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1. Introduction

The study of BCK/BCI-algebras was initiated by K. Iséki in 1966 as a generaliza-
tion of the concept of set-theoretic difference and propositional calculus. Since then
a great deal of literature has been produced on the theory of BCK/BCI-algebras,
in particular, emphasis seems to have been put on the ideal theory of BCK/BCI-
algebras. Fuzzy sets, which were introduced by Zadeh [7], deal with possibilistic un-
certainty, connected with imprecision of states, perceptions and preferences. Based
on the (interval-valued) fuzzy sets, Jun et al. [3] introduced the notion of cubic sub-
algebras/ideals in BCK/BCI-algebras, and then they investigated several properties.
They discussed relationship between a cubic subalgebra and a cubic ideal. Also, they
provided characterizations of a cubic subalgebra/ideal, and considered a method to
make a new cubic subalgebra from old one. Jun et al. [4] introduced the notion
of cubic ◦-subalgebras and closed cubic ideals in BCK/BCI-algebras, and then they
investigated several properties. They provided relations between a cubic ideal and a
cubic ◦-subalgebra in a BCK-algebra, and the relation between a closed cubic ideal
and a cubic subalgebra in a BCI-algebra. They also investigated a condition for a
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cubic set in a BCK-algebra with condition (S) to be a cubic ideal. Finally, they
dealt with a characterization of cubic ideal in a BCK/BCI-algebra.

In this paper, we introduce the notion of cubic q-ideals in BCI-algebras. We
discuss relationship between a cubic ideal and a cubic q-ideal, and provide conditions
for a cubic ideal to be a cubic q-ideal. We establish characterizations of a cubic q-
ideal, and consider the cubic extension property for a cubic q-ideal.

2. Preliminaries

In this section we include some elementary aspects that are necessary for this
paper.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following
axioms:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),
(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:
(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following
conditions:

(a1) (∀x ∈ X) (x ∗ 0 = x),
(a2) (∀x, y, z ∈ X) (x ∗ y = 0 ⇒ (x ∗ z) ∗ (y ∗ z) = 0, (z ∗ y) ∗ (z ∗ x) = 0),
(a3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(a4) (∀x, y, z ∈ X) (((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0).
We can define a partial ordering ≤ by x ≤ y if and only if x∗y = 0. A BCK-algebra

X is said to be with condition (S) if, for all x, y ∈ X, the set {z ∈ X | z ∗ x ≤ y}
has a greatest element, written x ◦ y. A BCI-algebra X is said to be associative if
(x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X. A nonempty subset S of a BCK/BCI-
algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. A subset I of a
BCK/BCI-algebra X is called an ideal of X if it satisfies the following conditions:

(b1) 0 ∈ I,
(b2) (∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I).

A subset I of a BCI-algebra X is called a q-ideal of X (see [5]) if it satisfies (b1) and
(b3) (∀x, y, z ∈ X) (x ∗ (y ∗ z) ∈ I, y ∈ I ⇒ x ∗ z ∈ I).
Let I be a closed unit interval, i.e., I = [0, 1]. By an interval number we mean

a closed subinterval a = [a−, a+] of I, where 0 ≤ a− ≤ a+ ≤ 1. Denote by D[0, 1]
the set of all interval numbers. Let us define what is known as refined minimum
(briefly, rmin) of two elements in D[0, 1]. We also define the symbols “º”, “¹”, “=”
in case of two elements in D[0, 1]. Consider two interval numbers a1 :=

[
a−1 , a+

1

]
and a2 :=

[
a−2 , a+

2

]
. Then

rmin {a1, a2} =
[
min

{
a−1 , a−2

}
, min

{
a+
1 , a+

2

}]
,

a1 º a2 if and only if a−1 ≥ a−2 and a+
1 ≥ a+

2 ,
26
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and similarly we may have a1 ¹ a2 and a1 = a2. To say a1 Â a2 (resp. a1 ≺ a2)
we mean a1 º a2 and a1 6= a2 (resp. a1 ¹ a2 and a1 6= a2). Let ai ∈ D[0, 1] where
i ∈ Λ. We define

rinf
i∈Λ

ai =
[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ai =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.

An interval-valued fuzzy set (briefly, IVF set) A defined on X is given by

A =
{(

x,
[
µ−A(x), µ+

A(x)
])}

, ∀x ∈ X (briefly, denoted by A =
[
µ−A, µ+

A

]
),

where µ−A and µ+
A are two fuzzy sets in X such that µ−A(x) ≤ µ+

A(x) for all x ∈ X.
Let µ̄A(x) =

[
µ−A(x), µ+

A(x)
]
, ∀x ∈ X. If µ−A(x) = µ+

A(x) = c (say) where 0 ≤ c ≤
1, then we have µ̄A(x) = [c, c] which we also assume, for the sake of convenience,
to belong to D[0, 1]. Thus µ̄A(x) ∈ D[0, 1], ∀x ∈ X, and therefore the IVF set A is
given by

A = {(x, µ̄A(x))} , ∀x ∈ X, where µ̄A : X → D[0, 1].

We refer the reader to the books [1, 6] and the paper [2] for further information
regarding BCK/BCI-algebras.

3. Cubic q-ideals

Definition 3.1. [3] Let X be a nonempty set. A cubic set A in a set X is a structure

A = {〈x,A(x), λ(x)〉 : x ∈ X}
which is briefly denoted by A = 〈A, λ〉 where A = [µ−A, µ+

A] is an IVF set in X and
λ is a fuzzy set in X.

Definition 3.2. [3] A cubic set A = 〈A, λ〉 in X is called a cubic subalgebra of a
BCK/BCI-algebra X if it satisfies: for all x, y ∈ X,

(a) µ̄A(x ∗ y) º rmin{µ̄A(x), µ̄A(y)}.
(b) λ(x ∗ y) ≤ max{λ(x), λ(y)}.

Definition 3.3. [3] A cubic set A = 〈A, λ〉 in a BCK/BCI-algebra X is called a
cubic ideal of X if it satisfies: for all x, y ∈ X,

(a) µ̄A(0) º µ̄A(x).
(b) λ(0) ≤ λ(x).
(c) µ̄A(x) º rmin{µ̄A(x ∗ y), µ̄A(y)}.
(d) λ(x) ≤ max{λ(x ∗ y), λ(y)}.

Definition 3.4. A cubic set A = 〈A, λ〉 in a BCI-algebra X is called a cubic q-ideal
of X if it satisfies conditions (a) and (b) in Definition 3.3 and for all x, y ∈ X,

(a) µ̄A(x ∗ z) º rmin{µ̄A(x ∗ (y ∗ z)), µ̄A(y)}.
(b) λ(x ∗ z) ≤ max{λ(x ∗ (y ∗ z)), λ(y)}.

Example 3.5. Consider a BCI-algebra X = {0, a, b, c, d, e} in which the ∗-operation
is given by the Table 1. We define A = [µ−A, µ+

A] and λ by

A =
(

0 a b c d e
[0.4, 0.8] [0.4, 0.8] [0.1, 0.3] [0.1, 0.3] [0.1, 0.3] [0.1, 0.3]

)

27
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Table 1. ∗-operation

∗ 0 a b c d e

0 0 0 0 c c c
a a 0 a d c d
b b b 0 e e c
c c c c 0 0 0
d d c d a 0 a
e e e c b b 0

Table 2. ∗-operation

∗ 0 a 1 2 3

0 0 0 3 2 1
a a 0 3 2 1
1 1 1 0 3 2
2 2 2 1 0 3
3 3 3 2 1 0

and

λ =
(

0 a b c d e
0.2 0.2 0.6 0.6 0.6 0.6

)
.

Then A = 〈A, λ〉 is a cubic q-ideal of X.

Note that every cubic q-ideal of a BCI-algebra X is a cubic ideal of X by taking
z = 0 in Definition 3.4 and using (a1). But, the converse is not true as seen in the
following example.

Example 3.6. Let X = {0, a, 1, 2, 3} be a BCI-algebra with the ∗-operation given
by Table 2. We define A = [µ−A, µ+

A] and λ by

A =
(

0 a 1 2 3
[0.5, 0.9] [0.3, 0.7] [0.2, 0.6] [0.2, 0.6] [0.2, 0.6]

)

and

λ =
(

0 a 1 2 3
0.2 0.2 0.6 0.4 0.6

)
,

respectively. Then A = 〈A, λ〉 is a cubic ideal of X (see [3]). But, A = 〈A, λ〉 is
not a cubic q-ideal of X since

µ̄A(3 ∗ 1) = [0.2, 0.6] < [0.5, 0.9] = rmin{µ̄A(3 ∗ (0 ∗ 1)), µ̄A(0)}
and/or λ(3 ∗ 1) = 0.4 > 0.2 = max{λ(3 ∗ (0 ∗ 1)), λ(0)}.

We provide a condition for a cubic ideal to be a cubic q-ideal.

Theorem 3.7. In an associative BCI-algebra, every cubic ideal is a cubic q-ideal.
28
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Proof. Let A = 〈A, λ〉 be a cubic ideal of an associative BCI-algebra X. For any
x, y, z ∈ X, we have

µ̄A(x ∗ z) º rmin{µ̄A((x ∗ z) ∗ y), µ̄A(y)}
= rmin{µ̄A((x ∗ y) ∗ z), µ̄A(y)}
= rmin{µ̄A(x ∗ (y ∗ z)), µ̄A(y)}

λ(x ∗ z) ≤ max{λ((x ∗ z) ∗ y), λ(y)}
= max{λ((x ∗ y) ∗ z), λ(y)}
= max{λ(x ∗ (y ∗ z)), λ(y)}

Hence A = 〈A, λ〉 is a cubic q-ideal of X. ¤

Corollary 3.8. Let X be a BCI-algebra which satisfies any one of the following
assertions:

(1) (∀x ∈ X) (0 ∗ x = x).
(2) (∀x, y ∈ X) (x ∗ y = y ∗ x).

Then every cubic ideal is a cubic q-ideal.

Corollary 3.9. Let X be a quasi-associative BCI-algebra, that is, X is a BCI-
algebra which satisfies the following inequality:

(∀x, y, z ∈ X)
(
(x ∗ y) ∗ z ≤ x ∗ (y ∗ z)

)
.

If X satisfies one of the following conditions:
(1) (∀x ∈ X) (0 ∗ (0 ∗ x) = x),
(2) (∀x, y ∈ X) (0 ∗ (y ∗ x) = x ∗ y),
(3) (∀x, y ∈ X) (x ∗ y = 0 ⇒ x = y),
(4) (∀x, y, z ∈ X) (x ∗ z = y ∗ z ⇒ x = y),
(5) (∀x, y, z ∈ X) (z ∗ x = z ∗ y ⇒ x = y),
(6) (∀x, y, z ∈ X) ((y ∗ x) ∗ (z ∗ x) = y ∗ z),
(7) (∀x, y, z ∈ X) ((x ∗ y) ∗ (x ∗ z) = z ∗ y),
(8) (∀x, y, z ∈ X) ((x ∗ y) ∗ (x ∗ z) = 0 ∗ (y ∗ z)),
(9) (∀x, y, z, u ∈ X) ((x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u)),

(10) X = {0} ∪ {x ∈ X | 0 ∗ x 6= 0},
then every cubic ideal is a cubic q-ideal.

Theorem 3.10. Let A = 〈A, λ〉 be a cubic ideal of a BCI-algebra X in which the
following inequalities are valid:

(∀x, y ∈ X) (µ̄A(x ∗ y) º µ̄A(x), λ(x ∗ y) ≤ λ(x)).(3.1)

Then A = 〈A, λ〉 is a cubic q-ideal of X.

Proof. Let x, y, z ∈ X. Using (c) and (d) in Definition 3.3, (a3) and (3.1), we have

µ̄A(x ∗ z) º rmin
{
µ̄A

(
(x ∗ z) ∗ (y ∗ z)

)
, µ̄A(y ∗ z)

}

= rmin
{
µ̄A

(
(x ∗ (y ∗ z)) ∗ z

)
, µ̄A(y ∗ z)

}

º rmin
{
µ̄A

(
x ∗ (y ∗ z)

)
, µ̄A(y)}

29
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λ(x ∗ z) ≤ max
{
λ
(
(x ∗ z) ∗ (y ∗ z)

)
, λ(y ∗ z)}

= max
{
λ
(
(x ∗ (y ∗ z)) ∗ z

)
, λ(y ∗ z)

}

≤ max
{
λ
(
x ∗ (y ∗ z)

)
, λ(y)}.

Therefore A = 〈A, λ〉 is a cubic q-ideal of X. ¤

Proposition 3.11. Every cubic q-ideal A = 〈A, λ〉 of a BCI-algebra X satisfies the
following inequalities:

(1) µ̄A(x ∗ y) º µ̄A

(
x ∗ (0 ∗ y)

)
and λ(x ∗ y) ≤ λ

(
x ∗ (0 ∗ y)

)
,

(2) µ̄A(0 ∗ x) º µ̄A

(
0 ∗ (0 ∗ x)

)
and λ(0 ∗ x) ≤ λ

(
0 ∗ (0 ∗ x)

)

for all x, y ∈ X.

Proof. Straightforward. ¤

Let A = 〈A, λ〉 be a cubic set in X. For any r ∈ [0, 1] and [s, t] ∈ D[0, 1], we
define U(A ; [s, t], r) as follows:

U(A ; [s, t], r) = {x ∈ X | µ̄A(x) º [s, t], λ(x) ≤ r},
and we say it is a cubic level set of A = 〈A, λ〉.
Theorem 3.12. For a cubic set A = 〈A, λ〉 in a BCI-algebra X, the following are
equivalent:

(1) A = 〈A, λ〉 is a cubic q-ideal of X.
(2) Every nonempty cubic level set of A = 〈A, λ〉 is a q-ideal of X.

Proof. Assume that A = 〈A, λ〉 is a cubic q-ideal of X. Let x, y ∈ X, r ∈ [0, 1] and
[s, t] ∈ D[0, 1]. If x ∈ U(A ; [s, t], r), then µ̄A(0) º µ̄A(x) º [s, t] and λ(0) ≤ λ(x) ≤ r.
Thus 0 ∈ U(A ; [s, t], r). Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ U(A ; [s, t], r) and
y ∈ U(A ; [s, t], r). Then µ̄A(x ∗ (y ∗ z)) º [s, t], λ(x ∗ (y ∗ z)) ≤ r, µ̄A(y) º [s, t] and
λ(y) ≤ r. It follows that

µ̄A(x ∗ z) º rmin{µ̄A(x ∗ (y ∗ z)), µ̄A(y)} º rmin{[s, t], [s, t]} = [s, t]

and λ(x∗z) ≤ max{λ(x∗(y∗z)), λ(y)} ≤ max{r, r} = r so that x∗z ∈ U(A ; [s, t], r).
Hence U(A ; [s, t], r) is a q-ideal of X. Conversely, suppose that any nonempty cubic
level set of A = 〈A, λ〉 is a q-ideal of X, that is, U(A ; [s, t], r) 6= ∅ and it is a
q-ideal of X for all r ∈ [0, 1] and [s, t] ∈ D[0, 1]. Assume that µ̄A(0) ≺ µ̄A(a), that
is, [µ−A(0), µ+

A(0)] ≺ [µ−A(a), µ+
A(a)], or λ(0) > λ(b) for some a, b ∈ X. If we take

sa = 1
2 (µ−A(0) + µ−A(a)), ta = 1

2 (µ+
A(0) + µ+

A(a)) and rb = 1
2 (λ(0) + λ(b)), then

µ̄A(0) = [µ−A(0), µ+
A(0)] ≺ [sa, ta] ≺ [µ−A(a), µ+

A(a)] = µ̄A(a) or λ(0) > rb > λ(b).
Hence 0 /∈ U(A ; [sa, ta], rb). This is a contradiction, and so µ̄A(0) º µ̄A(x) and
λ(0) ≤ λ(x) for all x ∈ X. Now suppose there exist a, b, c ∈ X such that

µ̄A(a ∗ c) ≺ rmin{µ̄A(a ∗ (b ∗ c)), µ̄A(b)}
or λ(a∗c) > max{λ(a∗(b∗c)), λ(b)}. Let µ̄A(a∗c) = [(a∗c)−, (a∗c)+], µ̄A(b) = [b−, b+]
and µ̄A(a ∗ (b ∗ c)) = [(a ∗ (b ∗ c))−, (a ∗ (b ∗ c))+]. Take

s0 = 1
2 ((a ∗ c)− + min{(a ∗ (b ∗ c))−, b−}),
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t0 = 1
2 ((a∗ c)+ +min{(a∗ (b∗ c))+, b+}) and r0 = 1

2 (λ(a)+max{λ(a∗ (b∗ c)), λ(b)}).
Then (a∗c)− ≺ s0 ≺ min{(a∗(b∗c))−, b−} and (a∗c)+ ≺ t0 ≺ min{(a∗(b∗c))+, b+},
which imply that

µ̄A(a ∗ c) = [(a ∗ c)−, (a ∗ c)+] ≺ [s0, t0]

≺ [min{(a ∗ (b ∗ c))−, b−}, min{(a ∗ (b ∗ c))+, b+}]
= rmin{µ̄A(a ∗ (b ∗ c)), µ̄A(b)}.

Also, λ(a∗c) > r0 > max{λ(a∗(b∗c)), λ(b)}. Thus a∗(b∗c) ∈ U(A ; [s0, t0], r0) and b ∈
U(A ; [s0, t0], r0), but a ∗ c /∈ U(A ; [s0, t0], r0). This is a contradiction, and therefore
µ̄A(x ∗ z) º rmin{µ̄A(x ∗ (y ∗ z)), µ̄A(y)} and λ(x ∗ z) ≤ max{λ(x ∗ (y ∗ z)), λ(y)} for
all x, y, z ∈ X. Hence A = 〈A, λ〉 is a cubic q-ideal of X. ¤

Theorem 3.13. If A = 〈A, λ〉 is a cubic q-ideal of a BCI-algebra X, then the set

I := {x ∈ X | µ̄A(x) = µ̄A(0), λ(x) = λ(0)}
is a q-ideal of X.

Proof. Obviously, 0 ∈ I. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ I and y ∈ I. Then
µ̄A

(
x ∗ (y ∗ z)

)
= µ̄A(0) = µ̄A(y) and λ

(
x ∗ (y ∗ z)

)
= λ(0) = λ(y), and so

µ̄A(x ∗ z) º rmin
{
µ̄A

(
x ∗ (y ∗ z)

)
, µ̄A(y)

}
= µ̄A(0)

and λ(x ∗ z) ≤ max
{
λ
(
x ∗ (y ∗ z)

)
, λ(y)

}
= λ(0). It follows from (a) and (b) in

Definition 3.3 that µ̄A(x∗z) = µ̄A(0) and λ(x∗z) = λ(0) so that x∗z ∈ I. Therefore
I is a q-ideal of X. ¤

Lemma 3.14. A cubic q-ideal A = 〈A, λ〉 in a BCI-algebra X satisfies the following
implication:

(∀x, y ∈ X)
(
x ≤ y ⇒ µ̄A(x) º µ̄A(y), λ(x) ≤ λ(y)

)
.(3.2)

Proof. If x ≤ y, then x ∗ y = 0 and hence

µ̄A(x) = µ̄A(x ∗ 0) º rmin{µ̄A(x ∗ (y ∗ 0)), µ̄A(y)}
= rmin{µ̄A(x ∗ y), µ̄A(y)} = rmin{µ̄A(0), µ̄A(y)} = µ̄A(y)

and

λ(x) = λ(x ∗ 0) ≤ max{λ(x ∗ (y ∗ 0)), λ(y)}
= max{λ(x ∗ y), λ(y)} = max{λ(0), λ(y)} = λ(y).

This completes the proof. ¤

Theorem 3.15. If A = 〈A, λ〉 is a cubic ideal of a BCI-algebra X, then the following
assertions are equivalent:

(1) A = 〈A, λ〉 is a cubic q-ideal of X.
(2) (∀x, y ∈ X)

(
µ̄A(x ∗ y) º µ̄A(x ∗ (0 ∗ y)), λ(x ∗ y) ≤ λ(x ∗ (0 ∗ y))

)
.

(3) (∀x, y, z ∈ X)
(
µ̄A((x∗y)∗z) º µ̄A(x∗ (y ∗z)), λ((x∗y)∗z) ≤ λ(x∗ (y ∗z))

)
.
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Proof. (1) ⇒ (2) follows from Proposition 3.11(1). Assume that (2) is valid. Note
that

((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z)) = ((x ∗ y) ∗ (x ∗ (y ∗ z))) ∗ (0 ∗ z)

≤ ((y ∗ z) ∗ y) ∗ (0 ∗ z) = (0 ∗ z) ∗ (0 ∗ z) = 0

for all x, y, z ∈ X. It follows from Lemma 3.14 that

µ̄A(((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z))) º µ̄A(0)

and λ(((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z))) ≤ λ(0) so from (a) and (b) in Definition 3.3
that

µ̄A(((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z))) = µ̄A(0)

and λ(((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z))) = λ(0). Using (2) and Definition 3.3, we have

µ̄A((x ∗ y) ∗ z) º µ̄A((x ∗ y) ∗ (0 ∗ z))

º rmin{µ̄A(((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z))), µ̄A(x ∗ (y ∗ z))}
= rmin{µ̄A(0), µ̄A(x ∗ (y ∗ z))}
= µ̄A(x ∗ (y ∗ z))

and

λ((x ∗ y) ∗ z) ≤ λ((x ∗ y) ∗ (0 ∗ z))

≤ max{λ(((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z))), λ(x ∗ (y ∗ z))}
= max{λ(0), λ(x ∗ (y ∗ z))}
= λ(x ∗ (y ∗ z)).

Therefore (3) is valid. Now suppose that (3) holds. Then

µ̄A(x ∗ z) º rmin{µ̄A((x ∗ z) ∗ y), µ̄A(y)}
= rmin{µ̄A((x ∗ y) ∗ z), µ̄A(y)}
º rmin{µ̄A(x ∗ (y ∗ z)), µ̄A(y)}

and

λ(x ∗ z) ≤ max{λ((x ∗ z) ∗ y), λ(y)}
= max{λ((x ∗ y) ∗ z), λ(y)}
≤ max{λ(x ∗ (y ∗ z)), λ(y)}

for all x, y, z ∈ X. Hence A = 〈A, λ〉 is a cubic q-ideal of X. ¤

Theorem 3.16. For a cubic ideal A = 〈A, λ〉 of a BCI-algebra X, the following are
equivalent:

(1) A = 〈A, λ〉 is a cubic q-ideal of X.
(2) µ̄A((x ∗ z) ∗ y) º µ̄A((x ∗ z) ∗ (0 ∗ y)) and λ((x ∗ z) ∗ y) ≤ λ((x ∗ z) ∗ (0 ∗ y))

for all x, y, z ∈ X.
(3) µ̄A(x ∗ y) º rmin{µ̄A((x ∗ z) ∗ (0 ∗ y)), µ̄A(z)} and

λ(x ∗ y) ≤ max{λ((x ∗ z) ∗ (0 ∗ y)), λ(z)} for all x, y, z ∈ X.
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Proof. (1) ⇒ (2). It is straightforward by Theorem 3.15.
(2) ⇒ (3). For any x, y, z ∈ X, we have

µ̄A(x ∗ y) º rmin{µ̄A((x ∗ y) ∗ z), µ̄A(z)}
= rmin{µ̄A((x ∗ z) ∗ y), µ̄A(z)}
º rmin{µ̄A((x ∗ z) ∗ (0 ∗ y)), µ̄A(z)}

and
λ(x ∗ y) ≤ max{λ((x ∗ y) ∗ z), λ(z)}

= max{λ((x ∗ z) ∗ y), λ(z)}
≤ max{λ((x ∗ z) ∗ (0 ∗ y)), λ(z)}.

Hence (3) is valid.
(3) ⇒ (1). Assume that (3) is true. If we take z = 0 in (3), then

µ̄A(x ∗ y) º rmin{µ̄A((x ∗ 0) ∗ (0 ∗ y)), µ̄A(0)}
= rmin{µ̄A(x ∗ (0 ∗ y)), µ̄A(0)}
= µ̄A(x ∗ (0 ∗ y))

and
λ(x ∗ y) ≤ max{λ((x ∗ 0) ∗ (0 ∗ y)), λ(0)}

= max{λ(x ∗ (0 ∗ y)), λ(0)}
= λ(x ∗ (0 ∗ y))

for all x, y ∈ X. It follows from Theorem 3.15 that A = 〈A, λ〉 is a cubic q-ideal of
X. ¤

Theorem 3.17. (Cubic extension property for a cubic q-ideal) Let A = 〈A, λ〉 and
B = 〈B, κ〉 be cubic ideals of a BCI-algebra X such that A . B and µ̄A(0) = µ̄B(0)
and λ(0) = κ(0). If A = 〈A, λ〉 is a cubic q-ideal of X, then so is B = 〈B, κ〉.
Proof. Let x, y ∈ X. If we take a = x ∗ (0 ∗ y), then

(x ∗ a) ∗ (0 ∗ y) = (x ∗ (0 ∗ y)) ∗ a = 0.

Using Theorem 3.15, we have

µ̄A((x ∗ a) ∗ y) º µ̄A((x ∗ a) ∗ (0 ∗ y)) = µ̄A(0) = µ̄B(0)

and
λ((x ∗ a) ∗ y) ≤ λ((x ∗ a) ∗ (0 ∗ y)) = λ(0) = κ(0).

Thus µ̄B((x ∗ a) ∗ y) º µ̄A((x ∗ a) ∗ y) º µ̄B(0) º µ̄B(a) and

κ((x ∗ a) ∗ y) ≤ λ((x ∗ a) ∗ y) ≤ κ(0) ≤ κ(a).

Since B = 〈B, κ〉 is a cubic ideal, it follows that

µ̄B(x ∗ y) º rmin{µ̄B((x ∗ y) ∗ a), µ̄B(a)} = µ̄B(a) = µ̄B(x ∗ (0 ∗ y))

and κ(x∗y) ≤ max{κ((x∗y)∗a), κ(a)} = κ(a) = κ(x∗ (0∗y)). Using Theorem 3.15,
we conclude that B = 〈B, κ〉 is a cubic q-ideal of X. ¤
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