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1. Introduction

Kubiak [12] and Šostak [20]-[22] introduced the notion of (L-) fuzzy topologi-
cal spaces as a generalization of L-topological spaces (originally called (L-) fuzzy
topological spaces by Chang [6] and Goguen [9]). It is the grade of openness of an
L-fuzzy set. A general approach to the study of topological-type structures on fuzzy
powersets was developed in [10], [11], [12], [13] and [24].

The notion of compactness is one of the most important concepts in general
topology. Therefore, the problem of generalizing classical compactness to fuzzy
topological spaces has been intensively discussed over the past 30 years. Many papers
on fuzzy compactness have been published and various kinds of fuzzy compactness
have been presented and studied. Among these compactness, the fuzzy compactness
in L-fuzzy topological spaces introduced by Warner and McLean [23] and extended
to arbitrary L-fuzzy sets by Kudri [14] possesses several nice properties, such as:
this compactness is defined for arbitrary L-fuzzy sets, is inherited by closed L-fuzzy
sets, is preserved under fuzzy continuous functions and arbitrary products, is a
good extension and every compact Hausdorff space is regular and normal. Good
extensions of some weaker and stronger fuzzy covering properties were introduced
and studied by Kudri and Warner.
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Aygün et al. [3], introduced the notion of L-fuzzy compactness in L-fuzzy topo-
logical spaces in the sense of Šostak as a generalization of the L-fuzzy compactness
introduced by Warner and McLean [23]. Based on this definition, various kinds of
compactness in L-fuzzy topological spaces in Šostak’s sense have been introduced
and studied in [1], [2], [3], [4], [5] and [16].

In this paper, a good definition of semi-precompactness on arbitrary fuzzy sets
is introduced in L-fuzzy topological spaces in Šostak’s sense along the same lines as
the L-fuzzy compactness defined by Aygün et al. [3]. We prove the goodness of the
definition, obtain a different characterization and study some of its properties.

2. Preliminaries

Throughout this paper X and Y will be non-empty ordinary sets and L = L(≤,
∨,∧, ′) will denote a fuzzy lattice, i.e., a completely distributive lattice with a small-
est element 0 and largest element 1 (0 6=1) and with an order reversing involution
a → a′(a ∈ L) [15]. We shall denote by LX the lattice of all L-subsets of X and if
A ⊆ X by χA the characteristic function of A.

Definition 2.1 ([8]). An element p of L is called prime iff p 6= 1 and whenever
a, b ∈ L with a ∧ b ≤ p then a ≤ p or b ≤ p. The set of all prime elements of L will
be denoted by Pr(L).

Definition 2.2 ([8]). An element α of L is called union-irreducible or coprime iff
whenever a, b ∈ L with α ≤ a∨ b then α ≤ a or α ≤ b. The set of all non-zero union-
irreducible elements of L will be denoted by M(L). It is obvious that p ∈ Pr(L) iff
p′ ∈ M(L).

Definition 2.3 ([3]). Let (X, T ) be an ordinary topological space. A function
f : (X, T ) → L, where L has its Scott topology (topology generated by the sets of
the form {t ∈ L : t 6≤ p} where p ∈ Pr(L) [23]), is said to be Scott continuous iff for
every p ∈ Pr(L), f−1({t ∈ L : t 6≤ p}) ∈ T .

Definition 2.4 ([3]). Let (X, T ) be an ordinary topological space and q ∈ L. A
function f : (X, T ) → L, where L has its Scott topology, is said to be q-Scott
continuous iff for every p ∈ Pr(L) with q 6≤ p, f−1({t ∈ L : t 6≤ p}) ∈ T .

It is clear that if f is Scott continuous then f is q-Scott continuous for every
q ∈ L. Moreover, f is 1-Scott continuous iff f is Scott continuous. Naturally, every
function from (X, T ) to L is 0-Scott continuous.

Definition 2.5 ([21]). An L-fuzzy topology on X is a map T : LX → L satisfying
the following three axioms:

(O1) T (χ∅)=T (χX) = 1,
(O2) T (f ∧ g) ≥ T (f) ∧ T (g), for every f, g ∈ LX ,
(O3) T (∨i∈Ifi) ≥ ∧i∈IT (fi), for every family (fi)i∈I in LX .
The pair (X, T ) is called an L-fuzzy topological space (L-fts, for short). For every

f ∈ LX , T (f) is called the degree of openness of the L-fuzzy subset f .

Definition 2.6 ([21]). Let (X, T ) be an L-fts. The map FT : LX → L defined by
FT (g)= T (g′) for every g ∈ LX is called the degree of closedness on X.
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Definition 2.7 ([7]). Let (X, T ) be an L-fts and f ∈ LX .
(1) The closure of f , denoted by cl(f), is defined by

cl(f) =
∧
{g ∈ LX : T (g′) > 0, f ≤ g}.

(2) The interior of f , denoted by int(f), is defined by

int(f) =
∨
{g ∈ LX : T (g) > 0, g ≤ f}.

Definition 2.8 ([17, 18, 19]). Let (X, T ) be an L-fts and f ∈ LX .
(1) f is called fuzzy α-open iff for every p ∈ Pr(L) there exists g ∈ LX with

T (g) 6≤ p such that g ≤ f ≤ int(cl(g)).
(2) f is called fuzzy semi-open iff for every p ∈ Pr(L) there exists g ∈ LX with

T (g) 6≤ p such that g ≤ f ≤ cl(g).
(3) f is called fuzzy preopen iff f ≤ int(cl(f)).
(4) f is called semi-preopen iff there exists fuzzy preopen set g ∈ LX with

g ≤ f ≤ cl(g).

Definition 2.9 ([17, 19, 20]). Let F : (X, T )→ (Y, T ∗) be a function. Then,
(1) F is called fuzzy continuous iff ∀g ∈ LX , T (F−1(g)) ≥ T ∗(g).
(2) F is called fuzzy irresolute iff for each semi-open set g ∈ LX , F−1(g) is fuzzy

semi-open set of X.
(3) F is called fuzzy α-irresolute (resp. pre-irresolute, semipre-irresolute) iff for

each α-open (resp. preopen, semi-preopen) set g ∈ LX , F−1(g) is fuzzy
α-open (resp. preopen, semi-preopen) set of X.

Theorem 2.10 ([3]). Let (X, T ) be an ordinary topological space. Then, the func-
tion W (T ) : LX → L defined by W (T )(f) =

∨
{q ∈ L: f is q-Scott continuous},

for every f ∈ LX , is an L-fuzzy topology on X.

Theorem 2.11 ([3]). If F : (X, T )→ (Y, T ∗) is continuous, then F : (X, W (T ))→
(Y,W (T ∗)) is fuzzy continuous.

Thus, by Theorems 2.10 and 2.11, we obtain an L-fts from a given ordinary
topological space, and the functor W from the category TOP of ordinary topological
space into the category FTS of L-fts. This provides a ”goodness of extension”
criterion for L-fuzzy topological properties. An L-fuzzy extension of a topological
property of (X, T ) is said to be good when it is possessed by the L-fts (X, W (T ))
iff the original property is possessed by (X, T ).

Lemma 2.12 ([16]). Let (X, T ) be a topological space, f ∈ LX and p ∈ Pr(L).
Considering the L-fts (X, W (T )) we have:

(1) (cl(f))−1({t ∈ L : t 6≤ p}) ⊂ cl(f−1({t ∈ L : t 6≤ p})).
(2) (int(f))−1({t ∈ L : t 6≤ p}) ⊂ int(f−1({t ∈ L : t 6≤ p})).

Lemma 2.13 ([16]). Let (X, T ) be a topological space and A ⊆ X. Considering the
L-fts (X, W (T )) we have:

χcl(A) = cl(χA) and χint(A) = int(χA).
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Definition 2.14 ([3]). Let (X, T ) be an L-fts and g ∈ LX . g is called compact if
for every prime p ∈ L and every collection {fi}i∈J of L-subsets with T (fi) 6≤ p for
any i ∈ J and (∨i∈Jfi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′, there exists a finite
subset F of J such that (∨i∈F fi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′. If g = 1X ,
then the L-fts (X, T ) is called compact.

In the crisp case of T , fuzzy compactness coincides with the compactness intro-
duced by Warner and McLean [22], and extended to arbitrary L-fuzzy sets by Kudri
[13].

Definition 2.15 ([1, 2, 4, 5]). Let (X, T ) be an L-fts and g ∈ LX . g is called
α-compact (resp. strongly compact, semi-compact ) if for every prime p ∈ L and
every collection {fi}i∈J of α-open (resp. preopen, semi-open) L-subsets such that
(∨i∈Jfi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′, there exists a finite subset F of J such
that (∨i∈F fi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′. If g = 1X , then the L-fts (X, T )
is called α-compact (resp. strongly compact, semi-compact ).

3. Semi-precompactness and its goodness

In this section, the definition of semi-precompactness on arbitrary fuzzy sets is in-
troduced. We prove the goodness of this semi-precompactness and obtain a different
characterization.

Definition 3.1. Let (X, T ) be an L-fts and g ∈ LX . g is called semi-precompact if
for every prime p ∈ L and every collection {fi}i∈J of semi-preopen L-subsets with
(∨i∈Jfi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′, there exists a finite subset F of J such
that (∨i∈F fi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′. If g = 1X , then the L-fts (X, T )
is called semi-precompact.

Lemma 3.2. Let (X, T ) be an ordinary topological space and A ⊆ X. If A is
preopen in (X, T ) then χA is preopen in the L-fts (X, W (T )).

Proof. Since A is preopen in (X, T ) we have A ⊆ int(cl(A)). Thus χA ≤ χint(cl(A))

and, by Lemma 2.13, χint(cl(A)) = int(cl(χA)). Therefore χA ≤ int(cl(χA)). Hence,
χA is preopen in the L-fts (X, W (T )). �

Lemma 3.3. Let (X, T ) be an ordinary topological space and A ⊆ X. If A is
semi-preopen in (X, T ) then χA is semi-preopen in the L-fts (X, W (T )).

Proof. Since A is semi-preopen in (X, T ) there is a preopen set B in (X, T ) such
that B ≤ A ≤ cl(B). Thus, χB ≤ χA ≤ χcl(B) = cl(χB) by Lemma 2.13. And by
Lemma 3.2, χB is preopen in the L-fts (X, W (T )). Hence χA is semi-preopen in
(X, W (T )). �

Lemma 3.4. Let (X, T ) be an ordinary topological space and A ⊆ X. If g is preopen
in the L-fts (X, W (T )) and p ∈ Pr(L), then we have g−1

i ({t ∈ L : t 6≤ p}) is preopen
in (X, T ).

Proof. Since g is preopen L-subset in the L-fts (X, W (T )) we have g ≤ int(cl(g)).
Then g−1({t ∈ L : t 6≤ p}) ⊆ (int(cl(g)))−1({t ∈ L : t 6≤ p}). By Lemma 2.12, we
have (int(cl(g)))−1({t ∈ L : t 6≤ p}) ⊆ int(cl(g−1({t ∈ L : t 6≤ p}))). Therefore
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g−1({t ∈ L : t 6≤ p}) ⊆ int(cl(g−1({t ∈ L : t 6≤ p}))). Hence, g−1
i ({t ∈ L : t 6≤ p}) is

preopen in (X, T ). �

We say that a topological space (X, T ) is semi-precompact if every semi-preopen
cover of X has a finite subcover. In the following theorem we shall prove that
semi-precompactness is a good extension.

Theorem 3.5. Let (X, T ) be an ordinary topological space. Then (X, T ) is semi-
precompact iff the L-fts (X, W (T )) is semi-precompact.

Proof. Necessity: Let p ∈ Pr(L) and {fi}i∈J be a family of semi-preopen L-fuzzy
sets in (X, W (T )) with (∨i∈Jfi)(x) 6≤ p for all x ∈ X. Hence for each x ∈ X there
is i ∈ J such that fi(x) 6≤ p, i.e., x ∈ f−1

i ({t ∈ L : t 6≤ p}). So,

X = ∪i∈Jf−1
i ({t ∈ L : t 6≤ p}).

Because fi is semi-preopen in (X, W (T )) we have a preopen L-subset gi in (X, W (T ))
such that gi ≤ fi ≤ cl(gi) for every i ∈ J . Hence, by Lemma 2.12, we get

g−1
i ({t ∈ L : t 6≤ p}) ⊆ f−1

i ({t ∈ L : t 6≤ p})
⊆ (cl(gi))−1({t ∈ L : t 6≤ p})
⊆ cl(g−1

i ({t ∈ L : t 6≤ p})).

By Lemma 3.4 we know that g−1
i ({t ∈ L : t 6≤ p}) is preopen in (X, T ) for each

i ∈ J . Then {f−1
i ({t ∈ L : t 6≤ p})}i∈J is a semi-preopen cover of (X, T ). Since

(X, T ) is semi-precompact, there is a finite subset F of J such that

X = ∪i∈F f−1
i ({t ∈ L : t 6≤ p}), i.e., (∨i∈F fi)(x) 6≤ p

for all x ∈ X. Hence (X, W (T )) is semi-precompact.
Sufficiency: Let {Ai}i∈J be a semi-preopen cover of (X, T ). Then by Lemma

3.3, {χAi}i∈J is a family of semi-preopen L-subsets in (X, W (T )) such that 1 =
(∨i∈JχAi)(x) 6≤ p for all x ∈ X and for all p ∈ Pr(L). Since (X, W (T )) is semi-
precompact, there is a finite subset F of J such that (∨i∈F χAi

)(x) 6≤ p for all x ∈ X.
Hence, (∨i∈F χAi

)(x) = 1 for all x ∈ X, i.e., X = ∪i∈F Ai and therefore (X, T ) is
semi-precompact. �

The next theorem provides a different characterization of semi-precompactness.

Theorem 3.6. Let (X, T ) be an L-fts and g ∈ LX . The L-fuzzy subset g is semi-
precompact iff for every p ∈ Pr(L) and every collection {fi}i∈J of semi-preopen
subsets with (∨i∈Jfi ∨ g′)(x) 6≤ p for all x ∈ X, there is a finite subset F of J such
that (∨i∈F fi ∨ g′)(x) 6≤ p for all x ∈ X.

Proof. Necessity: Let p ∈ Pr(L) and {fi}i∈J be a collection of semi-preopen subsets
with (∨i∈Jfi ∨ g′)(x) 6≤ p for all x ∈ X. Then (∨i∈Jfi ∨ g′)(x) 6≤ p for all x ∈ X
with g(x) ≥ p′. Since g is semi-precompact, there is a finite subset F of J such
that (∨i∈F fi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′. Take an arbitrary x ∈ X. If
g′(x) ≤ p then g′(x) ∨ (∨i∈F fi)(x) = (∨i∈F fi ∨ g′)(x) 6≤ p because (∨i∈F fi)(x) 6≤ p.
If g′(x) 6≤ p then we have g′(x)∨ (∨i∈F fi)(x) = (∨i∈F fi ∨ g′)(x) 6≤ p. Thus we have
(∨i∈F fi ∨ g′)(x) 6≤ p for all x ∈ X.
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Sufficiency: Let p ∈ Pr(L) and {fi}i∈J be a collection of semi-preopen subsets
with (∨i∈Jfi)(x) 6≤ p for all x ∈ X with g(x) ≥ p′. Hence, (∨i∈Jfi ∨ g′)(x) 6≤ p
for all x ∈ X. From the hypothesis, there is a finite subset F of J such that
(∨i∈F fi ∨ g′)(x) 6≤ p for all x ∈ X. Then (∨i∈F fi)(x) 6≤ p for all x ∈ X with
g(x) ≥ p′. Thus, g is semi-precompact. �

4. Some properties of the semi-precompactness

In this section, we study some properties of the semi-precompactness.

Theorem 4.1. Let (X, T ) be an L-fts. If h and g are semi-precompact subsets, then
h ∨ g is semi-precompact as well.

Proof. Let p ∈ Pr(LX) and (fi)i∈J be a family of semi-preopen sets with (∨i∈Jfi)(x)
6≤ p for all x ∈ X such that (h ∨ g)(x) ≥ p′. But if (h ∨ g)(x) ≥ p′ then h(x) ≥ p′

or g(x) ≥ p′ because p ∈ Pr(LX) and we always have if h(x) ≥ p′ or g(x) ≥ p′

then (h ∨ g)(x) ≥ p′. From the semi-precompactness of h and g, there are finite
subsets F1, F2 of J with (∨i∈F1fi)(x) 6≤ p for all x ∈ X such that h(x) ≥ p′ and
(∨i∈F2fi)(x) 6≤ p for all x ∈ X such that g(x) ≥ p′. Then (∨i∈F1∪F2fi)(x) 6≤ p for
all x ∈ X such that h(x) ≥ p′ or g(x) ≥ p′. Hence h ∨ g is semi-precompact. �

Theorem 4.2. Let (X, T ) be an L-fts where X is a finite set. Then (X, T ) is
semi-precompact.

Proof. Let p ∈ Pr(LX) and (fi)i∈J be a family of semi-preopen sets with (∨i∈Jfi)(x)
6≤ p for all x ∈ X. Hence, for each x ∈ X there is i ∈ J such that

x ∈ f−1
i ({t ∈ L : t 6≤ p}), i.e., X = ∪i∈Jf−1

i ({t ∈ L : t 6≤ p}).

Since X is a finite set, there is a finite subset F of J such that

X = ∪i∈F f−1
i ({t ∈ L : t 6≤ p}), i.e., (∨i∈F fi)(x) 6≤ p

for each x ∈ X. So (X, δ) is semi-precompact. �

Theorem 4.3. Let (X, T ) be an L-fts and g ∈ LX . Then we have the following
implications:

(1) g is semi-precompact ⇒ (i) g is strongly compact ⇒ (ii) g is α-compact ⇒
(iii) g is compact.

(2) g is semi-precompact ⇒ (i) g is semi-compact ⇒ (ii) g is α-compact ⇒ (iii)
g is compact.

Proof. (1)(i): From Definition 2.8, we know that every pre-open L-fuzzy set is
semipreopen, then (i) follows directly from the definitions of semi-precompact and
strongly compact. (ii) and (iii) follow from Theorem 4.9 in [5].

(2) (i): From Definition 2.8, we know that every semi-open L-fuzzy set is semipreopen,
then (i) follows directly from the definitions of semi-precompact and semi-compact.
(ii) and (iii) follow from Theorem 4.10 in [5] and Proposition 5.18 in [1]. �

Theorem 4.4. Let F : (X, T ) → (Y, T ∗) be a fuzzy irresolute mapping and g ∈ LX

be semi-precompact in (X, T ). Then F (g) is semi-compact in (Y, T ∗).
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Proof. Let p ∈ Pr(LX) and (hi)i∈J be a family of semi-open sets of (Y, T ∗) such
that (∨i∈Jhi)(y) 6≤ p for all y ∈ Y with (F (g))(y) ≥ p′. Because f is irresolute,
(F−1(hi))i∈J is a family of semi-open sets of (X, T ) such that (∨i∈JF−1(hi))(x) 6≤ p
for all x ∈ X with g(x) ≥ p′. (F−1(hi))i∈J is also a family of semi-preopen sets
of (X, T ) such that (∨i∈JF−1(hi))(x) 6≤ p for all x ∈ X with g(x) ≥ p′. Because,
if g(x) ≥ p′, then F (g)(F (x)) ≥ p′. So, (∨i∈JF−1(hi))(x) = (∨i∈Jhi)(F (x)) 6≤ p.
From the semi-precompactness of g in (X, T ), there exists a finite subset J0 of J such
that (∨i∈J0F

−1(hi))(x) 6≤ p for all x ∈ X with g(x) ≥ p′. We are going to show that
(∨i∈J0hi)(y) 6≤ p for all y ∈ Y with (F (g))(y) ≥ p′. In fact, if (F (g))(y) ≥ p′, then
we have ∨x∈F−1(y)g(x) ≥ p′ which implies that there is x ∈ X with g(x) ≥ p′ and
F (x) = y. Thus, we have (∨i∈J0hi)(y) = (∨i∈J0hi)(F (x)) = (∨i∈J0F

−1(hi))(x) 6≤ p.
This proved that F (g) is semi-compact in (Y, T ∗). �

Corollary 4.5. Let F : (X, T ) → (Y, T ∗) be a fuzzy irresolute mapping and X be a
semi-precompact L-fts. Then F (X) is semi-compact in (Y, T ∗).

Theorem 4.6. Let F : (X, T ) → (Y, T ∗) be a fuzzy pre-irresolute mapping and
g ∈ LX be semi-precompact in (X, T ). Then F (g) is strongly compact in (Y, T ∗).

Proof. Let p ∈ Pr(LX) and (hi)i∈J be a family of preopen sets of (Y, T ∗) such that
(∨i∈Jhi)(y) 6≤ p for all y ∈ Y with (F (g))(y) ≥ p′. Because f is pre-irresolute,
(F−1(hi))i∈J is a family of preopen sets of (X, T ) such that (∨i∈JF−1(hi))(x) 6≤ p
for all x ∈ X with g(x) ≥ p′. (F−1(hi))i∈J is also a family of semi-preopen sets of
(X, T ) such that (∨i∈JF−1(hi))(x) 6≤ p for all x ∈ X with g(x) ≥ p′. Because, if
g(x) ≥ p′, then F (g)(F (x)) ≥ p′. So,

(∨i∈JF−1(hi))(x) = (∨i∈Jhi)(F (x)) 6≤ p.

From the semi-precompactness of g in (X, T ), there exists a finite subset J0 of J such
that (∨i∈J0F

−1(hi))(x) 6≤ p for all x ∈ X with g(x) ≥ p′. We are going to show that
(∨i∈J0hi)(y) 6≤ p for all y ∈ Y with (F (g))(y) ≥ p′. In fact, if (F (g))(y) ≥ p′, then
we have ∨x∈F−1(y)g(x) ≥ p′ which implies that there is x ∈ X with g(x) ≥ p′ and
F (x) = y. Thus, we have (∨i∈J0hi)(y) = (∨i∈J0hi)(F (x)) = (∨i∈J0F

−1(hi))(x) 6≤ p.
This proved that F (g) is strongly compact in (Y, T ∗). �

Corollary 4.7. Let F : (X, T ) → (Y, T ∗) be a fuzzy pre-irresolute mapping and X
be a semi-precompact L-fts. Then F (X) is strongly compact in (Y, T ∗).
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[21] A. P. Šostak, Two decades of fuzzy topology: basic ideas, notions and results, Russian Math.
Surveys. 44(6) (1989) 125–186.
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