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Abstract. In this paper, we discuss on the fuzzy Process capabil-
ity index such that the tolerance interval is a fuzzy set. We also discuss
on the fuzzy capability analysis in case of measurement error occurrence.
Measurement error can be due to insufficient gauge calibration or external
influences on the measurement device. We consider two case systematic
and random measurement errors.
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1. Introduction

Statistical techniques can be helpful throughout the product cycle, including de-
velopment activities prior to manufacturing, in quantifying process variability, in
analyzing this variability relative to product requirements or specifications, and in
assisting development and manufacturing in eliminating or greatly reducing this
variability. This generally activity is called process capability analysis. Process ca-
pability refers to the uniformity of process. Obviously, the variability in the process
is a measure of the uniformity of output. There may not exist an exact definition
of the term “process capability” but in the literature there is an agreement to con-
sider a process as capable (e.g. [7, 8, 9]) if with high probability the (real-valued)
quality characteristic X of the produced items lies between some lower and upper
specification limits LSL and USL (or tolerance interval limits). Therefore the idea
of process capability implies that the fraction p of produced non conforming items
should be small if the process is said to be capable.

In the traditional quality management, the most commonly used capability indices
like Cp, CPU , CPL, Cpk, Cpm and Cpmk are employed to indicate process capability
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(we recall their definitions in the next section). An underlying assumption is that
the output process measurements are distributed as normal random variables. When
normal distributions are assumed, however, different distributions are present such
as skew, heavy-tailed, and short-tailed distributions and the percentages on non-
conforming parts are significantly different from the computed process capability
indices indication. Experience shows that the normality assumption is often not
met in real world application (see [6]).

Process capability indices are used to indicate to what extent production process
can meet the technical requirements. In fact, it is not quite reasonable to define
technical standard as a clear interval, for there actually exist gradual change and
transition on the boundaries of technical standard. Therefore to define technical
standard as a fuzzy subset more appropriately accords with the actual production, to
use a fuzzy subset to indicate technical standard is totally in line with the suitability
quality outlook. So the traditional capability indices can not be used to represent
process capability any more. Also, in traditional computing method of process
capability index, the position of the distribution centre of characteristic X and that
of standard centre do not always coincide and their formula also vary. We can
also say that in the traditional quality management, process capability index and
percentage of substandard products are two different concepts, but they are closely
related to each other. After the introduction of the formula Cp, we can see that when
the distribution centre of quality index is consistent with the standard centre, the
percentage of substandard products is in inverse proportion to the process capability
index. This accords with the fact that process capability index is a reflection of how
process capability meet technical demands. However, when the distribution centre
is inconsistent with the standard centre, we shall see this phenomenon if we still use
the computing formula; there are great differences in the percentage of substandard
products corresponding to the numerical value of the same process capability index.

2. Traditional Process Capability Indices

In the literature, one of the proposed definitions on process capability index con-
sider that as the ratio of the real performance of process to requested performance
(see [8]), that is,

Capability index =
The width of tolerance interval
The width of process dispersion

.

But, just as we recalled in the introduction section, for a given tolerance interval
[LSL,USL] and a risk α, a process with the quality characteristic X is said to be
capable if,

(2.1) P (X ∈ [LSL, USL]) ≥ 1− α.

If the center of the distribution of X (µ = E(X)) and the mid-point of the
tolerance interval (standard center) be equal (µ = M = (LSL+USL)

2 ), then we have

(2.2) P (X ∈ [LSL, USL]) = P

(
|X − µ| ≤ USL− LSL

2

)
.
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Let

(2.3) r = min {c : P (|X − µ| ≤ c) ≥ 1− α} .

Since {|X − µ| ≤ c} is monotone with respect to c, we can say that r is the unique
solution of the equation P (|X − µ| ≤ c) = 1−α, and the process will be capable if,

(2.4)
USL− LSL

2
≥ r,

or

(2.5)
USL− LSL

2r
≥ 1.

The ratio USL−LSL
2r , is called capability index.

If X be normally distributed, that is,

(2.6) X ; N(µ, σ2), µ ∈ R and σ ∈ R+,

then, we have

(2.7) P (|X − µ| ≤ 3σ) = 0.9973.

Therefore, with a risk α = 0.0027, the simplest capability index which is called the
process potential index defined by

(2.8) Cp =
USL− LSL

6σ
.

For more information one can study [3, 7, 8].
In the case µ = M (that is perfect location of the process) a Cp value of at

least 1 assures that at most 0.27% of the produced items fall outside the tolerance
interval. But if µ 6= M a Cp value of 1 does not all guarantee a small fraction of non
confirming items because the Cp index does not take into consideration the location
µ of the distribution. In order to reflect departures from the target value as well as
changes in the process variation several order indices have been proposed such as
Cpk ([1, 2, 3, 5, 10, 11]).

The two indices

(2.9) CPU =
USL− µ

3σ
and CPL =

µ− LSL

3σ
,

measure the performance of the process with respect to the upper and lower specifi-
cation limits. They are used in unilateral tolerance situations where only one single
specification limit is given. Again a process e.g. with upper specification limit is
considered as capable if CPU ≥ 1.

From these definition we get for the specification case the Cpk index,

(2.10) Cpk = min(CPU,CPL).

Cpk measures the distance between the process mean and the closest specification
limit relation to the one-side actual process spread 3σ. Kane [3] gave an equivalent
representation:

(2.11) Cpk = Cp(1− k), k =
|µ−M |

USL− LSL

2

.
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For fixed µ, Cpk decreases with increasing σ and for fixed σ, Cpk decrease with
increasing difference |µ−M |. Because k ≥ 0 it holds that Cpk ≤ Cp, where equality
is given if and only if µ = M . Though Cpk take into account deviation from the
target as change in variations, a high value of Cpk does not assure that the process is
located near to target. There is also no exact relation between Cpk and the fraction
p of non conforming items.

Departures from the target value carry more weight with the other well-known
capability indices Cpm and Cpmk defined by

(2.12) Cpm =
USL− LSL

6σ′
, Cpmk = Cp(1− k) ; σ′ =

√
σ2 + (µ−M)2.

In principal, Cpm behaved like Cpk but Cpm is bounded above as σ → 0 and
µ 6= M . It holds

(2.13) Cpm ≤ USL− LSL

6 |µ−M | ,

which implies that if µ falls outside the middle third of the tolerance interval
(LSL, USL), then Cpm is smaller than 1 in spite of how small σ might be. For
µ = M it holds Cp = CPU = CPL = Cpk = Cpm = Cpmk.

Because the capability indices depend on the unknown parameters µ and σ. These
parameters have to be estimated from random samples (X1, ..., Xn). Common prac-
tice is to use as estimators for µ, σ and σ′ respectively:
(2.14)

µ̂ = X, σ̂ = S =

√√√√ 1
n− 1

n∑

i=1

(Xi −X)2 and σ̂′ =

√√√√ 1
n

n∑

i=1

(Xi −X)2 + (X −M)2.

3. Process Capability Index Based on Fuzzy Tolerance Interval

In this section, we recall some notions of fuzzy sets theory and the probability of
a fuzzy event. Then, we try to define a process capability index as the probability
of a fuzzy event which present the tolerance interval.

Let X be a given universal set, a set can be defined by a function, usually called
a characteristic function, that declares which elements of X are members of the set
and which are not. Set A is defined by its characteristic function, χA, as follows:

(3.1) χA(x) =
{

1 if x ∈ A
0 if x ∈ X−A.

That is, the characteristic function maps elements of X to element of the set
{0, 1}, which is formally expressed by χA : X→{0, 1} .

The concept of characteristic function can be generalized such that the values
assigned to the elements of the universal set fall within a specified range and indicate
the membership grade of these elements in the set in question. Larger values denote
higher degrees of membership. Such a function is called a membership function,
and the set defined by it a fuzzy set. The most commonly used range of values
of membership functions is the unit interval [0, 1] . In this case, each membership
function maps elements of a given universal set X, which is always a crisp set, into
real numbers in [0, 1] . Two distinct notation are most commonly employed in the
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literature to denote membership functions (see [4]). In one of them, the membership
function of a fuzzy set Ã is denoted by µÃ: that is, µÃ : X→ [0, 1] . In the other one,
the function is denoted by Ã and has, of course, the same form: that is Ã : X→ [0, 1] .
In this paper, we use the second notation.

Now, we recall the definition of the probability of a fuzzy event which has been
given by Zadeh ([13, 14]). Let (Rn,Bn, P ) be a probability space, in which Bn is the
σ-field of Borel set in Rn and P is the probability measure over Rn. Then, a fuzzy
event in Rn is a fuzzy set Ã (Ã : Rn → [0, 1], is Borel measurable). The probability
of a fuzzy event Ã is defined by the Lebesgue-Stieltjes integral:

(3.2) P (Ã) =
∫

Rn

Ã(x)dP.

The existence of the Lebesgue-Stieltjes integral is insured by the assumption that Ã
is Borel measurable.

According to the traditional definition of process capability index (Cp), a process
is said to be capable, if for a given risk α (α ∈ (0, 1)):

(3.3) P (X ∈ [LSL,USL]) =
∫

R
χ[LSL,USL](x)dP ≥ 1− α.

To modify the ambiguity which exist in the definition of tolerance interval (es-
pecially in the limits) and for the mentioned reasons in the introduction section, in
the following we realize a relation between the characteristic function of a tolerance
interval and the membership function of a fuzzy set which employ to present the tol-
erance interval. Then, we define the fuzzy process capability index as the probability
of fuzzy tolerance interval. Figure 1 shows the characteristic function of tolerance
interval. As is shown in Figure 1, the quality standard curve is just a reflection of
the traditional concept.

Figure 1. Characteristic function of tolerance interval

At the range of LSL and USL, there exists a jump. Products that fall within
the range of [LSL,ULS] are judged as qualified, while products out of the range
as unqualified. Figure 2 provides fuzzy quality, when x = m, Ã(m) = 1, which
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shows products are completely up-to-standard, when x = LSL or USL, Ã(LSL) =
Ã(USL) = 0, it shown product are totally below standard, and is declining, with
both sides symmetrical. The curve shown in Figure 2 is worked out through the fuzzy
statistical, processing of users suitability appraisals. However, in actual calculation,
it can sometimes be simplified: using a linear line segment rather than a curve.

Figure 2. Fuzzy up-to standard

Now, the fuzzy process capability index can be defined as the probability of fuzzy
up-to-standard products turned out in the process of production it is labeled as Cp̃

(for more information see [12]). When the quality index of process products is a
continuous random variable,

(3.4) Cp̃ =

+∞∫

−∞
Ã(x)f(x)dx,

where f(x) is the probability density function of quality characteristic X, Ã(x) is
the membership function of fuzzy up-to-standard products.

When the quality characteristic of process is a discrete random variable X and
the values of X is xi (i = 1, , n),

(3.5) Cp̃ =
n∑

i=1

Ã(xi)PX(xi),

where PX(xi) is the probability when X = xi, Ã(xi) is the membership function of
fuzzy up-to-standard products.

Obviously, we have to know the value of the probability density of quality char-
acteristic and the membership function of fuzzy up-to-standard products, before we
can work out Cp̃.

The membership function of fuzzy up-to-standard products generally can help to
realize the fuzzy nature of clear technical standard boundaries.

Figures 3 and 4 show two common membership functions.
22
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Figure 3. Trapezoidal membership function

Figure 4. Exponential (Normal) membership function

Example 3.1 Let the distribution of quality characteristic X be normal (i.e. X ;

N(µ, σ2)). The degree of membership of fuzzy up-to-standard products can be work
out through the formula Cp̃ under the condition that the diagram of membership
function is in the form of trapezoidal as provided in Figure 3 We have

Cp̃(trap) = − σ√
2π(a− b)

[
exp

(−(a− µ)2

2σ2

)
− exp

(−(b− µ)2

2σ2

)]

+
σ√

2π(c− d)

[
exp

(−(c− µ)2

2σ2

)
− exp

(−(d− µ)2

2σ2

)]

+
µ− a

b− a

[
Φ(

b− µ

σ
)− Φ(

a− µ

σ
)
]

+
µ− d

c− d

[
Φ(

d− µ

σ
)− Φ(

c− µ

σ
)
]

(3.6)

+
[
Φ(

c− µ

σ
)− Φ(

b− µ

σ
)
]

.
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In the case of b = c = µ (i.e. in the case of triangular membership function),

Cp̃(tri) = − σ√
2π(a− µ)

[
e−(a−µ)2/2σ2 − 1

]

+
σ√

2π(µ− d)

[
1− e−(d−µ)2/2σ2

]

+
[
Φ(

d− µ

σ
)− Φ(

a− µ

σ
)
]

.(3.7)

And when the membership function is exponential (i.e. Ã(x) = exp
[
− (x−m)2

2λ2

]
),

We have

Cp̃(exp) =
∫ +∞

−∞
exp

(−(x−m)2

2λ2

)
1√
2πσ

exp
(−(x− µ)2

2σ2

)
dx

=
(

λ√
σ2 + λ2

)
exp

(−(µ−m)2

2(σ2 + λ2)

)
,(3.8)

where for fixed µ,m and σ, it is a function of modification parameter of tolerance
interval (λ > 0) .

4. Process capability analysis in case of measurement error
occurrence

Until now it was implicitly assumed that the measurement of the characteristic
X did not contain measurement errors. This assumption will now be abandoned.
Measurement error can be due to insufficient gauge calibration or external influences
on the measuring device. In case of measurement error occurrence one needs to dis-
tinguish between latent or true variables X and observable or empirical variables
Xe. The latent variables are those which would be observed in case of measure-
ment error absence. One typically can distinguish between systematic and random
measurement errors.

With systematic errors the variable Xe is a deterministic function of the variable
X. In the following the measurement error effect analysis referring to the systematic
error is restricted to the constant measurement error which represents the most
important special case, Instead of X one observes

(4.1) Xe = X + c,

where c is a real-valued number. A constant measurement error leads to a virtual
shift of the process mean by c units.

A random measurement error results when the error is modeled by a random
variable ε. It will be assumed that X and ε, analogously to (4.1), are additively
linked according to

(4.2) Xe = X + ε.

It is further assumed that the random variables X and ε are stochastically inde-
pendent and the E(ε) = 0. A measurement error of this type enlarge the process
variance by adding the error variance without affecting the process mean µ = E(X).
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4.1. Constant measurement errors. If a constant measurement error occurs,
one measures instead of the N(µ, σ2)-distributed latent variable X the N(µe, σ2)-
distributed variable Xe given in (4.1) with µe = µ + c, the constant measurement
error has influence on the value of the fuzzy capability index Cp̃. In fact, if we
consider an exponential membership function for the quality characteristic, we have

Ce
p̃(exp) =

∫ ∞

−∞
exp

(−(x−m)2

2λ2

)
1√
2πσ

exp
(−(x− µ− c)2

2σ2

)
dx

=
(

λ√
λ2 + σ2

)
exp

−(µ + c−m)2

2(λ2 + σ2)
(4.3)

In order to quantitatively evaluation the measurement errors induced changes,
one can look at the ratio of the empirical and true process capability indices:

Ce
p̃(exp)

Cp̃(exp)
=

(
λ√

λ2+σ2

)
exp

(
−(µ+c−m)2

2(λ2+σ2)

)
(

λ√
λ2+σ2

)
exp

(
−(µ−m)2

2(λ2+σ2)

)

= exp
[
−y2

2

(
1 +

2z

y

)]
,(4.4)

where y = c√
λ2+σ2 and z = µ−m√

λ2+σ2 .
Figure 5 shows the quotient (4.4) as a function of the relation process mean z

and the relative constant measurement error y for the range defined by |y| ≤ 0.1 and
|z| ≤ 1.

Figure 5. Graph of
Ce

p̃(exp)

Cp̃(exp)
in the case of constant error

For fixed error contamination degree y, the quotient (4.4) is studied as a function
of z, this function is decreasing for y ∈ [0, 0.1] and fixed, it is increasing for fixed
y ∈ [−0.1, 0], it takes its minimum values in (0.1, 1) and (−0.1,−1) it also takes its
maximum values in (0.1,−1) and (−0.1, 1). It is equal to 1 in (0, 0). In case of exact
process adjustment, i.e. z = 0, the ratio

Ce
p̃(exp)

Cp̃(exp)
takes the value e−y2/2. This means
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that in case of µ = m,

(4.5) Ce
p̃(exp) = exp

(
−y2

2

)
Cp̃(exp) ,

that is, Ce
p̃(exp) will be decreased by the coefficient exp

(
−y2

2

)
.

But in the traditional method, we have

(4.6)
Ce

p

Cp
= 1 and

Ce
pk

Cpk
=

1− |z + y|
1− |z| ,

where z = µ−M
USL−LSL

2
and y = c

USL−LSL
2

.

Figure 6 shows the quotient (4.6) as a function of the process mean z and the
relative constant measurement error y for the range defined by |y| ≤ 0.1 and |z| ≤ 0.9.

Figure 6. Graph of Ce
p

Cp
in the case of constant error

For fixed error contamination degree y, the quotient (4.6) is studied as a function
of z. Its curve can be obtained by vertically intersecting the 3D graph in figure 4.2
parallel to the z- Ce

pk

Cpk
-plane. This curve has two poles in y = ∓0.1, i.e. at the limits

of the tolerance interval. This implies that the error induced relative change in Cpk

is not bounded.
In z = −y

2 the function take on value 1. Hence at z = −y
2 the Cpk index will not

be influenced by the constant error c. For z < −y
2 there will be depending on the

sign of c, an error induced increase or decrease of Cpk. For the z > −y
2 the distortion

points to the opposite direction. In the case of exact process centredness, i.e. z = 0,
the ratio Ce

pk

Cpk
takes on the value 1−|y|. This means that in case of µ = M the index

will be decreased by 100 · |y|%.

4.2. Random measurement errors. It is now assumed that an additive N(0, σ2
e)-

distributed measurement error ε occurs which is supposed to be stochastically in-
dependent from the quality characteristic X. Thus, according to relation (4.2) one
observes instead of the N(µ, σ2)-distributed variable X the N

(
µ, (σe)2

)
-distributed

variable Xe with (σe)2 = σ2+ σ2
e .
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A quantitative analysis of the effects of a random error can again be performed
by evaluating the ratios of empirical and true process capability indices based on a
exponential membership function for tolerance interval. We have :

Ce
p̃(exp) =

∫ ∞

−∞
exp

(−(x−m)2

2λ2

)
1√
2πσ

exp
( −(x− c)2

2(σ2 + σ2
e)

)
dx

=

(
λ√

λ2 + σ2 + σ2
e

)
exp

( −(µ−m)2

2(λ2 + σ2 + σ2
e)

)
.(4.7)

Therefore

Ce
p̃(exp)

Cp̃(exp)
=

(
λ√

λ2 + σ2 + σ2
e

)
exp

(
−(µ−m)2

2(λ2+σ2+σ2
e)

)

(
λ√

λ2 + σ2

)
exp

(
−(µ−m)2

2(λ2+σ2)

)

=
1√

1 + y2
exp

[
−z2

2

(
y2

1 + y2

)]
,(4.8)

where y = σe√
λ2+σ2 and z = µ−m√

λ2+σ2 .
If one consider the error contamination degree y fixed and examine (4.8) as a

function of the relative process level z only, one gets a 2D curve which is symmetric
about z = 0, This graph results by vertically intersecting the 3D graph in Figure 7
parallel to the z,

Ce
p̃(exp)

Cp̃(exp)
- plane.

Figure 7. Graph of
Ce

p̃(exp)

Cp̃(exp)
in the case of random error

At z = 0, this curve take on its minimum value 1√
1+y2

.

(4.9) Ce
p̃(exp) =

1√
1 + y2

Cp̃(exp) ,
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i.e. when µ = m, Cp̃(exp) will be decreasing by the coefficient
(

1− 1√
1+y2

)
.

But in the traditional method, we have

(4.10)
Ce

p

Cp
=

Ce
pk

Cpk
=

1√
1 + x2

,

where x =
σe

σ
. It is independent of µ and the tolerance interval. Figure 8 shows the

quotient
Ce

pk

Cpk
as a function of x.

Figure 8. Graph of Ce
p

Cp
in the case of constant error

5. Numerical Examples

In this section, we calculate the presented fuzzy process capability index with
some random generated data. We apply two common membership functions (i.e.
Trapezoidal and exponential) for showing the fuzzy up-to-standard productions.

Example 5.1: In this example, we generate N = 1000 random numbers corre-
sponding to a normal distribution with parameters µ = 74 and σ = 0.0125. Figure
9 shows the histogram of generated numbers.

Let [73.95, 74.05] be the standard range of quality characteristic (tolerance inter-
val), we present it by the following exponential and trapezoidal membership func-
tions

Ãexp(x) = exp

[
−1

2

(
x− 74
0.042

)2
]

,

and

Ãtrap(x) =





x−73.92
0.06 if 73.92 ≤ x < 73.98
1 if 73.98 ≤ x ≤ 74.02

74.08−x
0.06 if 74.02 < x ≤ 74.08
0 if otherwise.

Figure 10 shows the curves of Ãexp(x) and Ãtrap(x).
28
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Figure 9. Histogram of generated data

Figure 10. Curves of Ãexp(x) and Ãtrap(x)

The estimated values of the capability index Cp̃ are given as follows:

Ĉp̃(trap)1 = − s√
2π(a− b)

[
exp

(
− (a− x)2

2s2

)
− exp

(
− (b− x)2

2s2

)]

+
s√

2π(c− d)

[
exp

(
− (c− x)2

2s2

)
e− exp

(
− (d− x)2

2s2

)]

+
x− a

b− a

[
Φ(

b− x

s
)− Φ(

a− x

s
)
]

+
x− d

c− d

[
Φ(

d− x

s
)− Φ(

c− x

s
)
]

+
[
Φ(

c− x

s
)− Φ(

b− x

s
)
]

.

= 0.9903,
29



Bahram Sadeghpour Gildeh/Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 1, 17–32

Ĉp̃(trap)2 =
1
N

N∑

i=1

Ãtrap(xi)

= 0.9901,

Ĉp̃(exp)1 =
λ√

λ2 + σ2
exp

[
− (x−m)2

2 (λ2 + σ2)

]

= 0.9585,

Ĉp̃(exp)2 =
1
N

N∑

i=1

Ãexp(xi)

= 0.9585,

and

Ĉp(classic) =
Ts− Ti

6s
= 1.3333.

In this example the position of the distribution centre of characteristic X and
the centre of tolerance interval coincide and the calculated indices express a capable
process, that is, the percentage of non-conforming products is small.

Example 5.2 In this example, we generate N = 1000 random numbers correspond-
ing to a normal distribution with parameters µ = 74.025 and σ = 0.0125. Figure 11
shows the histogram of generated numbers.

Figure 11. Histogram of generated data
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By same tolerance interval and membership functions, the estimated values of
capability index Cp̃ are calculated as follows:

Ĉp̃(trap)1 = − s√
2π(a− b)

[
exp

(
− (a− x)2

2s2

)
− exp

(
− (b− x)2

2s2

)]

+
s√

2π(c− d)

[
exp

(
− (c− x)2

2s2

)
− exp

(
− (d− x)2

2s2

)]

+
x− a

b− a

[
Φ(

b− x

s
)− Φ(

a− x

s
)
]

+
x− d

c− d

[
Φ(

d− x

s
)− Φ(

c− x

s
)
]

+
[
Φ(

c− x

s
)− Φ(

b− x

s
)
]

.

= 0.8687,

Ĉp̃(trap)2 =
1
N

N∑

i=1

Ãtrap(xi)

= 0.8612,

Ĉp̃(exp)1 =
λ√

λ2 + σ2
exp

[
− (x−m)2

2 (λ2 + σ2)

]

= 0.8145,

Ĉp̃(exp)2 =
1
N

N∑

i=1

Ãexp(xi)

= 0.8078,

and

Ĉpi =
x− Ti

3s
and Ĉps =

x− Ti

3s
= 2.0162, = 0.6505

Ĉpk = min(Ĉpi, Ĉpu)
= 0.6505.

In this example the position of the distribution centre of characteristic X and
the centre of tolerance interval do not coincide and the calculated indices express a
non-capable process, that is, the percentage of non-conforming products is high.

6. Conclusions

In this paper we discussed on the process capability indices, specially on fuzzy
process of capability which hasn’t the shortcoming of the traditional method. Our
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essential goal is representing a method to describe the treatment of the produced
items, where are approximately up-to-standard. It means, the measures which are
in the neighborhood of the tolerance interval limits. These measures could be have
an admissible interpretation by considering a membership function for representing.
We have shown that like to traditionally method, random and constant measurement
errors can considerably falsify the results of the fuzzy process capability analysis.
This fact underlines the importance of ensuring gauge capability before evaluating
process capability. The discussion also illustrates that the Cpk and Cp̃ indices have
very sensitively to normally distributed measurement errors.

One of the best applications of the fuzzy process of capability is comparing the
quality of two production systems.

We can use this method for computing the capability index of a production system
that its quality characteristic (X) is multivariate.

Acknowledgements. The author wish to thank the anonymous reviewers for
their valuable suggestions

References

[1] L. K. Chan, S. W. Chen and F. A. Spiring, A new measure of process capability: Cpm, Journal
of Quality Technology 20 (1988) 162–175.

[2] D. Gien, Towards a unified representation of quality in manufacturing systems, Int. J. Com-
puter Integrated Manufacturing 12(2) (1999) 141–155.

[3] V. E. Kane, Process capability indices, Journal of Quality Technology 18 (1986) 41–52.
[4] G. J. Klir and Y. Bo, Fuzzy set and fuzzy logic, theory and applications, Prentice-Hall Inc.,

New Jersey, 1995.
[5] S. Kotz and N. L. Johnson, Process capability indices, Chapman & Hall, London, 1993.
[6] H. T. Lee, Cpk index estimation using fuzzy numbers, European Journal of Operational Re-

search 129 (1999) 683–688.
[7] D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, Inc., New

York, 2001.
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