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Abstract. Multi–granulation is an improvement of the classical rough
set theory since it uses a family of binary relations instead of of a single
indiscernibility relation for the constructing of approximation. In this pa-
per, the multi–granulation rough set approach is further generalized into
fuzzy environment. A family of fuzzy T–similarity relations are used to
define the optimistic and pessimistic fuzzy rough sets respectively. The
basic properties about these fuzzy rough sets are then discussed. Finally,
the relationships among single relation based fuzzy rough set, optimistic
and pessimistic multi–granulation fuzzy rough sets are addressed.
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1. Introduction

Rough set theory [12, 13, 14, 15], proposed by Pawlak, is a powerful tool which
can be used to deal with the inconsistency problems by separation of certain and
doubtful knowledge extracted from the exemplary decisions. Presently, rough set
theory has been demonstrated to be useful in the fields such as knowledge discovery,
decision analysis, data mining, pattern recognition and so on.

However, it is well known that the indiscernibility relation is too restrictive for
classification analysis in practical applications, especially in the fuzzy environment.
Therefore, how to generalize the rough set model to fuzzy case plays an important
role in the development of rough set theory. For example, in Ref. [6], the model of
rough fuzzy set is proposed by using the indiscernibility relation to approximate a
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fuzzy concept. Alternatively, the fuzzy rough model is the approximation of a crisp
set or a fuzzy set in a fuzzy approximation space. In Ref. [19], Sun et al. presented
the interval–valued fuzzy rough set by combining the interval–valued fuzzy set and
rough set. By employing an approximation space constituted from an intuitionistic
fuzzy triangular norm, an intuitionistic fuzzy implicator, and an intuitionistic fuzzy
T–equivalence relation, Cornelis et al. [4] defined the concept of intuitionistic fuzzy
rough sets in which the lower and upper approximations are both intuitionistic
fuzzy sets in the universe. Zhou et al. proposed the intuitionistic fuzzy rough
approximation by constructive and axiomatic approaches in Ref. [24]. Bhatt [1]
presented the fuzzy–rough sets on compact computational domain. Zhao et al. [23]
investigated the fuzzy variable precision rough sets by combining fuzzy rough set and
variable precision rough set with the goal of making fuzzy rough set a special case.
Hu et al. [7] proposed the Gaussian Kernel based fuzzy rough set, it uses the Gaussian
Kernel to compute fuzzy T–equivalence relation for objective approximation. The
same authors proposed the fuzzy preference–based rough sets in Ref. [8]. Ouyang
et al. [11] presented the fuzzy rough model which is based on the fuzzy tolerance
relation. More details about recent advancements of fuzzy rough set can be found
in the literatures [2, 3, 5, 9, 10, 20, 21, 22].

Obviously, it is not difficult to observe that the above fuzzy rough set approaches
are proposed on the basis of one and only one fuzzy binary relation. However,
it should be noticed that in Ref. [16, 17, 18], the authors argued that we often
need to describe concurrently a target concept through multi binary relations (e.g.
equivalence relation, tolerance relation, reflexive relation and neighborhood relation)
on the universe according to a user’s requirements or targets of problem solving.
Therefore, they proposed the concept of Multi–Granulation Rough Set (MGRS) [16,
17, 18] model which is based on a family of indiscernibility relations. In their papers,
Qian et al. said that the MGRS are useful in the following cases [18]:

(1) we cannot perform the intersection operations between two different at-
tributes sets;

(2) decision makers may be independent for the same project;
(3) extract decision rules from distributive information systems and groups of

intelligent agents through using rough set approaches.

The purpose of this paper is to further generalize the MGRS to fuzzy environ-
ment. In our approach, a family of fuzzy T–similarity relations is used for con-
structing multi–granulation fuzzy rough set. To facilitate our discussion, we first
present Pawlak’s rough set, Qian’s MGRS in Section 2. In Section 3, the optimistic
and pessimistic multi–granulation fuzzy rough approximations are defined as the
generalization of classical fuzzy rough set and Qian’s MGRS. Not only the basic
properties about the multi–granulation fuzzy rough set are discussed, but also the
relationships among several fuzzy rough sets are presented. Results are summarized
in Section 4.

2. Preliminary knowledge on rough sets

In this section, we review some basic concepts such as information system, Pawlak’s
rough set, multi–granulation rough set and dominance–based rough set.
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2.1. Pawlak’s rough set. Formally, let U 6= ∅ be the universe of discourse, R is
a family of equivalence relations on U , then the pair K = (U,R) is referred to as a
knowledge base.
∀R ∈ R, AP = (U,R) is referred to as a approximate space, we use U/R to

represent the family of all equivalence classes in terms of R (or classification of
U). Such family of equivalence classes is referred to as categories or concepts of R.
Therefore, ∀x ∈ U , [x]R is used to denotes a category (equivalence class) in terms
of R which contains x.

Suppose that A ⊆ R, then
⋂

A (intersection of all equivalence relations in A) is
also an equivalence relation, and will be denoted by IND(A), it is referred to as an
indiscernibility relation over A. U/IND(A) is the family of all equivalence classes
in terms of the set of equivalence relations A, each element in U/IND(A) is referred
to as an A–basic knowledge, [x]A = {y ∈ U : (x, y) ∈ IND(A)} is the equivalence
class of x in terms of the set of equivalence relations A.

By the indiscernibility relation IND(A), one can derive the lower and upper
approximations of an arbitrary subset X of U . They are defined as

A(X) = {x ∈ U : [x]A ⊆ X} and A(X) = {x ∈ U : [x]A ∩X 6= ∅}
respectively. The pair [A(X), A(X)] is referred to as the Pawlak’s rough set of X
with respect to the set of attributes A.

2.2. Multi–granulation rough set. The multi–granulation rough set is different
from Pawlak’s rough set model because the former is constructed on the basis of a
family of binary relations instead of a single indiscernibility relation.

The concept of multi–granulation rough set theory was firstly proposed by Qian
et al. In their appraoch, two different models have been defined. The first one is
the optimistic multi–granulation rough set [16, 18], the second one is the pessimistic
multi–granulation rough set [17].

2.2.1. Optimistic MGRS.

Definition 2.1. [18] Let K be a knowledge base in which A = {R1, R2, · · · , Rm} ⊆
R, then ∀X ⊆ U , the optimistic multi–granulation lower and upper approximations

are denoted by
m∑

i=1

Ri

O

(X) and
m∑

i=1

Ri

O

(X) respectively where

m∑

i=1

Ri

O

(X) = {x ∈ U : [x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]Am ⊆ X};(2.1)

m∑

i=1

Ri

O

(X) = ∼
m∑

i=1

Ri

O

(∼ X);(2.2)

[x]Ri (1 ≤ i ≤ m) is the equivalence class of x in terms of the equivalence relation
Ri, ∼ X is the complement of set X.
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By the lower and upper approximations
m∑

i=1

Ri

O

(X) and
m∑

i=1

Ri

O

(X), the opti-

mistic multi–granulation boundary region of X is

(2.3) BNO∑m
i=1 Ri

(X) =
m∑

i=1

Ri

O

(X)−
m∑

i=1

Ri

O

(X).

Theorem 2.2. Let K be a knowledge base in which A = {R1, R2, · · · , Rm} ⊆ R,
then ∀X ⊆ U , we have

(2.4)
m∑

i=1

Ri

O

(X) = {x ∈ U : [x]R1 ∩X 6= ∅∧ [x]R2 ∩X 6= ∅∧· · ·∧ [x]Rm ∩X 6= ∅}.

Proof. By Definition 2.1, we have

x ∈
m∑

i=1

Ri

O

(X) ⇔ x /∈
m∑

i=1

Ri

O

(∼ X)

⇔ [x]R1 * (∼ X) ∧ [x]E2 * (∼ X) ∧ · · · ∧ [x]Rm * (∼ X)
⇔ [x]R1 ∩X 6= ∅ ∧ [x]R2 ∩X 6= ∅ ∧ · · · ∧ [x]Rm ∩X 6= ∅

¤
By Theorem 2.2, we can see that though the optimistic upper approximation is

defined by the complement of the lower approximation, it can also be considered as
a subset in which each object has a non–empty intersection with the target in terms
of each subset of attributes.

2.2.2. Pessimistic MGRS.

Definition 2.3. [17] Let K be a knowledge base in which A = {R1, R2, · · · , Rm} ⊆
R, then ∀X ⊆ U , the pessimistic multi–granulation lower and upper approximations

are denoted by
m∑

i=1

Ri

P

(X) and
m∑

i=1

Ri

P

(X) respectively where

m∑

i=1

Ri

P

(X) = {x ∈ U : [x]R1 ⊆ X ∧ [x]R2 ⊆ X ∧ · · · ∧ [x]Rm ⊆ X};(2.5)

m∑

i=1

Ri

P

(X) = ∼
m∑

i=1

Ri

P

(∼ X).(2.6)

By the lower and upper approximations
m∑

i=1

Ri

P

(X) and
m∑

i=1

Ri

P

(X), the pes-

simistic multi–granulation boundary region of X is

(2.7) BNP∑m
i=1 Ri

(X) =
m∑

i=1

Ri

P

(X)−
m∑

i=1

Ri

P

(X).
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Theorem 2.4. Let K be a knowledge base in which A = {R1, R2, · · · , Rm} ⊆ R,
then ∀X ⊆ U , we have

(2.8)
m∑

i=1

Ri

P

(X) = {x ∈ U : [x]R1 ∩X 6= ∅∨ [x]R2 ∩X 6= ∅∨· · ·∨ [x]Rm ∩X 6= ∅}.

Proof. By Definition 2.3, we have

x ∈
m∑

i=1

Ri

P

(X) ⇔ x ∈ U −
m∑

i=1

Ri

P

(∼ X)

⇔ [x]R1 * (∼ X) ∨ [x]R2 * (∼ X) ∨ · · · ∨ [x]Rm
* (∼ X)

⇔ [x]R1 ∩X 6= ∅ ∨ [x]R2 ∩X 6= ∅ ∨ · · · ∨ [x]Rm ∩X 6= ∅
¤

Similar to the upper approximation of optimistic MGRS, the upper approximation
of pessimistic MGRS can also be represented as a subset in which each object has a
non–empty intersection with the target in terms of one of the subsets of attributes.

More details about MGRS can be found in Ref. [18].

2.3. Single granulation fuzzy rough set. The notion of fuzzy sets provides a
convenient tool for representing vague concepts by allowing partial memberships.
Presently, the concept of fuzzy rough sets was proposed and studied by many authors.
We briefly review some of the basic concepts of the fuzzy rough set.

Firstly, we need the following notions. A triangular norm, or shortly t–norm,
is an increasing, associative and commutative mapping T : [0, 1] × [0, 1] → [0, 1]
that satisfies the boundary condition (∀x ∈ [0, 1], T (x, 1) = x). The most popular
continuous t–norms are:

(1) min operator TM (x, y) = min{x, y};
(2) algebraic product: TP (x, y) = x · y;
(3) bold intersection(also called the ÃLukasiewicz t–norm): TL(x, y) = max{0, x+

y − 1}.
A triangular conorm, or shortly t–conorm, is an increasing, associative and com-

mutative mapping S : [0, 1] × [0, 1] → [0, 1]that satisfies the boundary condition
(∀x ∈ [0, 1], S(x, 0) = x). The well–known continuous t–norms are:

(1) max operator SM (x, y) = max{x, y};
(2) probabilistic sum: SP (x, y) = x + y − x · y;
(3) bounded sum: SL(x, y) = min{1, x + y}.

A negator N is a decreasing mapping [0, 1] → [0, 1] satisfying N(0) = 1 and
N(1) = 0. The negator NS(x) = 1 − x is referred to as the standard negator. A
negator N is involutive of N(N(x)) = x for each x ∈ [0, 1], an involutive negator is
continuous and strictly decreasing.

If U is the universe of discourse, then the family of all fuzzy sets on U is denoted
by F (U). Moreover, a fuzzy relation on U is a fuzzy subset R ∈ F (U × U) where

R : U × U → [0, 1].
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The fuzzy relation R is referred to as serial iff ∀x ∈ U , there is a y ∈ U such
that R(x, y) = 1; the fuzzy relation R is referred to as reflexive iff R(x, x) = 1 holds
for each x ∈ U ; the fuzzy relation is referred to as symmetric iff R(x, y) = R(y, x)
(∀x, y ∈ U); the fuzzy relation is referred to as T–transitive iff T (R(x, y),R(y, z)) ≤
R(x, z). If a fuzzy relation R is reflexive, symmetric and T–transitive, then it is
referred to as a fuzzy T–similarity relation. Moreover, it should be noticed that
there is a canonical one-to-one correspondence between fuzzy T–similarity relation
and fuzzy T–partition.

Based on the definition of T–similarity relation, we can further generalize Pawlak’s
knowledge based to fuzzy environment. Let U 6= ∅ be the universe of discourse, R is
a family of fuzzy T–similarity relations on U , then the pair K = (U,R) is referred
to as a fuzzy T–knowledge base. ∀R ∈ R, FAP = (U,R) is referred to as a fuzzy
T–approximate space.

Given a fuzzy T–knowledge base K , Suppose that A = {R1, R2, · · · ,Rm} ⊆ R
is a family of fuzzy T–similarity relations, then RA =

⋂{Ri : i = 1, 2, · · · ,m}
(intersection of all fuzzy T–similarity relations in A ) is also a fuzzy T–similarity
relation. Therefore, ∀x, y ∈ U ,

RA (x, y) =
∧
{Ri(x, y) : i = 1, 2, · · · , m}.

The fuzzy rough approximations in terms of fuzzy T–similarity relation in terms
of RA is defined as follows.

Definition 2.5. [6] Let U be the universe of discourse, RA is a fuzzy T–similarity
relation on U , then ∀F ∈ F (U), then fuzzy rough lower approximation and fuzzy
rough upper approximation of F are denoted by R(F ) and R(F ) respectively, whose
memberships for each x ∈ U are:

RA (F )(x) =
∧

y∈U

S
(
1−RA (x, y), F (y)

)
,(2.9)

RA (F )(x) =
∨

y∈U

T
(
RA (x, y), F (y)

)
.(2.10)

Theorem 2.6. [6] Let U be the universe of discourse, RA is a fuzzy T–similarity
relation on U , then ∀F, F ′ ∈ F (U), the fuzzy rough approximations have the follow-
ing properties:

(1) RA (U) = RA (U) = U ;
(2) RA (∅) = RA (∅) = ∅;
(3) RA (F ) ⊆ F ⊆ RA (F );
(4) RA (F ) =∼ RA (∼ F );
(5) RA (F ) =∼ RA (∼ F );
(6) RA (F ∩ F ′) = RA (F ) ∩RA (F ′);
(7) RA (F ∪ F ′) = RA (F ) ∪RA (F ′);
(8) RA (F ∪ F ′) ⊇ RA (F ) ∪RA (F ′);
(9) RA (F ∩ F ′) ⊆ RA (F ) ∩RA (F ′);

(10) RA (RA (F )) = RA (F );
(11) RA (RA (F )) = RA (F );
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(12) F ⊆ F ′ ⇒ RA (F ) ⊆ RA (F ′);
(13) F ⊆ F ′ ⇒ RA (F ) ⊆ RA (F ′).

3. Constructive approach to multi–granulation fuzzy rough set

Following Qian’s work, it is natural to introduce the multi–granulation concept
into fuzzy environment. This is what will be discussed in this section.

In the following, we will use a family of fuzzy T–similarity relations instead
of a single fuzzy T–similarity relation to define the concept of multi–granulation
fuzzy rough set. Similar to Qian’s approach, the optimistic and pessimistic multi–
granulation fuzzy rough sets will be presented respectively.

3.1. Optimistic multi–granulation fuzzy rough set.

Definition 3.1. Let U be the universe of discourse, {R1,R2, · · · , Rm} ⊆ R is a
family of fuzzy T–similarity relations on U, then ∀F ∈ F (U), the optimistic multi–
granulation fuzzy rough lower approximation upper approximation of F are denoted

by
m∑

i=1

Ri

O

(F ) and
m∑

i=1

Ri

O

(F ) respectively, whose memberships for each x ∈ U are:

m∑

i=1

Ri

O

(F )(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), F (y)

)
,(3.1)

m∑

i=1

Ri

O

(F )(x) =
m∧

i=1

∨

y∈U

T
(
Ri(x, y), F (y)

)
.(3.2)

If
m∑

i=1

Ri

O

(F ) =
m∑

i=1

Ri

O

(F ), then F is referred to as optimistic definable under

the multi–granulation fuzzy T–environment; otherwise, F is referred to as optimistic

undefinable.
[ m∑

i=1

Ri

O

(F ),
m∑

i=1

Ri

O

(F )
]

is referred to as a pair of optimistic rough

approximation of F under the multi–granulation fuzzy T–environment. In the fol-
lowing, let us examine some properties of such fuzzy rough approximation.

Theorem 3.2. Let U be the universe of discourse, {R1, R2, · · · , Rm} ⊆ FR(U)
is a family of fuzzy relations on U , then ∀F, F ′ ∈ F (U), the optimistic multi–
granulation fuzzy rough set has the following properties:

(1)
m∑

i=1

Ri

O

(F ) ⊆ F ⊆
m∑

i=1

Ri

O

(F );

(2)
m∑

i=1

Ri

O

(∅) =
m∑

i=1

Ri

O

(∅) = ∅,
m∑

i=1

Ri

O

(U) =
m∑

i=1

Ri

O

(U) = U ;

(3)
m∑

i=1

Ri

O

(F ) =
m⋃

i=1

Ri(F ),
m∑

i=1

Ri

O

(F ) =
m⋂

i=1

Ri(F );
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(4)
m∑

i=1

Ri

O( m∑

i=1

Ri

O

(X)
)

=
m∑

i=1

Ri

O

(X),
m∑

i=1

Ri

O( m∑

i=1

Ri

O

(X)
)

=
m∑

i=1

Ri

O

(X);

(5)
m∑

i=1

Ri

O

(∼ F ) =∼
m∑

i=1

Ri

O

(F ),
m∑

i=1

Ri

O

(∼ F ) =∼
m∑

i=1

Ri

O

(F );

(6) F ⊆ F ′ ⇒
m∑

i=1

Ri

O

(F ) ⊆
m∑

i=1

Ri

O

(F ′),
m∑

i=1

Ri

O

(F ) ⊆
m∑

i=1

Ri

O

(F ′).

Proof. (1) ∀x ∈ U ,

m∑

i=1

Ri

O

(F )(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), F (y)

)

≤
m∨

i=1

S
(
1−Ri(x, x), F (x)

)
= S

(
0, F (x)

)
= F (x)

m∑

i=1

Ri

O

(F )(x) =
m∧

i=1

∨

y∈U

T
(
Ri(x, y), F (y)

)

≥
m∧

i=1

T
(
Ri(x, x), F (x)

)
= T

(
1, F (x)

)
= F (x)

(2) ∀x ∈ U ,

m∑

i=1

Ri

O

(∅)(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), 0

)

=
m∨

i=1

∧

y∈U

(
1−Ri(x, y)

)
=

m∨

i=1

(
1−Ri(x, x)

)
= 0

Similarly, it is not difficult to obtain that
m∑

i=1

Ri

O

(∅) = ∅.

∀x ∈ U ,

m∑

i=1

Ri

O

(U)(x) =
m∧

i=1

∨

y∈U

T
(
Ri(x, y), U(y)

)

=
m∧

i=1

∨

y∈U

T
(
Ri(x, y), 1

)
=

m∧

i=1

∨

y∈U

Ri(x, y) = 1

Similarly, it is not difficult to obtain that
m∑

i=1

Ri

O

(U) = U .
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(3) ∀x ∈ U ,

m∑

i=1

Ri

O

(F )(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), F (y)

)
=

m∨

i=1

Ri(F )(x)

Similarly, it is not difficult to obtain that
m∑

i=1

Ri

O

(F ) =
m⋂

i=1

Ri(F ).

(4) By the proof of 1, since
m∑

i=1

Ri

O

(F ) ⊆ F , then by the result of 4, we have

m∑

i=1

Ri

O

(
m∑

i=1

Ri

O

(F )) ⊆
m∑

i=1

Ri

O

(F ). Therefore, it must be proved that

m∑

i=1

Ri

O

(
m∑

i=1

Ri

O

(F )) ⊇
m∑

i=1

Ri

O

(F ).

By 3, we have
m∑

i=1

Ri

O

(F ) =
m⋃

i=1

Ri(F ). Therefore,

m∑

i=1

Ri

O

(
m∑

i=1

Ri

O

(F )) =
m⋃

i=1

Ri(
m∑

i=1

Ri

O

(F )) =
m⋃

i=1

Ri(
m⋃

i=1

Ri(F ))

⊇
m⋃

i=1

m⋃

i=1

Ri(Ri(F )) =
m⋃

i=1

Ri(F ) =
m∑

i=1

Ri

O

(F )

Similarly, it is not difficult to obtain that
m∑

i=1

Ri

O( m∑

i=1

Ri

O

(X)
)

=
m∑

i=1

Ri

O

(X).

(5) ∀x ∈ U ,

m∑

i=1

Ri

O

(∼ F )(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), 1− F (y)

)

=
m∨

i=1

∧

y∈U

(
1− T

(
Ri(x, y), F (y)

))

= 1−
m∧

i=1

∨

y∈U

T
(
Ri(x, y), F (y)

)

= 1−
m∑

i=1

Ri

O

(F )(x)

Similarly, it is not difficult to obtain that
m∑

i=1

Ri

O

(∼ F ) =∼
m∑

i=1

Ri

O

(F ).
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(6) ∀x ∈ U , since F ⊆ F ′, then

m∑

i=1

Ri

O

(F )(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), F (y)

)

≤
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), F ′(y)

)
=

m∑

i=1

Ri

O

(F ′)(x)

Similarly, it is not difficult to obtain that
m∑

i=1

Ri

O

(F ) ⊆
m∑

i=1

Ri

O

(F ′).

¤

In the above theorem, (1) says that the optimistic multi–granulation lower and
upper approximations satisfy the contraction and extension respectively; (2) says
that the optimistic multi–granulation fuzzy rough set satisfies the normality and
conormality; (3) expresses the relationships between multi–granulation and single
granulation fuzzy rough sets; (4) and (5) shows the idempotency and complement of
multi–granulation fuzzy rough set respectively; (6) shows the monotone of optimistic
multi–granulation fuzzy rough approximation w.r.t. the variety of fuzzy target.
These results are all multi–granulation generalization of the properties we showed
in Theorem 2.6.

Theorem 3.3. Let U be the universe of discourse, {R1, R2, · · · , Rm} ⊆ FR(U)
is a family of fuzzy relations on U , ∀F1, F2, · · · , Fn ∈ F (U), the optimistic multi–
granulation fuzzy rough set has the following properties:

(1)
m∑

i=1

Ri

O

(
n⋂

j=1

Fj) =
m⋃

i=1

( n⋂

j=1

Ri(Fj)
)
,

m∑

i=1

Ri

O

(
n⋃

j=1

Fj) =
m⋂

i=1

( n⋃

j=1

Ri(Fj)
)
;

(2)
m∑

i=1

Ri

O

(
n⋂

j=1

Fj) =
n⋂

j=1

( m∑

i=1

Ri

O

(Fj)
)
,

m∑

i=1

Ri

O

(
n⋃

j=1

Fj) =
n⋃

j=1

( m∑

i=1

Ri

O

(Fj)
)
;

(3)
m∑

i=1

Ri

O

(
n⋃

j=1

Fj) ⊇
n⋃

j=1

( m∑

i=1

Ri

O

(Fj)
)
,

m∑

i=1

Ri

O

(
n⋂

j=1

Fj) ⊆
n⋂

j=1

( m∑

i=1

Ri

O

(Fj)
)
.
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Proof. (1) ∀x ∈ U ,

m∑

i=1

Ri

O

(
n⋂

j=1

Fj)(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), (

n⋂

j=1

Fj)(y)
)

=
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y),

n∧

j=1

Fj(y)
)

=
m∨

i=1

∧

y∈U

n∧

j=1

S
(
1−Ri(x, y), Fj(y)

)

=
m∨

i=1

n∧

j=1

∧

y∈U

S
(
1−Ri(x, y), Fj(y)

)

=
m∨

i=1

n∧

j=1

Ri(Fj)(x) =
m∨

i=1

(( n⋂

j=1

Ri(Fj)
)
(x)

)

=
( m⋃

i=1

( n⋂

j=1

Ri(Fj)
))

(x)

Similarly, it is not difficult to prove
m∑

i=1

Ri

O

(
n⋃

j=1

Fj) =
m⋂

i=1

( n⋃

j=1

Ri(Fj)
)
.

(2) ∀x ∈ U ,

m∑

i=1

Ri

O

(
n⋂

j=1

Fj)(x) =
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), (

n⋂

j=1

Fj)(y)
)

=
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y),

n∧

j=1

Fj(y)
)

=
m∨

i=1

∧

y∈U

n∧

j=1

S
(
1−Ri(x, y), Fj(y)

)

=
n∧

j=1

m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), Fj(y)

)

=
n∧

j=1

( m∑

i=1

Ri

O

(Fj)(x)
)

=
( n⋂

j=1

( m∑

i=1

Ri

O

(Fj)
))

(x)

Similarly, it is not difficult to prove
m∑

i=1

Ri

O

(
n⋃

j=1

Fj) =
n⋃

j=1

( m∑

i=1

Ri

O

(Fj)
)
.
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(3) By 3 of Theorem 3.2, since
m∑

i=1

Ri

O

(F ) =
m⋃

i=1

Ri(F ), then
m∑

i=1

Ri

O

(
n⋃

j=1

Fj) =

m⋃

i=1

Ri(
n⋃

j=1

Fj). Moreover, by (8) of Theorem 2.6, it is not difficult to observe

that
m⋃

i=1

Ri(
n⋃

j=1

Fj) ⊇
m⋃

i=1

n⋃

j=1

Ri(Fj) =
n⋃

j=1

m⋃

i=1

Ri(Fj) =
n⋃

j=1

( m∑

i=1

Ri

O

(Fj)
)
, it

follows that
m∑

i=1

Ri

O

(
n⋃

j=1

Fj) ⊇
n⋃

j=1

( m∑

i=1

Ri

O

(Fj)
)
.

Similarly, it is not difficult to obtain
m∑

i=1

Ri

O

(
n⋂

j=1

Fj) ⊆
n⋂

j=1

( m∑

i=1

Ri

O

(Fj)
)
.

¤
In the above theorem, not only multi–fuzzy T–relations, but also a family of

fuzzy targets are approximated. These formulas express the relationship between the
optimistic fuzzy rough approximations of a single set and the optimistic fuzzy rough
approximations of multi–sets under the multi–granulation fuzzy T–environment.

3.2. Pessimistic multi–granulation fuzzy rough set.

Definition 3.4. Let U be the universe of discourse, {R1,R2, · · · , Rm} ⊆ R is a
family of fuzzy T–similarity relations on U , then ∀F ∈ F (U), the pessimistic multi–
granulation fuzzy rough lower approximation upper approximation of F are denoted

by
m∑

i=1

Ri

P

(F ) and
m∑

i=1

Ri

P

(F ) respectively, whose memberships for each x ∈ U are:

m∑

i=1

Ri

P

(F )(x) =
m∧

i=1

∧

y∈U

S
(
1−Ri(x, y), F (y)

)
,(3.3)

m∑

i=1

Ri

P

(F )(x) =
m∨

i=1

∨

y∈U

T
(
Ri(x, y), F (y)

)
.(3.4)

If
m∑

i=1

Ri

P

(F ) =
m∑

i=1

Ri

P

(F ), then F is referred to as pessimistic definable under

the multi–granulation fuzzy T–environment; otherwise, F is referred to as pessimistic

undefinable.
[ m∑

i=1

Ri

P

(F ),
m∑

i=1

Ri

P

(F )
]

is referred to as a pair of pessimistic rough

approximation of F under the multi–granulation fuzzy T–environment. The follow-
ing are properties of pessimistic multi–granulation fuzzy rough approximation.

Theorem 3.5. Let U be the universe of discourse, {R1, R2, · · · , Rm} ⊆ R is a
family of fuzzy T–similarity relations on U , then ∀F ∈ F (U), the pessimistic multi–
granulation fuzzy rough set has the following properties:
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(1)
m∑

i=1

Ri

P

(F ) ⊆ F ⊆
m∑

i=1

Ri

P

(F );

(2)
m∑

i=1

Ri

P

(∅) =
m∑

i=1

Ri

P

(∅) = ∅,
m∑

i=1

Ri

P

(U) =
m∑

i=1

Ri

P

(U) = U ;

(3)
m∑

i=1

Ri

P

(X) =
m⋂

i=1

Ri(X),
m∑

i=1

Ri

P

(X) =
m⋃

i=1

Ri(X);

(4)
m∑

i=1

Ri

P ( m∑

i=1

Ri

P

(X)
)

=
m∑

i=1

Ri

P

(X),
m∑

i=1

Ri

P ( m∑

i=1

Ri

P

(X)
)

=
m∑

i=1

Ri

P

(X);

(5)
m∑

i=1

Ri

P

(∼ X) =∼
m∑

i=1

Ri

P

(X),
m∑

i=1

Ri

P

(∼ X) =∼
m∑

i=1

Ri

P

(X);

Proof. The proof of Theorem 3.5 is similar to the proof of Theorem 3.2. ¤

Similar to the optimistic case, in Theorem 3.5, (1) says that the pessimistic multi–
granulation lower and upper approximations satisfy the contraction and extension
respectively; (2) says that the pessimistic multi–granulation fuzzy rough set satisfies
the normality and conormality; (3) expresses the relationships between pessimistic
multi–granulation and single granulation fuzzy rough sets; (4) and (5) shows the
idempotency and complement of pessimistic multi–granulation fuzzy rough set re-
spectively; (6) shows the monotone of pessimistic multi–granulation fuzzy rough
approximation w.r.t. the variety of fuzzy target. These results are also multi–
granulation generalization of the properties we showed in Theorem 2.6.

Theorem 3.6. Let U be the universe of discourse, {R1, R2, · · · , Rm} ⊆ FR(U)
is a family of fuzzy relations on U , ∀F1, F2, · · · , Fn ∈ F (U), the pessimistic multi–
granulation fuzzy rough set has the following properties:

(1)
m∑

i=1

Ri

P

(
n⋂

j=1

Xj) =
m⋂

i=1

( n⋂

j=1

Ri(Xj)
)
,

m∑

i=1

Ri

P

(
n⋃

j=1

Xj) =
m⋃

i=1

( n⋃

j=1

Ri(Xj)
)
;

(2)
m∑

i=1

Ri

P

(
n⋂

j=1

Xj) =
n⋂

j=1

( m∑

i=1

Ri

P

(Xj)
)
,

m∑

i=1

Ri

P

(
n⋃

j=1

Xj) =
n⋃

j=1

( m∑

i=1

Ri

P

(Xj)
)
;

(3)
m∑

i=1

Ri

P

(
n⋃

j=1

Xj) ⊇
n⋃

j=1

( m∑

i=1

Ri

P

(Xj)
)
,

m∑

i=1

Ri

P

(
n⋂

j=1

Xj) ⊆
n⋂

j=1

( m∑

i=1

Ri

P

(Xj)
)
.

Proof. The proof of Theorem 3.6 is similar to the proof of Theorem 3.3. ¤

Theorem 3.6 expresses the relationship between the pessimistic fuzzy rough ap-
proximations of a single set and the pessimistic fuzzy rough approximations of multi–
sets under the multi–granulation fuzzy T–environment.

3.3. Relationships among several models.
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Theorem 3.7. Let U be the universe of discourse, {R1, R2, · · · ,Rm} ⊆ FR(U) is
a family of fuzzy relations on U , ∀F ∈ F (U), we have

m∑

i=1

Ri

P

(F ) ⊆
m∑

i=1

Ri

O

(F ),(3.5)

m∑

i=1

Ri

O

(F ) ⊆
m∑

i=1

Ri

P

(F ).(3.6)

Proof. ∀x ∈ U , we have
m∑

i=1

Ri

P

(F )(x) =
m∧

i=1

∧

y∈U

S
(
1−Ri(x, y), F (y)

)

≤
m∨

i=1

∧

y∈U

S
(
1−Ri(x, y), F (y)

)

=
m∑

i=1

Ri

O

(F )(x).

Similarly, it is not difficult to prove
m∑

i=1

Ri

O

(F ) ⊆
m∑

i=1

Ri

P

(F ). ¤

The above theorem express the relationship between optimistic and pessimistic
multi–granulation fuzzy rough approximation. Formula (3.5) tells us that the pes-
simistic multi–granulation fuzzy lower approximation is included into the optimistic
multi–granulation fuzzy lower approximation, formula (3.6) tells us that the pes-
simistic multi–granulation fuzzy upper approximation includes optimistic multi–
granulation fuzzy upper approximation.

Theorem 3.8. Let U be the universe of discourse, {R1, R2, · · · ,Rm} ⊆ FR(U) is
a family of fuzzy relations on U , ∀F ∈ F (U), ∀i = 1, 2, · · · , m, we have

Ri(F ) ⊆
m∑

i=1

Ri

O

(F ),(3.7)

m∑

i=1

Ri

O

(F ) ⊆ Ri(F ),(3.8)

Ri(F ) ⊇
m∑

i=1

Ri

P

(F ),(3.9)

m∑

i=1

Ri

P

(F ) ⊇ Ri(F ).(3.10)

Proof. It can be derived directly from Definition 2.5, Definition 3.1 and Definition
3.4. ¤
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The above theorem expresses the relationships between single granulation fuzzy
rough approximation and optimistic(pessimistic) multi–granulation fuzzy rough ap-
proximation. Formula (3.7) says that the single granulation fuzzy lower approxi-
mation is included into the optimistic multi–granulation fuzzy lower approximation;
formula (3.8) says that the single granulation fuzzy upper approximation includes
the optimistic multi–granulation fuzzy upper approximation; formula (3.9) says that
the single granulation fuzzy lower approximation includes the pessimistic multi–
granulation fuzzy lower approximation; formula (3.10) says that the single granula-
tion fuzzy upper approximation is included into the pessimistic multi–granulation
fuzzy upper approximation.

4. Conclusions

In this paper, the constructive approach is used to generalize the multi–granulation
rough set to fuzzy environment. The models of optimistic and pessimistic fuzzy
rough approximations are then defined respectively. These multi–granulation fuzzy
rough set are constructed on the basis of a family of fuzzy T–similarity relations
instead of a single fuzzy relation.

In our further research, the approach to attribute reductions w.r.t. the proposed
fuzzy rough model is an important issue to be addressed.
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