of
fuzzy mathematics started to accept that the mathematics of fuzziness defining the
fuzzy measure was here to stay, and that nothing can be done about it anyway. It
is time that we look into the matters newly, and reconstruct the theory of fuzzy
sets correctly. Using an operation that we had named superimposition of sets [3],
we have been successful in establishing that two, and not one, probability laws are
needed to define one possibility law [2]. We have further been successful in showing
that our perspective of looking at a normal fuzzy number helps in fuzzy arithmetic
too ([8, 12]). We have recently recently shown that the correct randomness-fuzziness
consistency principle [5] should actually be

Poss [x] = θ Prob [a ≤ y ≤ x] + (1− θ) {1− Prob [b ≤ y ≤ x]}
where θ = 1 if a ≤ x ≤ b, and θ = 0 if b ≤ x ≤ c. So, possibility of [X = x] for
a ≤ x ≤ c is expressible as nothing but a probability only, either as Prob [a ≤ X ≤ x]
or as {1 − Prob [b ≤ X ≤ x]}, whichever is the case. We have used the term prob-
ability in the broader measure theoretic sense, and not in the narrow statistical
sense, here. We have very recently started this process of correcting the aforesaid
mathematical blunder. We understand that the process of making the earlier work-
ers to see reason would not be easy. Hundreds of books and thousands of research
articles have meanwhile been published the world over. Disproving mathematical
results is not a new phenomenon. However, to challenge the world of fuzzy math-
ematics single handedly is a very tough proposition indeed as we have been made
to realize in recent years. This sort of a thing has probably never happened earlier
in the history of mathematics. After our perspective starts to get accepted, a lot
of materials published till this day would have to be automatically nullified. Two
opposing concepts can not be simultaneously correct. It should be quite obvious to
the readers that there have been objections in accepting our findings from those who
have built up their kind of mathematics based on certain incorrect assumptions. In
fact, we have used the concept of set superimposition in recognizing periodic pat-
terns ([10, 11, 13]). Only then could we confidently speak out that if the application
of that operation was found to be correct, how the theory itself could be wrong!
An incorrect concept has been prevailing for so many years. The new generation of
workers would hopefully realize that in the name of mathematics of fuzziness all sorts
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of illogical things have entered into the literature. We hope, workers would come
forward to remove the unwanted formalisms from the theory of fuzzy sets to pull it
from the quagmire it is currently in. In fact, there is yet another much more serious
blunder in the theory of fuzzy sets [6]. It is said that intersection of a fuzzy set and
its complement is not null! It looks very strange that the fuzzy mathematics frater-
nity accepted this illogical statement, and the mathematics of fuzziness proceeded
accordingly. Everyone concerned started to build up some formalisms based on this
strange idea. Logically speaking, how can it be true that anything and its comple-
ment can have something in common? Obviously the definition of complementation
of a fuzzy set has to be incorrect. However, this definition of complementation has
been used in so many publications that it not really feasible to count them. As we
have said earlier, here too logic has been forced to follow mathematics. It is really
very surprising to see that till this day no one has objected to this wrong notion.
In fact, this definition of complement of a fuzzy set has been used in software too
causing a mess in the application of the concept of fuzziness.

In this article, we are going to discuss how to define a normal fuzzy number
properly. We would desist from referring to any earlier work of any other author
because we are in a process of correcting a blunder, and citing mistakes would in
fact be an unnecessary burden. We are hereby nullifying all other works done in this
context by all previous workers the world over. We insist that a mistake remains a
mistake even though it is believed to be true for long forty five years. Mathematics
should be based on pure logic; it must not be based on popular beliefs. In the
next section, we would discuss about randomness. We need to explain why in our
randomness . fuzziness consistency principle, we have mentioned that we have used
the term probability in the broader measure theoretic sense. Thereafter we would
proceed to show how to define a normal fuzzy number in its true perspective. We
shall thereafter with the help of numerical examples show how such probability laws
can be found. We shall further discuss the construction of a fuzzy number using
probabilistic interpretations.

2. Definition of Randomness

Randomness is one term which is very widely misunderstood [4]. Ask a person
from Statistics the definition of randomness and he would, in most cases, reply that
a random variable is one that is associated with some probability law of errors. How-
ever, from the measure theoretic standpoint, if we can associate a density function
f(x) with the variable X defined in some interval [a, b] such that

∫ b

a

f(x)dx = 1,

then X is said to be a random variable with reference to f(x). In other words, if
a variable is random in the measure theoretic sense, it need not be random in the
statistical sense. For example, ∫ 1

0

2xdx = 1,

and therefore x here is random by definition, but not necessarily probabilistic follow-
ing some probability law of errors in the statistical sense. We would first like to quote
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some excerpts from some standard publications how people define randomness. We
would like to state that the confusions are there not for nothing.

Rohatgi and Saleh [14], in page 41 of their book, have defined the randomness
related matters in the following way. ‘Let (Ω, S) be a sample space. A finite, single
valued function that maps Ω into R is called a random variable if the inverse images
under X of all Borel sets in R are events, that is, if X−1(B) = {ω : X(ω) ∈ B} ∈ S,
for all B ∈ B. Here B is a Borel Field.’ They have added the remark that the
notion of probability does not enter into the definition of a random variable. They
have of course mentioned further, in page 43, that in practice random variables are
of interest only when they are defined on a probability space. Rohatgi and Saleh
have directly noted that randomness does not necessarily imply that a probability
law must be associated with it. As we have said, if a variable is random, in the
measure theoretic sense it need not actually be probabilistic in the statistical sense.

We would like to quote the following lines from another standard text book on
Probability and Measure Theory. Ash and Doleans-Dade [1], in page 5 of their
book, have defined a probability measure as follows: ‘A measure on a σ-field F is a
nonnegative, extended real valued function Ψ on F such that whenever A1, A2, · · · ,
form a finite or countably infinite collection of disjoint sets in F , we have Ψ(∪An) =∑

Ψ(An), the union and summation being taken over n. If Ψ(Ω) = 1, Ψ is called
a probability measure. A measure space with a triple (Ω,F ,Ψ) where Ω is a set,
F is a σ-field of subsets of Ω, and Ψ is a measure on F . If Ψ is a probability
measure, (Ω,F , Ψ) is called a probability space. From the same book, from pages
173−−174, we would like to quote some lines again. ’Intuitively, a random variable
is a quantity that is measured in connection with a random experiment.’ In other
words, they have also retorted like Rohatgi and Saleh that randomness is however,
intuitively though occurs with reference to a probability law of errors. According to
them, a random variable X on a probability space (Ω, F , P ) is a Borel measurable
function from Ω to R, the set of real numbers. The distribution function of a
random variable X is a function given by F (x) = P{ω : X(ω) ≤ x}, for real
x. Since for a < b, F (b) − F (a) = P{ω : a < X(ω) ≤ b} = PX(a, b], F is a
distribution function corresponding to the Lebesgue - Stieltjes measure PX . Under
a caption Fundamental Statistical Concepts, Gibbons and Chakraborti [9] in page
9 of their book, have clearly mentioned as follows. ’A sample space is the set of
all possible outcomes of a random experiment. A random variable is a set function
whose domain is the elements of a sample space on which a probability function
has been defined and whose range is the set of all real numbers. Alternatively, X
is a random variable if for every real number x there exists a probability that the
value assumed by the random variable does not exceed x, denoted by P (X ≤ x)
or FX(x), and called the cumulative distribution function of X. It may be noted
that Gibbons and Chakraborti have however not said anything about the measure
theoretic matters regarding the definition of a random variable. The book concerned
was not written in measure theoretic language anyway. Bhat [7] has gone one step
further. In his book, in pages 1 – 2, he has mentioned very clearly as follows. ’Ideal
situation envisaged in a deterministic model hardly exists in everyday life. Also the
model may not fit the observation well because some essential features have been
ignored. Many times improvement can be achieved by introducing random variables

60



Hemanta K. Baruah/Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 1, 57–68

or chance factors in the model.’ In other words, he seems to agree with Gibbons and
Chakraborti that random variables occur due to chance factors. In the same book,
in page 7, Bhat has defined Measurable Functions as follows. ’Let X be a mapping
from Ω to R such that X−1(B) ∈ A, for any Borel set B of R. Then X is said to be
A-measurable function or a random variable. The class {X−1(B), B ∈ B}, where
B is the Borel Field, is a σ-field and is called the σ-field induced by X.’ It is clear
that Bhat has made the flaw of giving two different definitions of randomness. On
one hand he says that randomness is synonymous to chance factors, while on the
other hand he cites the measure theoretic definition where there is no reference
of a chance factor. By now, it should be clear as to why there is a confusion
regarding the very definition of randomness. In the measure theoretic definition of
randomness, the question of probability simply does not come. This has been clearly
noted by Rohatgi and Saleh, though according to them in practice the question
of randomness appears with reference to a probability space. Ash and Doleans-
Dade have started with the comment that intuitively a random variable is connected
with a random experiment, though the measure theoretic definition does not really
require that. Gibbons and Chakraborti have simply declared that a random variable
must be associated with probability, without which as a condition it would not be
called a random variable. Bhat has plainly given two contradictory explanations of
randomness. If the literature is searched fully, many such opposing and confusing
statements regarding randomness would be found. This has created a lot of confusion
among the readers. We would like to state it as follows. First, the names probability
measure and probability space are to be understood properly. Indeed, had these two
things would have been named without using the word probability, there would not
have been any confusion. Most people do not try to understand that a probability
measure does not have anything to do with probability at all. We shall hereafter
use the term randomness in the measure theoretic sense. Further, we shall use the
terminology probability distribution to mean the distribution function with reference
to a density function stated above.

3. The Operation of Set Superimposition

We have discussed the operation of set superimposition in our earlier works al-
ready. However for easy readability of this article we are going to discuss about it
in short. The operation of set superimposition is expressed as follows: if the set A
is superimposed over the set B, we get

A(S)B = (A−B) ∪ (A ∩B)(2) ∪ (B −A)

where S represents the operation of superimposition, and (A ∩ B)(2) represents
the elements of (A ∩ B) occurring twice, provided that (A ∩ B) is not void. We
have defined this operation keeping in view the fact that when we overwrite, the
overwritten portion looks darker for such a double representation.
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It can be seen that for n fuzzy intervals [a1, b1]
1
n , [a2, b2]

1
n , · · · , [an, bn]

1
n all with

membership value equal to 1
n everywhere, we shall have

[a1, b1]
1
n (S)[a2, b2]

1
n (S) · · · (S)[an, bn]

1
n

= [a(1), a(2)]
1
n ∪ [a(2), a(3)]

2
n ∪ · · · ∪ [a(n−1), a(n)]

n−1
n

∪ [a(n), b(1)](1) ∪ [b(1), b(2)]
n−1

n ∪ · · · ∪ [b(n−2), b(n−1)]
2
n

∪ [b(n−1), b(n)]
1
n ,

where, for example, [b(1), b(2)]
n−1

n represents the uniformly fuzzy interval [b(1), b(2)]
with membership n−1

n in the entire interval, a(1), a(2), · · · , a(n) being values of a1,
a2, · · · , an arranged in increasing order of magnitude, and b(1), b(2), · · · , b(n) being
values of b1, b2, · · · , bn arranged in increasing order of magnitude. Thus for the

fuzzy intervals [x1, y1]
1
n , [x2, y2]

1
n , · · · , [xn, yn]

1
n , all with uniform membership 1

n ,

the values of membership of the superimposed fuzzy intervals are 1
n , 2

n , · · · , n−1
n , 1,

n−1
n , · · · , 2

n , and 1
n . These values of membership considered in two halves as

(0, 1
n , 2

n , · · · , n−1
n , 1),

and
(1, n−1

n , · · · , 2
n , 1

n , 0),

would suggest that they can define an empirical distribution and a complementary
empirical distribution on x1, x2, · · · , xn and y1, y2, · · · , yn, respectively. In other
words, for realizations of the values of x(1), x(2), · · · , x(n) in increasing order and of
y(1), y(2), · · · , y(n) again in increasing order, we can see that if we define

Ψ1(x) =





0 if x < x(1),
r−1
n if x(r−1) ≤ x ≤ x(r), r = 2, 3, · · · , n,

1 if x ≥ x(n),

Ψ2(y) =





1 if y < y(1),
1− r−1

n if y(r−1) ≤ y ≤ y(r), r = 2, 3, · · · , n,
0 if y ≥ y(n),

then the Glivenko - Cantelli Lemma on Order Statistics assures that

Ψ1(x) →
∏

1
[α, x], α ≤ x ≤ β,

Ψ2(y) → 1−
∏

2
[β, y], β ≤ y ≤ γ,

where
∏

1[α, x], α ≤ x ≤ β and Ψ2(y), β ≤ y ≤ γ are two probability distributions.
Thus

Poss [x] = θ Prob [a ≤ y ≤ x] + (1− θ){1− Prob [b ≤ y ≤ x]},
where

θ =
{

1 if a ≤ x ≤ b,
0 if b ≤ x ≤ c.
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Figure 1. Membership Function: Example 1

And therefore there is no need to define a fuzzy measure; fuzziness is measure the-
oretic in the classical sense already. We therefore propose to define a normal fuzzy
number as follows. If Φ1(x) and (1 − Φ2(x)) are two independent probability dis-
tribution functions defined in [α, β] and [β, γ] respectively, then the membership
function of a normal fuzzy number N = [α, β, γ] can be expressed as

µN (x) =





Φ1(x) if α ≤ x ≤ β,
Φ2(x) if β ≤ x ≤ γ,
0 otherwise.

This definition does not defy the one given by Lotfi Zadeh. In addition, this definition
embodies the necessary and sufficient mathematical explanation of partial presence
of an element in the fuzzy set. Here we are defining probability distribution functions
with reference to the measure theoretic definition of randomness. There should be no
confusion in that respect. As we have said earlier, we are using the term probability
here as it is used in defining a probability measure. This need not have any relation
with error variables and such other statistical matters.

4. Numerical Examples

Let the fuzzy membership function (Example 1) in a particular case be [4]

µ(x) =





0 if x < 7.08683,

8.0802x−57.263
0.737+0.0802x if 7.08683 ≤ x ≤ 7.25,

58.743−7.9202x
0.743+0.0798x if 7.25 ≤ x ≤ 7.416865,

0 if x > 7.416865.

The possibility distribution in this case is as shown in Figure 1. Observe that in
the denominators in both of the cases, the multipliers of x are much smaller in
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comparison with the multipliers of x in the numerators. The values of x being small,
the possibility distribution looks nearly triangular which is however not the case.
Here,

L(x) = 8.0802x−57.263
0.737+0.0802x

is the Left Reference Function and

R(x) = 58.743−7.9202x
0.743+0.0798x

is the Right Reference Function as defined by Dubois and Prade. L(x) is non-
decreasing, increasing from 0 to 1, and R(x) is non-increasing, decreasing from 1 to
0, for 7.08683 ≤ x ≤ 7.25 and 7.25 ≤ x ≤ 7.416865 respectively. According to our
findings,

F (x) = L(x) = 8.0802x−57.263
0.737+0.0802x

is a distribution function for 7.08683 ≤ x ≤ 7.25, satisfying all the properties of a
distribution function and

G(x) = 1−R(x) = 1− 58.743−7.9202x
0.743+0.0798x

is another distribution function for 7.25 ≤ x ≤ 7.416865. The density for F (x) is
given by

f(x) = dF (x)/dx = 10.5476
(0.737+0.0802x)2 , 7.08683 ≤ x ≤ 7.25.

Similarly, the density for G(x) is given by

g(x) = dG(x)/dx = 10.5724
(0.743+0.0798x)2 , 7.25 ≤ x ≤ 7.416865.

This means the value of ∫
10.5476

(0.737+0.0802x)2 dx,

the integral taken from 7.08683 to x, 7.08683 ≤ x ≤ 7.25, is the possibility of
occurrence of x, which is nothing but Dubois - Prade’s L(x). Similarly, the value of

1−
∫

10.5476
(0.737+0.0802x)2 dx,

the integral taken from 7.25 to x, 7.25 ≤ x ≤ 7.416865, is the possibility of occurrence
of x, which is nothing but Dubois - Prade’s R(x). Therefore,

Poss [x] =

{
Prob [7.08683 ≤ y < x] if 7.08683 ≤ x ≤ 7.25,

1− Prob [7.25 ≤ y < x] if 7.25 ≤ x ≤ 7.416865.

Therefore possibility is measure theoretic, with one probability space defining the
interval for the Left Reference Function and another probability space defining the
interval for the Right Reference Function. In other words, two probability laws, one
on the interval [7.08683, 7.25] and the other on the interval [7.25, 7.416865] would
define one possibility law on the triad [7.08683, 7.25, 7.416865]. It is obvious that if we
try to associate one probability law to get some kind of consistency with a possibility
law on the same interval [7.08683, 7.416865], we would fail in our attempt. Let us
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Figure 2. Membership Function: Example 2

consider another case (Example 2). Let the membership function in a particular
case be

µ(x) =





0 if x < 760.38,

−110.3+4
√

x
8 if 760.38 ≤ x ≤ 874.68,

126.3−4
√

x
8 if 874.68 ≤ x ≤ 996.98,

0 if x > 996.98.

The possibility distribution in this case is as shown in Figure 2. This diagram too,
like the earlier one, looks nearly triangular, which is however not the case. In this
case, the spreads from 760.38 to 874.68, and from 874.68 to 996.98, are small in
comparison with the values. This is why, here too a nearly triangular shape has
been seen. Here,

L(x) = −110.3+4
√

x
8

is the Left Reference Function and

R(x) = 126.3−4
√

x
8

is the Right Reference Function as defined by Dubois and Prade. L(x) is non-
decreasing, increasing from 0 to 1, and R(x) is non-increasing, decreasing from 1 to
0, for 760.38 ≤ x ≤ 874.68 and 874.68 ≤ x ≤ 996.98 respectively. According to our
findings,

F (x) = L(x) = −110.3+4
√

x
8

is a distribution function for 760.38 ≤ x ≤ 874.68, satisfying all the properties of a
distribution function and

G(x) = 1−R(x) = 1− 126.3−4
√

x
8
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Dates Minimum Temperature Maximum Temperature
in Degrees Celsius in Degrees Celsius

May 4 24.3 33.2
May 5 23.8 34.1
May 6 18.8 33.4
May 7 24.8 34.5
May 8 23.9 34.0

Table 1. Data on Maximum and Minimum Temperature

is another distribution function for 874.68 ≤ x ≤ 996.98. The density for F (x) is
given by

f(x) = dF (x)/dx = 1
4
√

x
, 760.38 ≤ x ≤ 874.68.

Similarly, the density for G(x) is given by

g(x) = dG(x)/dx = 1
4
√

x
, 874.68 ≤ x ≤ 996.98.

This means the value of ∫
1

4
√

x
dx,

the integral taken from 760.38 to x, 760.38 ≤ x ≤ 874.68, is the possibility of
occurrence of x, which is nothing but Dubois - Prade’s L(x). Similarly, the value of

1−
∫

1
4
√

x
dx,

the integral taken from 874.68 to x, 874.68 ≤ x ≤ 996.98, is the possibility of
occurrence of x, which is nothing but Dubois - Prade’s R(x). Therefore,

Poss [x] =

{
Prob [760.38 ≤ y < x] if 760.38 ≤ x ≤ 874.68,

1− Prob [874.68 ≤ y < x] if 874.68 ≤ x ≤ 996.98.

In other words, two probability laws, one on the interval [760.38, 874.68] and the
other on the interval [874.68, 996.98] would define one possibility law on the triad
[760.38, 874.68, 996.98]. We would like to mention that randomness as used in the
two examples here is in the measure theoretic sense. What we mean is: we are not
saying that some kind of statistical chance factor must be associated with the random
variables used here. The reverse can also be true. We are going to cite an example
for that. The following data in Table 1 are minimum and maximum temperatures
for five consecutive days, May 4, 5, 6, 7 and 8, 2010, in the city of Guwahati†. We
are going to use only five data points as an exercise only. Obviously for an actual
construction, we would need a lot more data, and that can be taken care of in actual
situations to construct fuzzy numbers wherever necessary. These values are due
to chance occurrences. With many more days taken into consideration, frequency
distributions for minimum temperature and maximum temperature could be fixed.
There from, the cumulative frequency distributions can be constructed. Thereafter,
the numerically fitted probability distribution for minimum temperature would form
the left reference function, and the complementary probability distribution would

†Refer: The Sentinel, May 4,5,6,7 and 8, 2010, Guwahati, Assam, India
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form the right reference function of a fuzzy number. We proceed to construct the
fuzzy number as follows:

[24.3, 33.2](1/5)(S)[23.8, 34.1](1/5)(S)[18.8, 33.4](1/5)(S)[24.8, 34.5](1/5)(S)[23.9, 34.0](1/5)

= [18.8, 23.8](1/5) ∪ [23.8, 23.9](2/5) ∪ [23.9, 24.3](3/5) ∪ [24.3, 24.8](4/5)

∪ [24.8, 33.2](5/5) ∪ [33.2, 33.4](4/5) ∪ [33.4, 34.0](3/5)

∪ [34.0, 34.1](2/5) ∪ [34.1, 34.5](1/5).

Accordingly, the fuzzy membership values of fuzzy temperature x in the city of
Guwahati during those five days would be

µ(x) =





1/5 if 18.8 ≤ x ≤ 23.8,
2/5 if 23.8 ≤ x ≤ 23.9,
3/5 if 23.9 ≤ x ≤ 24.3,
4/5 if 24.3 ≤ x ≤ 24.8,
5/5 if 24.8 ≤ x ≤ 33.2,
4/5 if 33.2 ≤ x ≤ 33.4,
3/5 if 33.4 ≤ x ≤ 34.0,
2/5 if 34.0 ≤ x ≤ 34.1,
1/5 if 34.1 ≤ x ≤ 34.5.

Now fitting a probability distribution and a complementary probability distribution,
possibly with more data, would be a statistical exercise ultimately to get a fuzzy
membership function. However, in a discrete form this is how one can construct a
fuzzy number. It is said that the triangular fuzzy number is easy to use, and there-
fore we use it in fuzzy arithmetical calculations. Actually, just as the uniform law is
the simplest and the easiest to handle among all probability distributions, the tri-
angular fuzzy number is the simplest and the easiest to handle in fuzzy arithmetical
calculations. After all, two uniform probability laws can give rise to one triangular
fuzzy number. Assuming that on both sides of the point of maximum possibility we
have two uniform probability laws in action, we get the much used triangular fuzzy
number.

5. Conclusions

All sorts of heuristic results have appeared in the literature on fuzziness in the last
forty five years stating that fuzziness is not measure theoretic. Trying to establish
a consistency between a possibility law defined in an interval with a probability
law defined in the same interval bore no fruit till this day simply because it was not
logical to do so. In fact, for a normal fuzzy number, the partial presence of an element
is expressible either as a probability distribution function, or as a complementary
probability distribution function. We have shown that we can arrive at the definition
of normal fuzziness from two laws of randomness naturally. Normal fuzzy numbers
must therefore be explained in this way only. Fuzziness therefore is expressible in
terms of randomness in the measure theoretic sense. In the case of a probability
law of errors following a probability density function the concerned random variable
takes values around a location parameter and in the case of a normal possibility
law in an interval around a point we define a membership function with maximum
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possibility allotted to the point concerned. Two different probability densities, one
to the left of the aforesaid point and one to the right of that point, leads to defining
a normal fuzzy number. Right at the start, people did suspect that possibility is
actually probability in disguise. But they thought so with a view to establishing
a relationship between the fuzzy membership function and a probability density
function over the same interval. To arrive at the correct conclusion, one needs to
look into the matters through the spectacles of set superimposition, and of course
one needs to know that the Glivenko - Cantelli Lemma on Order Statistics exists in
the statistical literature.
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