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1. Introduction

We introduced multi-fuzzy sets [3, 4] to handle life problems with multi dimen-
sional characteristic properties. The theory of multi-fuzzy sets is an extension
of theories of L-fuzzy sets and Atanassov intuitionistic fuzzy sets. We proposed
important basic topological, algebraic and set theoretical concepts of multi-fuzzy
sets [2, 3, 4, 5, 7] and studied some fundamental properties of them. Multi-fuzzy
extension of crisp functions [4] is one of the most relevant part of multi-fuzzy set the-
ory and so we introduced the concept of bridge functions. In this paper, multi-fuzzy
extensions of crisp functions based on the bridge functions lattice homomorphisms,
order homomorphisms, L-fuzzy lattices and strong L-fuzzy lattices are studied.

2. Preliminaries

Throughout this paper, we will use the following notations. X and Y stand for
universal sets, I, J and K stand for indexing sets, L and M stand for partially
ordered sets, {Lj : j ∈ J} and {Mi : i ∈ I} are families of complete lattices with
order reversing involutions, unless it is stated otherwise and LX stands for the set
of all functions from X to L. The products

∏
Mi,

∏
Lj ,

∏
Nk,

∏
MX

i ,
∏

LY
j and
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k vary over i ∈ I, j ∈ J and k ∈ K. Partial order ≥ is the opposite order
relation of the partial order ≤ .

Definition 2.1 ([1]). Let X be a nonempty ordinary set and L be a complete lattice.
An L-fuzzy set on X is a mapping A : X → L, that is, the family of all the L-fuzzy
sets on X is just LX consisting of all the mappings from X to L.

Definition 2.2 ([9]). Let ′ : M → M and ′ : L → L be order reversing involutions.
A mapping h : M → L is called an order homomorphism, if it satisfies the conditions
h(0) = 0, h(∨ai) = ∨h(ai) and h−1(b′) = (h−1(b))′, where h−1 : L → M is defined
by ∀b ∈ L, h−1(b) = ∨{a ∈ M : h(a) ≤ b}.

Wang [9] proved the following properties of order homomorphism. For every
a ∈ M and p ∈ L; a ≤ h−1(h(a)), h(h−1(p)) ≤ p, h−1(1L) = 1M , h−1(0L) = 0M

and a ≤ h−1(p) if and only if h(a) ≤ p if and only if h−1(p′) ≤ a′. Both h and
h−1 are order preserving and arbitrary join preserving maps. More over h−1(∧ai) =
∧h−1(ai).

Definition 2.3 ([10]). If {Lj : j ∈ J} is a family of lattices, then the product
∏

Lj

is a lattice if for arbitrary x, y ∈
∏

Lj , the join x ∨ y and the meet x ∧ y of x, y are
defined as:

(x ∨ y)j = xj ∨ yj and (x ∧ y)j = xj ∧ yj , ∀xj , yj ∈ Lj , ∀j ∈ J ;

or, equivalently, x ≤ y is defined by xj ≤j yj , ∀j ∈ J , where ≤ and ≤j are the order
relations in

∏
Lj and Lj respectively.

2.1. Multi-fuzzy sets

Definition 2.4 ([3, 4]). Let X be a nonempty set, J be an indexing set and {Lj :
j ∈ J} a family of partially ordered sets. A multi-fuzzy set A in X is a set :

A = {〈x, (µj(x))j∈J〉 : x ∈ X, µj ∈ LX
j , j ∈ J}.

The function µA = (µj)j∈J is called the multi-membership function of the multi-
fuzzy set A. If |J | = n, a natural number, then n is called the dimension of A.
Complement of A is A′ = {〈x, (µ′j(x))j∈J〉 : x ∈ X}, where µ′j is the order reversing
involution of µj .

Definition 2.5 ([3]). Let {Lj : j ∈ J} be a family of partially ordered sets,

A = {〈x, (µj(x))j∈J〉 : x ∈ X, µj ∈ LX
j , j ∈ J}

and
B = {〈x, (νj(x))j∈J〉 : x ∈ X, νj ∈ LX

j , j ∈ J}
be multi-fuzzy sets in a nonempty set X with the product order. Then A v B if
and only if µj(x) ≤ νj(x), ∀x ∈ X and ∀j ∈ J .

The equality, union and intersection of A and B are defined as:
(a) A = B if and only if µj(x) = νj(x), ∀x ∈ X and ∀j ∈ J ;
(b) A tB = {〈x, (µj(x) ∨ νj(x))j∈J〉 : x ∈ X};
(c) A uB = {〈x, (µj(x) ∧ νj(x))j∈J〉 : x ∈ X}.

Proposition 2.6 ([3]). Let A,B, C ∈
∏

MX
i be multi-fuzzy sets in X. Then
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(a) A tA = A, A uA = A ;
(b) A v A tB, B v A tB, A uB v A and A uB v B;
(c) A v B if and only if A tB = B if and only if A uB = A.

2.2. L-fuzzy lattices and strong L-fuzzy lattices

Definition 2.7 ([8]). Let (M,∧M ,∨M ) be a lattice and L be a complete lattice
with the least element 0L and the greatest element 1L. The mapping A : M → L is
called a lattice-valued fuzzy lattice (L-fuzzy lattice) if all the p-level sets (p ∈ L) of
A are sublattices of M.

Proposition 2.8 ([8]). Let (M,∧M ,∨M ) be a lattice and (L,∧L,∨L) a complete
lattice with 0L and 1L.

(a) Let p, q ∈ L and A : M → L be an L-fuzzy lattice. If p ≤ q, then the q-level
set

Aq = {x ∈ M : q ≤ A(x)}
is a sublattice of the p-level set

Ap = {x ∈ M : p ≤ A(x)}.
(b) A mapping A : M → L is an L-fuzzy lattice if and only if

A(x) ∧L A(y) ≤ A(x ∧M y) and A(x) ∧L A(y) ≤ A(x ∨M y)

for all x, y ∈ M .

Definition 2.9 ([6]). Let (M,∧,∨) be a lattice and (L,∧,∨) be a lattice with the
least element 0L and the greatest element 1L. The mapping A : M → L is called a
strong L-fuzzy lattice if Ab

a = {x ∈ M : a ≤ A(x) ≤ b} is a sublattice of M , for all
a, b ∈ L.

Proposition 2.10 ([6]). Let A : M → L be a strong L-fuzzy lattice, and let
p, q, r, s ∈ L. If p ≤ q ≤ r ≤ s, then Ar

q is a sublattice of As
p.

Theorem 2.11 ([6]). Let (M,∧,∨) be a lattice and (L,∧,∨) a complete lattice with
0L and 1L. The mapping A : M → L is a strong L-fuzzy lattice if and only if A
satisfies the following conditions, for all x, y ∈ M :

(a) A(x) ∧A(y) ≤ A(x ∧ y) ≤ A(x) ∨A(y);
(b) A(x) ∧A(y) ≤ A(x ∨ y) ≤ A(x) ∨A(y).

Theorem 2.12 ([6]). Let M be a lattice, L be a completely distributive lattice and
Aj : M → L be a strong L-fuzzy lattice (L-fuzzy lattice), for each j ∈ J , then

∨
j∈J

Aj

and
∧
j∈J

Aj are strong L-fuzzy lattices (L-fuzzy lattices respectively).

Theorem 2.13 ([6]). Let M be a lattice, L be a complete lattice and A : M → L
be a mapping. A is a lattice homomorphism if and only if A is an order preserving
strong L-fuzzy lattice.

Theorem 2.14 ([6]). Let L,M and N be complete lattices, B : N → M be a lattice
homomorphism and A : M → L be a strong L-fuzzy lattice, then A ◦ B : N → L is
a strong L-fuzzy lattice.

3



Sabu Sebastian et al./Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 1, 1–8

Definition 2.15 ([6]). Let M and L be complete lattices, A : M → L be an L-fuzzy
lattice. Then A−1 : L → M is the upper adjoint of A, that is, for every b ∈ L,

A−1(b) =

{ ∨
{a ∈ M : A(a) ≤ b}, if there exists an a ∈ M such that A(a) ≤ b;

0M , otherwise.

Lemma 2.16 ([6]). Let M and L be complete lattices, A : M → L be an L-fuzzy
lattice, then:

(a) A−1(l1 ∧ l2) ≤ A−1(l1) ∧A−1(l2);
(b) A−1(l1 ∨ l2) ≥ A−1(l1) ∨A−1(l2).

That is, A−1 is order preserving.

3. Bridge functions and multi-fuzzy extensions

Multi-fuzzy extension of a crisp function is useful to map a multi-fuzzy set into
another multi-fuzzy set. In the case of a crisp function, there exists infinitely many
multi-fuzzy extensions, even though the domain and range of multi-fuzzy extensions
are fixed.

Definition 3.1 ([4]). Let f : X → Y and h :
∏

Mi →
∏

Lj be functions. The
multi-fuzzy extension of f and the inverse of the extension are f :

∏
MX

i →
∏

LY
j

and f−1 :
∏

LY
j →

∏
MX

i defined by

f(A)(y) =
∨

y=f(x)

h(A(x)), A ∈
∏

MX
i , y ∈ Y

and
f−1(B)(x) = h−1(B(f(x))), B ∈

∏
LY

j , x ∈ X;

where h−1 is the upper adjoint [9] of h. The function h :
∏

Mi →
∏

Lj is called
the bridge function of the multi-fuzzy extension of f .

Order homomorphisms, lattice homomorphisms, arbitrary join preserving maps,
complement preserving maps, etc. are useful bridge functions for multi-fuzzy exten-
sions.

Example 3.2. Let h :
∏

Mi → {0, 1} be the bridge function for the multi-fuzzy
extension f :

∏
MX

i → 2X of a crisp function f : X → X. This type of extensions
is useful in defuzzification problems of multi-fuzzy sets. The crisp subsets

Āh
f =

y ∈ X :
∨

y=f(x)

h(A(x)) = 1


and

Ah
f =

y ∈ X :
∧

y=f(x)

h(A(x)) = 1


satisfy the relation Ah

f ⊆ Āh
f .
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Lemma 3.3. Let h :
∏

Mi → {0, 1} be the bridge function for the multi-fuzzy
extension f :

∏
MX

i → 2X of a crisp function f : X → X, and let

Āh
f =

y ∈ X :
∨

y=f(x)

h(A(x)) = 1


and

Ah
f =

y ∈ X :
∧

y=f(x)

h(A(x)) = 1

 ,

for any A ∈
∏

MX
i . If h is a lattice homomorphism and A,B ∈

∏
MX

i , then
(a) Āh

f ∪ B̄h
f = (A ∪B)h

f ;
(b) Āh

f ∩ B̄h
f = (A ∩B)h

f ;
(c) Ah

f ∪Bh
f = (A ∪B)h

f ;
(d) Ah

f ∩Bh
f = (A ∩B)h

f .

Proof. (a) to (d) follow from the definitions. �

Example 3.4. Let h :
∏

Mi → [0, 1] be the bridge function for the multi-fuzzy
extension f :

∏
MX

i → [0, 1]X of a crisp function f : X → X. This type of extensions
produces fuzzy sets from multi-fuzzy sets and this process is called fuzzification of
multi-fuzzy set.

3.1. Extensions based on order homomorphisms

Proposition 3.5 ([4]). If an order homomorphism h :
∏

Mi →
∏

Lj is the bridge
function for the multi-fuzzy extension of a crisp function f : X → Y , then for any
k ∈ K, Ak ∈

∏
MX

i , Bk ∈
∏

LY
j :

(a) f(0X) = 0Y ;

(b) f(tAk) = tf(Ak);

(c) (f−1(B))′ = f−1(B′),
that is, the extension map f is an order homomorphism.

Theorem 3.6 ([4]). If an order homomorphism h :
∏

Mi →
∏

Lj is the bridge
function for the multi-fuzzy extension of a crisp function f : X → Y , then for any
k ∈ K, Ak ∈

∏
MX

i , Bk ∈
∏

LY
j :

(a) A1 v A2 implies f(A1) v f(A2);

(b) f(tAk) = tf(Ak);

(c) f(uAk) v uf(Ak);

(d) f(A[α]) ⊆ f(A)[h(α)];

(e) f−1(1Y ) = 1X and f−1(0Y ) = 0X ;

(f) B1 v B2 implies f−1(B1) v f−1(B2);

(g) f−1(tBk) = tf−1(Bk);

(h) f−1(uBk) = uf−1(Bk);
5



Sabu Sebastian et al./Annals of Fuzzy Mathematics and Informatics 2 (2011), No. 1, 1–8

(i) A v f−1(f(A));

(j) f(f−1(B)) v B.

3.2. Extensions based on lattice valued fuzzy lattices

Theorem 3.7. Let {Lj : j ∈ J} and {Mi : i ∈ I} be families of completely dis-
tributive lattices, lattice valued fuzzy lattice h :

∏
Mi →

∏
Lj be the bridge function

for the multi-fuzzy extension of f : X → Y.

(a) The supremum extension F̄ :
∏

MX
i →

∏
LY

j of f defined by;

F̄ (A)(y) =
∨

x∈f−1(y)

h(A(x)), A ∈
∏

MX
i , y ∈ Y,

is a lattice valued fuzzy lattice with respect to the inclusion as the order
relation.

(b) The infimum extension f̄ :
∏

MX
i →

∏
LY

j of f defined by;

f̄(A)(y) =
∧

x∈f−1(y)

h(A(x)), A ∈
∏

MX
i , y ∈ Y,

is a lattice valued fuzzy lattice with respect to the inclusion as the order
relation.

Proof. (a) We have

F̄ (A1 tA2)(y) =
∨
{h((A1 tA2)(x)) : x ∈ X, y = f(x)}

=
∨
{h(A1(x) ∨A2(x)) : x ∈ X, y = f(x)}

≥
∨
{h(A1(x)) ∧ h(A2(x)) : x ∈ X, y = f(x)}

=
(∨

{h(A1(x)) : x ∈ X, y = f(x)}
)
∧

(∨
{(h(A2(x)) : x ∈ X, y = f(x)}

)
= F̄ (A1)(y) ∧ F̄ (A2)(y) = (F̄ (A1) u F̄ (A2))(y).

That is, F̄ (A1) u F̄ (A2) v F̄ (A1 t A2). Similarly F̄ (A1) u F̄ (A2) v F̄ (A1 u A2),
which implies that F̄ (A1) u F̄ (A2) v F̄ (A1 tA2) u F̄ (A1 uA2).

(b) Similar to (a). �

Theorem 3.8. Let {Lj : j ∈ J} and {Mi : i ∈ I} be families of completely dis-
tributive lattices and the strong lattice valued fuzzy lattice h :

∏
Mi →

∏
Lj be the

bridge function for the multi-fuzzy extension of f : X → Y. Then the supremum
and infimum extensions F̄ , f̄ :

∏
MX

i →
∏

LY
j of f are strong lattice valued fuzzy

lattices with respect to the inclusion as the order relation.

Proof. Similar to the Theorem 3.7. �

Remark 3.9. Similarly one can show that, f(1X) need not equal 1Y and f−1(1Y )
need not equal 1X . If an order homomorphism is the bridge function for the multi-
fuzzy extension of the crisp function f , then f(0X) = 0Y , A v B implies f(A) v
f(B), f−1(0Y ) = 0X , f(tAk) = tf(Ak) and f(uAk) v uf(Ak) .

6
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Theorem 3.10. Let f :
∏

MX
i →

∏
LY

j be the multi-fuzzy extension of a crisp
function f : X → Y with respect to the lattice valued fuzzy lattice h :

∏
Mi →

∏
Lj

as the bridge function. For any k ∈ K, Ak ∈
∏

MX
i , Bk ∈

∏
LY

j :

(a) B1 v B2 implies f−1(B1) v f−1(B2);
(b) tf−1(Bk) v f−1(tBk);
(c) f−1(uBk) v uf−1(Bk).

Proof. (a) Assume that B1 v B2. For every y ∈ Y, B1(y) ≤ B2(y), that is
B1(f(x)) ≤ B2(f(x)),∀x ∈ f−1(y). Hence

f−1(B1)(y) =
∨

h−1(B1(f(x))) ≤
∨

h−1(B2(f(x))) = f−1(B2)(y).

Thus f−1(B1) v f−1(B2).
(b) and (c) follow immediately from (a). �

Remark 3.11. Multi-fuzzy extension of a crisp function with respect to a lattice
valued fuzzy lattice (bridge function for the extension) need not satisfy the following
relations. For k ∈ K:

(i) f(0X) = 0Y ;
(ii) f−1(0Y ) = 0X ;
(iii) A v B implies f(A) v f(B);
(iv) tf(Ak) v f(tAk);
(v) f(uAk) v uf(Ak).

Proof. See the counter example. Let L = {0L, 1L}, M = {0M , a, b, 1M} be the
diamond lattice with the bottom element 0M and the top element 1M . Suppose the
L-fuzzy lattice h : M → L defined by

h =
(

0M a b 1M

1L 0L 0L 1L

)
is the bridge function for the multi-fuzzy extension f : MX → LY of the crisp
function f : X → Y.

(i) For any y ∈ Y, f(0X)(y) = ∨{h(0X(x)) : x ∈ X, y = f(x)} = h(0M ) = 1L.
Hence 1Y = f(0X) 6= 0Y .

(ii) f−1(0Y )(y) = h−1(0Y (f(x))) = h−1(0L) = a ∨ b = 1M . Therefore f−1(0Y ) =
1X 6= 0X .

(iii) Let A(x) = 0, B(x) = a,∀x ∈ X and suppose that A v B. Thus 0M =
A(x) ≤ B(x) = a,∀x ∈ X. But 1L = h(0M ) = h(A(x)) ≤/ h(B(x)) = h(a) = 0L.
Hence f(A) /v f(B).

(iv) and (v) follow immediately from (iii). �

3.3. Extensions based on lattice homomorphisms

Theorem 3.12. If a complete lattice homomorphism h :
∏

Mi →
∏

Lj is the bridge
function for the multi-fuzzy extension of a crisp function f : X → Y , then for any
k ∈ K, Ak ∈

∏
MX

i , Bk ∈
∏

LY
j :

(a) f(0X) = 0Y and f(1X) = 1Y ;

(b) A1 v A2 implies f(A1) v f(A2);
7
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(c) f(tAk) = tf(Ak);

(d) f(uAk) v uf(Ak);

(e) f−1(1Y ) = 1X ;

(f) B1 v B2 implies f−1(B1) v f−1(B2);

(g) tf−1(Bk) v f−1(tBk);

(h) f−1(uBk) v uf−1(Bk).

Proof. Straightforward. �
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