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Abstract. In this research work, four new notions are proposed and
investigated. The notions are named characterized global fuzzy neighbor-
hood space, characterized global fuzzy neighborhood pre space, charac-
terized fuzzy uniform space and characterized perfect fuzzy topoeneous
structure. The properties of such characterized fuzzy spaces are deeply
studied. Some sorts of relationship were introduced among such character-
ized fuzzy spaces and other published characterized fuzzy spaces presented
by the authors. Each global fuzzy neighborhood structure is identified
with characterized global fuzzy neighborhood space, however, each global
fuzzy neighborhood pre structure is identified with characterized global
fuzzy neighborhood pre space. The mappings between characterized fuzzy
pre spaces are ϕ1,2ψ1,2-fuzzy continuous if the related mappings between
the associated global fuzzy neighborhood pre spaces are (h, k)-continuous.
The vise versa is true when h and k are coincide up to identifications with
ϕ1,2.intτh and ψ1,2.intτk . For each fuzzy uniform structure on a set X,

there is induced stratified fuzzy proximity on LX . Both the fuzzy uni-
form structure and this induced stratified fuzzy proximity are associated
with the same stratified characterized fuzzy uniform space. The associated
characterized fuzzy uniform space is characterized fuzzy R2 1

2
-space and it

is characterized fuzzy T3 1
2
-space when the related fuzzy uniform space is

separated. Moreover, the relation between characterized fuzzy compact
spaces which introduced in [7] and some of our characterized fuzzy Ts-
spaces for s ∈ {2, 3 1

2
, 4} are introduced. Finally, the characterized fuzzy

compact spaces and the characterized fuzzy T3 1
2
-spaces are equivalent.

2010 AMS Classification: Primary 54E05, 54E15 ; Secondary 54A40, 54A15

Keywords: Fuzzy filter, Fuzzy topological space, Operations, Characterized fuzzy
proximity and fuzzy compact spaces, Characterized global fuzzy neighborhood space,
Characterized fuzzy uniform space, Characterized fuzzy perfect topoeneous struc-
ture, Characterized FTs-space and FR2 1

2
-space for s ∈ {1, 2, 3, 3 1

2 , 4}.

Corresponding Author: A. S. Abd-Allah (asabdallah@hotmail.com)



A. S. Abd-Allah et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

1. Introduction

The notion of fuzzy filter has been introduced by Eklund et al.[12]. By means
of this notion the point-based approach to fuzzy topology related to usual points
has been developed. The more general concept for fuzzy filter introduced by Gähler
in [16] and fuzzy filters are classified by types. Because of the specific type of
fuzzy filter, however, the approach of Eklund is related only to fuzzy topologies
which are stratified, that is, all constant fuzzy sets are open. The more specific
fuzzy filters considered in the former papers are now called homogeneous. On the
ordinary topological space (X,T ), the operation has been defined by Kasahara [24]
as a mapping ϕ from T into 2X such that A ⊆ Aϕ, for all A ∈ T . Kandil et
al.[23] extended Kasahars’s operations by introducing a operation on the class of all
fuzzy sets endowed with a fuzzy topology τ as a mapping ϕ : LX → LX such that
intµ ≤ µϕ for all µ ∈ LX , where µϕ denotes the value of ϕ at µ. The notions of the
fuzzy filters and the operations on the class of all fuzzy sets on X endowed with a
fuzzy topology τ are applied in [1, 2, 3, 4, 5, 6, 7, 8, 9] to introduce a more general
theory including all the weaker and stronger forms of the fuzzy topology. By means of
these notions, the notion of ϕ1,2-interior of the fuzzy set, ϕ1,2-fuzzy convergence and
ϕ1,2-fuzzy neighborhood filters are defined and applied to introduced many general
classes of separation axioms [2, 3, 4, 8, 9]. The notion of ϕ1,2-interior operator for
fuzzy sets is defined as a mapping ϕ1,2.int : LX → LX which fulfill (I1) to (I5) in
[1]. There is a one-to-one correspondence between the class of all ϕ1,2-open fuzzy
subsets of X and these operators, that is, the class ϕ1,2OF (X) of all ϕ1,2-open fuzzy
subsets of X is characterized by these operators. Then the triple (X,ϕ1,2.int) as will
as the triple (X,ϕ1,2OF (X)) will be called characterized fuzzy space of the ϕ1,2-
open fuzzy subsets. The characterized fuzzy spaces are characterized by many of
characterizing notions in [1, 6], for example by the ϕ1,2-fuzzy neighborhood filters,
the ϕ1,2-fuzzy interior of the fuzzy filters and by the set of ϕ1,2-inner points of the
fuzzy filters. Moreover, the notions of closeness and compactness in characterized
fuzzy spaces are introduced and studied in [7]. The notions of characterized fuzzy
Ts-spaces, fuzzy ϕ1,2-Ts spaces, characterized fuzzy Rk-spaces and fuzzy ϕ1,2-Rk
spaces are introduced and studied in [2, 3, 4, 8] for all s ∈ {0, 1, 2, 2 1

2 , 3, 3
1
2 , 4} and

k ∈ {0, 1, 2, 2 1
2 , 3}.

This paper is devoted to introduce and study four new notions of the character-
ized fuzzy spaces named characterized global fuzzy neighborhood space, characterized
global fuzzy neighborhood pre space, characterized fuzzy uniform space and character-
ized fuzzy perfect topoeneous structure. Many relations between these characterized
fuzzy spaces and our characterized fuzzy Ts-spaces and characterized fuzzy R2 1

2
-

spaces are investigated for s ∈ {1, 2, 3, 3 1
2 , 4}. In section 2, some definitions and

notions related to fuzzy sets, fuzzy uniform structures and fuzzy uniform continu-
ity, fuzzy topologies, fuzzy filters, fuzzy filter bases, fuzzy filter functor and fuzzy
filter monads, fuzzy proximity space, fuzzy topogeneous orders and fuzzy topoge-
neous structure, operations on fuzzy sets, ϕ1,2-fuzzy neighborhood filters, character-
ized fuzzy space, characterized fuzzy proximity space, ϕ1,2-fuzzy convergence and
ϕ1,2ψ1,2-fuzzy continuous, the fuzzy function family, characterized fuzzy Ts-spaces
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and characterized fuzzy R2 1
2
-spaces are given for s ∈ {0, 1, 2, 4}. Section 3, is de-

voted to introduce and study the notions of characterized global fuzzy neighborhood
space and the characterized global fuzzy neighborhood pre space by means of the
global fuzzy neighborhood structure and the homogenous global fuzzy neighborhood
structure, respectively. Each global fuzzy neighborhood structure is identified with
characterized global fuzzy neighborhood space, however each global fuzzy neigh-
borhood pre-structure is identified with characterized global fuzzy neighborhood
pre space. In case of the homogenous global fuzzy neighborhood structure and of
the homogenous global fuzzy neighborhood pre structure the stratified character-
ized global fuzzy neighborhood space and the stratified characterized global fuzzy
neighborhood pre space are introduced. We prove that the mappings between the
characterized fuzzy pre spaces are ϕ1,2ψ1,2-fuzzy continuous if the related mappings
between the global fuzzy neighborhood pre spaces are (h, k)-continuous. The vise
versa is true when h and k are coincide up to identifications with ϕ1,2.intτh and
ψ1,2.intτk , respectively. In section 4, the notions of characterized fuzzy uniform
spaces and characterized fuzzy perfect topoeneous structures are investigated and
studies. The fuzzy uniform space is separated if and only if the associated character-
ized fuzzy uniform space is characterized FT1-space in sense of Abd-Allah [2]. We
show that the mappings between the associated characterized fuzzy uniform spaces
are ϕ1,2ψ1,2-fuzzy continuous if the related mappings between the fuzzy uniform
spaces are fuzzy uniform continuous. For each fuzzy uniform structure on a set
X, there is induced stratified fuzzy proximity on LX and both the fuzzy uniform
structure and this induced stratified fuzzy proximity are associated with the same
stratified characterized fuzzy uniform space. The associated stratified characterized
fuzzy uniform space with the fuzzy uniform structure is characterized by fuzzy R2 1

2
-

space and therefore it is characterized by fuzzy T3 1
2
-space when the fuzzy uniform

space is separated. The mean important result in this section is that the associated
stratified characterized fuzzy uniform spaces with the fuzzy uniform structures are
compatible with the stratified characterized fuzzy R2 1

2
-spaces. Finally in section 5,

the relation between characterized fuzzy compact spaces which is introduced in [7]
and some of our characterized fuzzy Ts-spaces for s ∈ {1, 2, 3, 3 1

2 , 4} are introduced
by help of the characterized fuzzy unit interval spaces and the characterized fuzzy
T2-spaces and the fuzzy T4-cubes which are investigated in the present section. Es-
pecially, we show that the characterized fuzzy compact spaces and the characterized
fuzzy T3 1

2
-spaces are equivalent.

2. Preliminaries

We begin by recalling some facts on the fuzzy filters. Let L be a completely dis-
tributive complete lattice with different least and last elements 0 and 1, respectively.
Let L0 = L \ {0}. Sometimes we will assume more especially that L is complete
chain, that is, L is a complete lattice whose partial ordering is a linear one. For a set
X, let LX be the set of all fuzzy subsets of X, that is, of all mappings f : X → L.
Assume that an order-reversing involution α 7→ α

′
of L is fixed. For each fuzzy set

µ ∈ LX , let µ
′

denote the complement of µ and it is defined by: µ
′
(x) = µ(x)

′
, for

all x ∈ X. Denote by ᾱ to the constant fuzzy subset of X with value α ∈ L. For
3
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all x ∈ X and for all α ∈ L0, the fuzzy subset xα of X whose value α at x and
0 otherwise is called a t fuzzy point in X. The set of all fuzzy point in X will be
denoted by S(X).

The fuzzy filter on the set X ([16]) is the mapping M : LX → L such that the
following conditions are fulfilled:

(F1) M(ᾱ) ≤ α, for all α ∈ L and M( 1 ) = 1,
(F2) M(µ ∧ ρ) =M(µ) ∧M(ρ), for all µ, ρ ∈ LX .

The fuzzy filter M is called homogeneous ([12]), if M(α) = α, for all α ∈ L. For
each x ∈ X, the mapping ẋ : LX → L defined by ẋ(µ) = µ(x) for all µ ∈ LX is
an example of a homogeneous fuzzy filter on X. For each µ ∈ LX , the mapping
µ̇ : LX → L defined by µ̇(η) =

∧
0<η(x)

η(x), for all η ∈ LX is also homogeneous

fuzzy filter on X, called homogenous fuzzy filter at the fuzzy set µ ∈ LX . Let FLX
and FLX denotes to the sets of all fuzzy filters and all of homogeneous fuzzy filters
on X, respectively. If M and N are fuzzy filters on a set X, then M is said to
be finer than N and it denoted by M ≤ N , provided M(µ) ≥ N (µ) holds, for all
µ ∈ LX . Noting that if L is a complete chain then M is not finer than N and
it denoted by M 6≤ N , provided there exists µ ∈ LX such that M(µ) < N (µ)
holds. As shown in [10], µ ≤ ρ if and only if µ̇ ≤ ρ̇ for all µ, ρ ∈ LX . For each
non-empty set A of the fuzzy filters on X, the supremum

∨
M∈A

M exists [16] and

it given by (
∨
M∈A

M)µ =
∧
M∈A

M(µ), for all µ ∈ LX . Where as, the infimaum∧
M∈A

M of A does not exists in general as a fuzzy filter. If the infimum
∧
M∈A

M

exists, then we have (
∧
M∈A

M)(µ) =
∨

µ1∧···∧µn≤µ,
M1,··· ,Mn∈A

(
M1(µ1) ∧ · · · ∧Mn(µn)

)
, for all

µ ∈ LX , where n is a positive integer, µ1, . . . , µn is a collection of fuzzy subsets such
that µ1∧ . . .∧µn ≤ µ andM1, . . . ,Mn are fuzzy filters from A. Let X be a set and
µ ∈ LX , then the homogeneous fuzzy filter µ̇ at µ is the fuzzy filter on X given by:

(2.1) µ̇ =
∨

0<µ(x)

ẋ.

Fuzzy filter bases. A family (Bα)α∈L0
of a non-empty subsets of LX is called

a valued fuzzy filter base [16], if the following conditions are fulfilled:
(V1) µ ∈ Bα implies α ≤ sup µ,
(V2) For all α, β ∈ L0 with α ∧ β ∈ L0 and all µ ∈ Bα and ρ ∈ Bβ there are

γ ≥ α ∧ β and η ≤ µ ∧ ρ such that η ∈ Bγ .
As shown in [16], each valued fuzzy filter base (Bα)α∈L0

defines the fuzzy filter
M on X by M(µ) =

∨
ρ∈Bα, ρ≤µ

α, for all µ ∈ LX and each fuzzy filter M can be

generated by a valued fuzzy filter base, e.g., by (α-prM)α∈L0
with α-prM = {µ ∈

LX | α ≤ M(µ)}. (α-prM)α∈L0
is a family of fuzzy pre filters on X and is called

the large valued fuzzy filter base of M. Recall that a fuzzy pre filter on X [28] is a
non-empty proper subset F of LX such that (1) µ, ρ ∈ F implies µ ∧ ρ ∈ F and (2)
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from µ ∈ F and µ ≤ ρ it follows ρ ∈ F .

Valued and superior principal fuzzy filters. Let a non-empty set X be
fixed, µ ∈ LX and α ∈ L such that α ≤ supµ. Then the valued principal fuzzy filter
([16]) generated by µ and α, will be denoted by [µ, α ], is the fuzzy filter on X which
has (Bβ)β∈L0

with Bβ = {µ}, if 0 < β ≤ α and Bβ = { 1 }, otherwise as a valued
fuzzy filter base. For all η ∈ LX , we have [µ, α ](η) = 0, if µ 6≤ η, [µ, α ](η) = α,
if µ ≤ η 6= 1 and [µ, α ](η) = 1, if η = 1. Moreover, for each β ∈ L0 we have
β-pr [µ, α ] = { η | µ ≤ η }, if β ≤ α and β-pr [µ, α ] = { 1 } otherwise. The superior
principal fuzzy filter ([18]) generated by µ, written [µ ], is the homogeneous fuzzy
filter on X which has B = {µ ∧ ᾱ | α ∈ L} ∪ {ᾱ | α ∈ L } as a superior fuzzy filter
base. As shown in [18], the superior principal fuzzy filter [µ ] is representable by a
fuzzy pre filter if and only if sup µ = 1.

Fuzzy filter functors and fuzzy filter monads. The fuzzy filter functor
FL : SET → SET is the covariant functor from the category SET of all sets to this
category which assigns to each set X the set FLX and to each mapping f : X → Y
the mapping FLf : FLX → FLY . The homogeneous fuzzy filter functor FL : SET→
SET is the sub fuzzy filter functor of FL which assigns to each set X the set FLX
and to each mapping f : X → Y the domain-range restriction FLf : FLX → FLY
of the mapping FLf : FLX → FLY . For each set X, let ηX : X → FLX be the
mapping defined by ηX(x) = ẋ, for all x ∈ X, and let eX : LX → LFLX be the
mapping for which eX(f)(M) =M(f) for all f ∈ LX andM∈ FLX. Moreover, let
µX : FL(FLX)→ FLX be the mapping which assigns to each fuzzy filter L on FLX
the fuzzy filter µX(L) = L ◦ eX on X. η = (ηX)X∈Ob(SET) : id → FL with id the
identity set functor and µ = (µX)X∈Ob(SET) : FL ◦ FL → FL are natural transfor-
mations. (FL, η, µ) is a monad in the categorical sense, called the fuzzy filter monad
[16], that is, µX ◦ FL(ηX) = µX ◦ ηFLX = 1FLX and µX ◦ FL(µX) = µX ◦ µFLX ,
for each set X. Related to the sub functor FL of FL, there are analogous natural
transformations as η and µ, denoted η′ and µ′, respectively. η′ consists of the range-
restrictions η′X : X → FLX of the mappings ηX . µ′ is the family of all mappings
µ′X : FLFLX → FLX defined by µ′X(L) = L ◦ e′X for all homogeneous fuzzy filters
L on FLX, where e′X : LX → LFLX is the mapping given by e′X(f)(M) = M(f)
for all f ∈ LX and M ∈ FLX. As has been shown in [16], (FL, η

′, µ′) is a sub
monad of (FL, η, µ), that is, for the inclusion mappings iX : FLX → FLX we have
ηX = iX ◦ η′X and µX ◦ FLiX ◦ iFLX = iX ◦ µ′X , for all sets X.

Relational fuzzy filters. For each non-empty set X, the fuzzy subset of X×X
will be called fuzzy relation on X. The constant fuzzy relation on X with value α
will be denoted by α̃. The fuzzy filter U on X ×X will also be called a relational
fuzzy filter on X. According to Proposition 1.3 in [18], the family (Uα)α∈L0 of fuzzy
pre filters on X ×X is the large valued fuzzy filter base of the relational fuzzy filter
U on X, that is, it coincides with (α-prU)α∈L0

if and only if the following conditions
are fulfilled:

(u1) u ∈ Uα implies α ≤ supu,
(u2) 0 < β ≤ α implies Uα ⊆ Uβ ,

5
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(u3) For each α ∈ L0 with
∨

0<β<α

β = α we have Uα =
⋂

0<β<α

Uβ .

Examples of relational fuzzy filters on X are the 0, 1-fuzzy filters on X × X,
where the fuzzy filter is called a 0, 1-fuzzy filter, if it only has 0 and 1 as values. The
0, 1-fuzzy filters can be characterized as those fuzzy filters for which all α-fuzzy pre
filters coincide. A broader class of relational fuzzy filters, being of special interest in
the following, is that of relational sup fuzzy-filters, where the fuzzy filter U is said
to be a sup fuzzy-filter if (Bα)α∈L0

with Bα = {u ∈ α-prU | U(u) = supu } is
a valued fuzzy filter base of U . As shown in [18], all the 0, 1-fuzzy filters and all
of the homogeneous fuzzy filter U are sup fuzzy-filters. As can easily be shown by
examples that, there exist sup fuzzy-filters which are not 0, 1-fuzzy filters but not
homogeneous. Special homogeneous relational fuzzy filters on a set X, which will
appear in the sequel, are given by the pairs (x, y) of elements x, y of X. We mean the
fuzzy filters (x, y)

.
= ηX×X(x, y), for which (x, y)

.
(u) = u(x, y), for all u ∈ LX×X .

As shown in [20], if U is a relational fuzzy filter on X such that (x, x)
. ≤ U holds for

all x ∈ X and f : X → Y is a mapping, then FL(f × f)(U) [FLf(M)] is fuzzy filter
on Y , for all M∈ FLX. Moreover, FLf

(
U [M]

)
≤ FL(f × f)(U) [FLf(M) holds.

Fuzzy uniform structures and fuzzy uniform continuity. Let X be a set.
By a fuzzy uniform structure U on X ([20]), we mean a relational fuzzy filter on X
such that the following conditions are fulfilled:

(U1) (x, x)
. ≤ U for all x ∈ X,

(U2) U = U−1,
(U3) U ◦ U ≤ U .

The set X equipped with a fuzzy uniform structure U will be called a fuzzy
uniform space. According U being a sup-fuzzy uniform structure or a 0, 1-fuzzy
uniform structure or a homogeneous fuzzy uniform structure. The triple (X,U) will
be called a sup-fuzzy uniform space or a 0, 1-fuzzy uniform space or a homogeneous
fuzzy uniform space, respectively.

If (X,U) and (Y,V) are fuzzy uniform spaces, then the mapping f : (X,U) →
(Y,V) is said to be uniformly fuzzy continuous, provided

(2.2) FL(f × f) (U) ≤ V holds.

Fuzzy topology. By a fuzzy topology on a set X ([11, 22]), we mean a subset of
LX which is closed with respect to all suprema and all finite infima and contains the
constant fuzzy sets 0 and 1. The set X equipped with a fuzzy topology τ on X is
called fuzzy topological space. For each fuzzy topological space (X, τ), the elements
of τ are called open fuzzy subsets of this space. If τ1 and τ2 are fuzzy topologies on a
set X, then τ2 is said to be finer than τ1 and τ1 is said to be coarser than τ2, provided
τ1 ⊆ τ2 holds. The fuzzy topological space (X, τ) and also τ are said to be strat-
ified provided α ∈ τ holds, for all α ∈ L, that is, all constant fuzzy sets are open [27].

Fuzzy proximity space. A binary relation δ on LX is called fuzzy proximity
on X[25], provided it fulfill the following conditions:

(P1) µδ̄ρ implies ρδ̄µ, for all µ, ρ ∈ LX , where δ̄ is the negation of δ,
(P2) (µ ∨ ρ)δ̄η if and only if µδ̄η and ρδ̄η, for all µ, ρ, η ∈ LX ,
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(P3) µ = 0̄ or ρ = 0̄ implies µδ̄ρ, for all µ, ρ ∈ LX ,

(P4) µδ̄ρ implies µ ≤ ρ′ , for all µ, ρ ∈ LX ,

(P5)if µδ̄ρ, then there is an η ∈ LX such that µδ̄η and η
′
δ̄ρ.

The set X equipped with a fuzzy proximity δ on X is called a fuzzy proximity
space and will be denoted by (X, δ). Every fuzzy proximity δ on a set X is associated
a fuzzy topology on X denoted by τδ. The fuzzy proximity δ on the set X is said to
be separated if and only if for all x, y ∈ X such that x 6= y, we have xαδ̄yβ , for all
α, β ∈ L0.

Fuzzy topogeneous orders and fuzzy structures. The binary relation� on
LX is said to be fuzzy topogeneous order on X [26], if the following conditions are
fulfilled:

(i) ᾱ� ᾱ, for all α ∈ {0, 1},
(ii) if µ� η, then µ ≤ η, for all µ, η ∈ LX ,
(iii) if µ1 ≤ µ� η ≤ η1, then µ1 � η1,
(iv) if µ1 � η1 and µ2 � η2, then µ1 ∧ µ2 � η1 ∧ η2 and µ1 ∨ µ2 � η1 ∨ η2, for

all µi, ηj ∈ LX , where i, j ∈ {1, 2}.
The fuzzy topogeneous order � is said to be fuzzy topogeneous structure, if it

fulfilled the condition:
(v) if µ� η, then there is σ ∈ LX such that µ� σ and σ � η, for all µ, η ∈ LX .
The fuzzy topogeneous structure � is said to be fuzzy topogenous complemen-

tarily symmetric, if it fulfilled the condition:
(vi) if µ� η, then η

′ � µ
′
, for all µ, η ∈ LX .

As shown in [19], every fuzzy topogeneous structure � is identify with the map-
ping N : LX → P (LX) such that η ∈ N (µ) if and only if µ � η holds for all
µ, η ∈ LX . The fuzzy topogeneous structures are classified by these mappings. As is
easily seen, each fuzzy topogeneous order N can be associated a fuzzy pre topology
intN on a set X by defining intN µ =

∨
µ∈N (η)

η, for all µ ∈ LX . In case of N is

fuzzy topogeneous structure, intN is interior operator for fuzzy topology τN on X
associated to N .

Operation on fuzzy sets. In the sequel, let a fuzzy topological space (X, τ) be
fixed. By the operation ([23]) on the set X, we mean the mapping ϕ : LX → LX

such that intµ ≤ µϕ holds, for all µ ∈ LX , where µϕ denotes the value of ϕ at
µ. The class of all operations on X will be denoted by O(LX ,τ). By the identity

operation on O(LX ,τ), we mean the operation 1LX : LX → LX such that 1LX (µ) = µ

for all µ ∈ LX . Also by the constant operation on O(LX ,τ), we mean the operation

cLX : LX → LX such that cLX (µ) = 1, for all µ ∈ LX . If ≤ is a partially ordered
relation on O(LX ,τ) defined as follows: ϕ1 ≤ ϕ2 ⇐⇒ µϕ1 ≤ µϕ2 for all µ ∈ LX ,
then obviously, (O(LX ,τ),≤) is a completely distributive lattice. As an application

on this partially ordered relation, the operation ϕ : LX → LX will be called:
(i) isotone, if µ ≤ ρ implies µϕ ≤ ρϕ, for all µ, ρ ∈ LX ,
(ii) weakly finite intersection preserving (wfip, for short) with respect to A ⊆ LX ,

if ρ ∧ µϕ ≤ (ρ ∧ µ)ϕ holds, for all ρ ∈ A and µ ∈ LX ,
(iii) idempotent, if µϕ = (µϕ)ϕ, for all µ ∈ LX .

7
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The operations ϕ,ψ ∈ O(LX ,τ) are said to be dual, if ψµ = co(ϕ (coµ)) or equiv-

alently ϕµ = co(ψ (coµ)) for all µ ∈ LX , where coµ denotes the complementarily
of µ. The dual operation of ϕ is denoted by ϕ̃. In the classical case of L = {0, 1},
by the operation on a set X we mean the mapping ϕ : P (X) → P (X) such that
int A ⊆ Aϕ, for all A ∈ P (X) and the identity operation on the class of all ordinary
operations O(P (X),T ) on X will be denoted by iP (X) and defined by iP (X)(A) = A,
for all A ∈ P (X).

ϕ-open fuzzy sets. Let a fuzzy topological space (X, τ) be fixed and ϕ ∈
O(LX ,τ) . The fuzzy set µ : X → L is called ϕ-open fuzzy set, if µ ≤ µϕ holds. We
will denote to the class of all ϕ-open fuzzy sets on X by ϕOF (X). The fuzzy set µ
is called ϕ-closed, if its complement coµ is ϕ-open. The operations ϕ,ψ ∈ O(LX ,τ)

are equivalent and written ϕ ∼ ψ, if ϕOF (X) = ψOF (X).

ϕ1,2-interior of fuzzy sets. Let a fuzzy topological space (X, τ) be fixed and
ϕ1, ϕ2 ∈ O(LX ,τ). Then the ϕ1,2-interior of the fuzzy set µ : X → L is the mapping
ϕ1,2.intµ : X → L defined by:

(2.3) ϕ1,2.intµ =
∨

ρ∈ϕ1OF (X), ρϕ2≤µ

ρ.

That is, ϕ1,2.intµ is the greatest ϕ1-open fuzzy set ρ such that ρϕ2 less than or
equal to µ ([1]). The fuzzy set µ is said to be ϕ1,2-open if µ ≤ ϕ1,2.intµ. The class
of all ϕ1,2-open fuzzy sets on X will be denoted by ϕ1,2OF (X). The complement
co µ of a the ϕ1,2-open fuzzy subset µ will be called ϕ1,2-closed and the class of all
ϕ1,2-closed fuzzy subsets of X will be denoted by ϕ1,2CF (X). In the classical case
of L = { 0, 1 }, the fuzzy topological space (X, τ) is up to an identification by the
ordinary topological space (X,T ) and ϕ1,2.intµ is the classical one. Then, in this
case the ordinary subset A of X is ϕ1,2-open if A ⊆ ϕ1,2.int A. The complement of
a ϕ1,2-open subset A of X will be called ϕ1,2-closed. The class of all ϕ1,2-open and
the class of all ϕ1,2-closed subsets of X will be denoted by ϕ1,2O(X) and ϕ1,2C(X),
respectively. Clearly, F is ϕ1,2-closed if and only if ϕ1,2.cl T F = F . As shown in [1],
if the fuzzy topological space (X, τ) is fixed and ϕ1, ϕ2 ∈ O(LX ,τ), then the set of all
ϕ1,2-open fuzzy set of X is characterized by the ϕ1,2.int of the fuzzy set as follows:

(2.4) ϕ1,2OF (X) = {µ ∈ LX | µ ≤ ϕ1,2.intµ }

and the following conditions are fulfilled:
(I1) if ϕ2 ≥ 1LX , then ϕ1,2.intµ ≤ µ holds, for all µ ∈ LX ,
(I2) if µ ≤ ρ, then ϕ1,2.intµ ≤ ϕ1,2.intρ, for all µ, ρ ∈ LX ,
(I3) ϕ1,2.int 1 = 1,
(I4) if ϕ2 ≥ 1LX is isotone and ϕ1 is wfip with respect to ϕ1OF (X), then

ϕ1,2.intµ ∧ ϕ1,2.intρ = ϕ1,2.int (µ ∧ ρ), for all µ, ρ ∈ LX ,
(I5) if ϕ2 is isotone and idempotent, then ϕ1,2.int (ϕ1,2.intµ) = ϕ1,2.intµ, for all

µ ∈ LX .
Independently on the fuzzy topologies, the notion of ϕ1,2-interior operator for

the fuzzy sets can be defined as a mapping ϕ1,2.int : LX → LX which fulfill (I1)
8
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to (I5). It is well-known that (2.3) and (2.4) give a one-to-one correspondence be-
tween the class of all ϕ1,2-open fuzzy sets and these operators, that is, ϕ1,2OF (X)
can be characterized by the ϕ1,2-interior operators. In this case (X,ϕ1,2.int) as
will as (X,ϕ1,2OF (X)) will be called characterized fuzzy space ([1]) of the all ϕ1,2-
open fuzzy subsets of X. If (X,ϕ1,2.int) and (X,ψ1,2.int) are two characterized
fuzzy spaces, then (X,ϕ1,2.int) is said to be finer than (X,ψ1,2.int) and denoted by
ϕ1,2.int ≤ ψ1,2.int provided ϕ1,2.intµ ≥ ψ1,2.intµ holds, for all µ ∈ LX . The charac-
terized fuzzy space (X,ϕ1,2.int) is said to be stratified if and only if ϕ1,2.intᾱ = ᾱ,
for all α ∈ L. As shown in [1], the characterized fuzzy space (X,ϕ1,2.int) is
stratified, if the related fuzzy topology is stratified. Moreover, the characterized
fuzzy space (X,ϕ1,2.int) is said to have the weak infimum property ([21]), provided
ϕ1,2.int(µ∧ ᾱ) = ϕ1,2.intµ∧ϕ1,2.intᾱ, for all µ ∈ LX and α ∈ L. The characterized
fuzzy space (X,ϕ1,2.int) is said to be strongly stratified [21], provided ϕ1,2.int is
stratified and have the weak infimum property.

Fuzzy unit interval. The fuzzy unit interval will be denoted by IL and it is
defined in [24] as the fuzzy subset IL = {x ∈ R?

L | x ≤ 1∼}, where I = [0, 1] is
the real unit interval and R?

L = {x ∈ RL | x(0) = 1 and 0∼ ≤ x} is the set of all
positive fuzzy real numbers. Note that, the binary relation ≤ is defined on RL as
follows:

x ≤ y ⇐⇒ xα1 ≤ yα1 and xα2 ≤ yα2 ,

for all x, y ∈ RL, where for all α ∈ L0,
xα1 = inf{z ∈ R | x(z) ≥ α} and xα2 = sup{z ∈ R | x(z) ≥ α}.

Note that the family Ω that defined by:

Ω = {Rδ|IL | δ ∈ I} ∪ {Rδ|IL | δ ∈ I} ∪ {0∼|IL}

is a base for a fuzzy topology = on IL and the order pair (IL,=) is said to be fuzzy
unit interval topological space, where Rδ and Rδ are the fuzzy subsets of RL defined
by: for all x ∈ RL and δ ∈ R,

Rδ(x) =
∨
α>δ

x(α) and Rδ = (
∨
α≥δ

x(α))
′
.

The restrictions of Rδ and Rδ on IL are the fuzzy subsets Rδ|IL and Rδ|IL, respec-
tively. Recall that Rδ(x)∧Rγ(y) ≤ Rδ+γ(x+y), where x+y is the fuzzy real number
defined by:

(x+ y)(ξ) =
∨

γ,ζ∈R,γ+ζ=ξ

(x(γ) ∧ y(ζ)), for all ξ ∈ R.

Consider a fuzzy unit interval topological space (IL,=) is given and ψ1, ψ2 ∈ O(IL,=).
Then in this work, the characterized fuzzy space (IL, ψ1,2.int=) will be called char-
acterized fuzzy unit interval space and we define the Cartesian product of a number
of copies of the fuzzy unit interval IL equipped with the product of the characterized
fuzzy unit interval spaces generated by ψ1,2.int= on it as a characterized fuzzy cube.

ϕ1,2-fuzzy neighborhood filters. An important notion in the characterized
fuzzy space (X,ϕ1,2.int) is that of a ϕ1,2-fuzzy neighborhood filter at the point
and at the ordinary subset in this space. Let (X, τ) be a fuzzy topological space
and ϕ1, ϕ2 ∈ O(LX ,τ). As follows by (I1) to (I5), for each x ∈ X, the mapping

9
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Nϕ1,2(x) : LX → L which is defined by:

(2.5) Nϕ1,2
(x)(µ) = (ϕ1,2.intµ)(x),

for all µ ∈ LX is fuzzy filter, called ϕ1,2-fuzzy neighborhood filter at x [1]. If
∅ 6= F ∈ P (X), then the ϕ1,2- fuzzy neighborhood filter at F will be denoted by
Nϕ1,2

(F) and it defined by

Nϕ1,2
(F) =

∨
x∈F

Nϕ1,2
(x).

Since Nϕ1,2
(x) is fuzzy filter, for all x ∈ X, Nϕ1,2

(F) is also fuzzy filter on X.
Moreover, because of [χF] =

∨
x∈F

ẋ, we have Nϕ1,2
(F) ≥ [χF] holds. Furthermore,

the fuzzy filter Ḟ is defined by Ḟ =
∨
x∈F

ẋ and we easily have that Ḟ ≤ Nϕ1,2
(F)

holds, for all F ∈ P (X). Recall that the ϕ1,2-fuzzy neighborhood filter Nϕ1,2
(µ) at

the fuzzy set µ of X is defied as follows:

(2.6) Nϕ1,2(µ)(η) =
( ∨

0<µ(x)

Nϕ1,2(x)
)
(η),

for all η ∈ LX . Obviously, µ̇ ≤ Nϕ1,2
(µ), for all µ ∈ LX . If the related ϕ1,2-interior

operator fulfill the axioms (I1) and (I2) only, then the mapping Nϕ1,2(x) : LX → L,
defined by (2.2) is a fuzzy stack ([21]), called ϕ1,2-fuzzy neighborhood stack at x.
Moreover, if the ϕ1,2-interior operator fulfill the axioms (I1), (I2) and (I4) such that
in (I4) instead of ρ ∈ LX , we take ᾱ, then the mapping Nϕ1,2

(x) : LX → L, is
a fuzzy stack with the cutting property, called ϕ1,2-fuzzy neighborhood stack with
the cutting property at x. The ϕ1,2-fuzzy neighborhood filters fulfill the following
conditions:

(N1) ẋ ≤ Nϕ1,2
(x) holds for all x ∈ X,

(N2) Nϕ1,2
(x)(µ) ≤ Nϕ1,2

(x)(ρ) holds, for all µ, ρ ∈ LX and µ ≤ ρ,

(N3) Nϕ1,2
(x)
(
y 7→ Nϕ1,2

(y)(µ)
)

= Nϕ1,2
(x)(µ), for all x ∈ X and µ ∈ LX .

Clearly, y 7→ Nϕ1,2
(y)(µ) = ϕ1,2.intµ. The characterized fuzzy space (X,ϕ1,2.int)

of all ϕ1,2-open fuzzy subsets of a set X is characterized as a filter fuzzy pre topology
([1]), that is, as the mapping Nϕ1,2

: X → FLX such that (N1) to (N3) are fulfilled.

ϕ1,2ψ1,2-fuzzy continuity. Let the fuzzy topological spaces (X, τ1) and (Y, τ2) be
fixed, ϕ1, ϕ2 ∈ O(LX ,τ1) and ψ1, ψ2 ∈ O(LY ,τ2). Then the mapping f : (X,ϕ1,2.int)→
(Y, ψ1,2.int) is said to be ϕ1,2ψ1,2-fuzzy continuous, if

(2.7) (ψ1,2.int η) ◦ f ≤ ϕ1,2.int (η ◦ f),

for all η ∈ LY [5]. If an order reversing involution ′ of L is given, then we have that
f is a ϕ1,2ψ1,2-fuzzy continuous if and only if ϕ1,2.cl (η ◦ f) ≤ (ψ1,2.cl η) ◦ f , for all
η ∈ LY . Note that ϕ1,2.cl and ψ1,2.cl, means that the closure operators related to
ϕ1,2.int and ψ1,2.int, respectively which are defined by ϕ1,2.clµ = co (ϕ1,2.int coµ),
for all µ ∈ LX . Obviously, if f is ϕ1,2ψ1,2-fuzzy continuous and the inverse f−1 of f
exists, then f−1 : (Y, ψ1,2.int) → (X,ϕ1,2.int) is ψ1,2ϕ1,2-fuzzy continuous, that is,
(ϕ1,2.intµ) ◦ f−1 ≤ ψ1,2.int (µ ◦ f−1), for all µ ∈ LX . By means of characterizing,
the ϕ1,2-fuzzy neighborhoods Nϕ1,2

(x) of ϕ1,2.int and Nψ1,2
(x) of ψ1,2.int which

10
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are defined by (2.5), the ϕ1,2ψ1,2-fuzzy continuity of f can also be characterized as
follows:

The mapping f : (X,ϕ1,2.int) → (Y, ψ1,2.int) is ϕ1,2ψ1,2-fuzzy continuous if and
only if Nψ1,2

(f(x)) ≥ FLf(Nϕ1,2
(x)) holds, for each x ∈ X.

Obviously, in case of L = { 0, 1 }, ϕ1 = ψ1 = int, ϕ2 = 1LX and ψ2 = 1LY , the
ϕ1,2ψ1,2-fuzzy continuity coincides with the usual fuzzy continuity.

Characterized fuzzy proximity spaces. Let a fuzzy topological space (X, τ)
be fixed and ϕ1, ϕ2 ∈ O(LX ,τ). Then each fuzzy proximity δ on X is associated a
set of all ϕ1,2-open fuzzy subsets of X with respect to δ denoted by ϕ1,2OF (X)δ.
The triple (X,ϕ1,2OF (X)δ as will as (X,ϕ1,2.intδ) is said to be characterized fuzzy
proximity space [5]. The related ϕ1,2-interior and the ϕ1,2-closure operators ϕ1,2.intδ
and ϕ1,2.clδ are given by:

ϕ1,2.intδ µ =
∨
µ′ δ̄ρ

ρ and ϕ1,2.clδ µ =
∧
ρ′ δ̄µ

ρ,

respectively, for all µ ∈ LX . Obviously, from the definition of the complementarily
symmetric fuzzy topogeneous structure, there is an identification between the fuzzy
proximity δ and the complementarily symmetric fuzzy topogeneous structure � on
the same set X given by:

(2.8) µ� η
′
⇐⇒ µδ̄η,

for all µ, η ∈ LX .

Proposition 2.1 ([5]). Let (X, τ) be a fuzzy topological space and ϕ1, ϕ2 ∈ O(LX ,τ).

Then the binary relation δ on LX which is defined by:

µδ̄ρ if and only if Nϕ1,2(ρ) ≤ µ̇
′
,

for all µ, ρ ∈ LX is a fuzzy proximity on X.

Proposition 2.2 ([8]). Let (X,ϕ1,2.intδ) be a characterized fuzzy proximity space
and F,G ∈ P (X) such that χF δ̄χG. If Φ is the family of all ϕ1,2ψ1,2δ-fuzzy con-
tinuous mappings f : (X,ϕ1,2.intδ) → (IL, ψ1,2.intδ∗) for which x ∈ X implies
0̄ ≤ f(x) ≤ 1̄, then χF and χG are Φ-separable.

Proposition 2.3 ([8]). Let a fuzzy topological space (X, τ) be fixed and ϕ1, ϕ2 ∈
O(LX ,τ). If (X,ϕ1,2.intτ ) is characterized FR2 1

2
-space and Φ is a fuzzy function

family of all ϕ1,2ψ1,2-fuzzy continuous mappings, then the binary relation δ on LX

which is defied by: µδ̄ρ ⇐⇒ µ and ρ are Φ-separated for all µ, ρ ∈ LX , is fuzzy
proximity on X compatible with the family of all ϕ1,2-open fuzzy set ϕ1,2OF (X),
that is, (X,ϕ1,2.intτ ) = (X,ϕ1,2.intδ).

Fuzzy function family. Let X be non-empty set. By the fuzzy function family
Φ on X, we mean the set of all fuzzy real functions f : X → IL.

Consider µ, η ∈ LX . Then the fuzzy real functions f : X → IL is said to be
separate µ and η, if it fulfilled the following conditions:

(i) 0̄ ≤ f(x) ≤ 1̄ holds, for all x ∈ X,
11
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(ii) if x1, y1 ∈ S(X) such that x1 ≤ µ and y1 ≤ η, then f(x) = 1̄ and f(y) = 0̄,
for all x, y ∈ X.

Moreover, if Φ is a fuzzy function family on X, then the fuzzy subsets µ, η ∈ LX
are called Φ-separable or Φ-separated, if there exists a fuzzy real function h ∈ Φ
separating them.

Characterized fuzzy Ts- and fuzzy ϕ1,2-Ts spaces. The notions of charac-
terized fuzzy Ts- spaces and of fuzzy ϕ1,2-Ts spaces are investigated and studied in
[2, 3, 8], for all s ∈ {0, 1, 2, 2 1

2 , 3, 3
1
2 , 4 }. These spaces depend only on the usual

points and the operation defined on the class of all fuzzy subsets of X endowed
with a fuzzy topological space (X, τ). The characterized fuzzy Ts- spaces and of
fuzzy ϕ1,2-Ts spaces will be denoted by characterized FTs- spaces and Fϕ1,2-Ts
spaces, respectively for shorts. Let a fuzzy topological space (X, τ) be fixed and
ϕ1, ϕ2 ∈ O(LX ,τ). Then

(i) the characterized fuzzy space (X,ϕ1,2.int) is said to be characterized FT1-
space (resp. characterized FT2-space), if for all x, y ∈ X such that x 6= y, there
exist µ, ρ ∈ LX and α, β ∈ L0 such that

µ(x) < α ≤ (ϕ1,2.intµ)(y) and ρ(y) < β ≤ (ϕ1,2.intρ)(x)
(resp. the infimum Nϕ1,2

(x) ∧Nϕ1,2
(y) does not exists),

(ii) the related fuzzy topological space (X, τ) is said to be Fϕ1,2-T1

(resp. Fϕ1,2-T2Fϕ1,2-T2), if for all x, y ∈ X such that x 6= y, we have ẋ 6≤ Nϕ1,2(y)
and ẏ 6≤ Nϕ1,2

(x).

Characterized fuzzy Rk- and fuzzy ϕ1,2-Rk spaces. The notions of charac-
terized fuzzy Rk- and fuzzy ϕ1,2-Rk spaces are introduced and studied in [3, 4, 8],
for all k ∈ {0, 1, 2, 2 1

2 , 3}, by means of the notion of ϕ1,2-fuzzy neighborhood filter at
a point x and at the ordinary subset of the characterized fuzzy space (X,ϕ1,2.int),
and also by the notion of ϕ1,2ψ1,2-fuzzy continuous. However, the notions of fuzzy
ϕ1,2-Rk spaces are also given by means of the ϕ1,2-fuzzy convergence at a point x and
at the ordinary set in the space. The characterized fuzzyRk-spaces and fuzzy ϕ1,2-Rk
spaces will be denoted by characterized FRk- and Fϕ1,2-Rk spaces, respectively for
shorts. Let a fuzzy topological space (X, τ) be fixed and ϕ1, ϕ2 ∈ O(LX ,τ). Then the
characterized fuzzy space (X,ϕ1,2.int) is said to be characterized FR2 1

2
-space, if for

all x ∈ X, F ∈ ϕ1,2C(X) such that x 6∈ F , there exists a ϕ1,2ψ1,2-fuzzy continuous
mapping f : (X,ϕ1,2.int)→ (IL, ψ1,2.int=) such that f(x) = 1̄ and f(y) = 0̄, for all
y ∈ F . Moreover, (X,ϕ1,2.int) is said to be characterized FTs-space, if it is char-
acterized FRk and characterized FT1 for k ∈ {2 1

2 , 3} and s ∈ {3 1
2 , 4}. The related

fuzzy topological space (X, τ) is said to be Fϕ1,2-Ts, if it is Fϕ1,2-Rk and Fϕ1,2-T1.

Proposition 2.4 ([2, 3]). Let a fuzzy topological space (X, τ) be fixed and ϕ1, ϕ2 ∈
O(LX ,τ). Then

(1) every characterized FTi-space (X,ϕ1,2.intτ ) is characterized FTi−1-space for
each i ∈ {1, 2, 3, 4},

(2) the initial and final characterized fuzzy spaces of a family of characterized
FTi-spaces are also characterized FTi -spaces for each i ∈ {0, 1, 2, 3, 4},

12
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(3) the characterized fuzzy subspace and the characterized fuzzy product space
of a family of characterized FTi-spaces are also characterized FTi-spaces for each
i ∈ {0, 1, 2, 3, 4}.

3. Characterized global fuzzy neighborhood spaces and pre spaces

By the global fuzzy neighborhood structure on a set X [18], we mean the mapping
h : FLX → FLX such that the following axioms are fulfilled:

(N1) M≤ h(M) holds, for all M∈ FLX,
(N2) h(L ∨M) = h(L) ∨ h(M), for all L,M∈ FLX,
(N3) h ◦ h = h.
(N4) µX ◦ FLh ◦ FLηX ≤ h holds,

where η and µ are the natural transformations appearing in the fuzzy filter monad.
If h and k are global fuzzy neighborhood structures on a set X, then h is said to be
finer than k and will be denoted by h ≤ k, if the fuzzy filter h(M) is finer than the
fuzzy filter k(M), for all M ∈ FLX. As shown in [18, 19], the fuzzy topogeneous
structures are characterized by means of the global fuzzy neighborhood structure.
However, the following weakening of the notion of the global fuzzy neighborhood
structure is used to characterizations of the fuzzy topogenuous orders.

By the global fuzzy neighborhood pre structure on a set X [13, 20], we mean the
mapping h : FLX → FLX which fulfills the axioms (N1), (N2) and (N4). Each
global fuzzy neighborhood structure h associated canonically a fuzzy pre topology
τh on X. Recall that the fuzzy pre topology is usually defined as a fuzzy interior
operator, that is, as a mapping inth : LX → LX such that inth 1̄ = 1̄, inthµ ≤ µ and
inth(µ∧η) = inthµ∧inthη for all µ, η ∈ LX . The global fuzzy neighborhood space and
the global homogenous fuzzy neighborhood space are sets equipped with global fuzzy
neighborhood structure h and global homogenous fuzzy neighborhood structure k
and will be denoted by (X,h) and (X, k), respectively. Consider ϕ1, ϕ2 ∈ O(LX ,τh),
then the associated characterized fuzzy pre topology generated by ϕ1,2.intτh of the
global fuzzy neighborhood pre structure h : FLX → FLX is defined by:

(3.1) (ϕ1,2.intτhµ)(x) = h(ẋ)(µ),

for all x ∈ X and µ ∈ LX . For technical reason condition (N4) of the global fuzzy
neighborhood structure will also be applied in a more simple formulation given in
the following proposition.

Proposition 3.1. Condition (N4) of the global fuzzy neighborhood structure is equiv-
alent to the condition:

h(M)(ρ) ≤M(ϕ1,2.intτhρ) holds for all M∈ FLX and ρ ∈ LX ,
where ϕ1,2.intτhρ is the fuzzy set x 7→ h(ẋ)(ρ) of X.

Proof. From the definitions of the natural transformations µX and ηX , it follows
that for all M∈ FLX and ρ ∈ LX , we have

(µX ◦ FLh ◦ FLηX)(M)(ρ) = µX(FL(h ◦ ηX)(M))(ρ)
= (FL(h ◦ ηX)(M) ◦ eX)(ρ)
= FL(h ◦ ηX)(M)(eX(ρ))
=M(eX(ρ) ◦ h ◦ ηX)

13



A. S. Abd-Allah et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

=M
(
x 7→ h(ẋ)(ρ)

)
=M(ϕ1,2.intτhρ).

This shows that both the conditions are equivalent. �

Let h be global fuzzy neighborhood pre structure on a set X and M ∈ FLX.
Then, h(M) is said to be fuzzy neighborhood of M with respect to h and the
mapping h ◦ ϕ1,2.intτh , which coincides with (µX ◦ FLh ◦ FLηX)(M) is said to be
ϕ1,2-fuzzy neighborhood of M with respect to the characterized fuzzy pre topol-
ogy generated by ϕ1,2.intτh . Note that, µX ◦ FLh ◦ FLηX is itself a global fuzzy
neighborhood pre structure and it can be identified with the characterized fuzzy pre
topology generated by ϕ1,2.intτh . In case of h is global fuzzy neighborhood structure,
then µX ◦ FLh ◦ FLηX also is. In this case, ϕ1,2.intτh is ϕ1,2-interior operator of a
characterized fuzzy space on X denoted by (X,ϕ1,2.intτh), that is, µX ◦FLh◦FLηX
is identified with this associated characterized fuzzy space. This associated char-
acterized fuzzy space will be called characterized global fuzzy neighborhood space
associated by the global fuzzy neighborhood structures h.

If the fuzzy filter monad (FL, η, µ) is replaced by the homogeneous fuzzy fil-

ter monad (FL, η
′
, µ
′
), then we have the global homogeneous fuzzy neighborhood

structure instead of the global fuzzy neighborhood structure, that is, the global ho-
mogeneous fuzzy neighborhood structure on a set X is the mapping h : FLX → FLX
such that the following axioms are fulfilled:

(N1
′
) M≤ h(M) , for all M∈ FLX,

(N2
′
) h(L ∨M) = h(L) ∨ h(M), for all L,M∈ FLX,

(N3
′
) h ◦ h = h,

(N4
′
) µ

′

X ◦ FLh ◦ FLη
′

X ≤ h.

If the axioms (N1
′
), (N2

′
) and (N4

′
) are only fulfilled, then h will be called global

homogeneous fuzzy neighborhood per structure.
Each global homogenous fuzzy neighborhood pre structure h on a set X is asso-

ciated canonically with a stratified fuzzy pre topology τsh on X. Consider ϕ1, ϕ2 ∈
O(LX ,τsh). Then the associated stratified characterized fuzzy pre topology gen-
erated by ϕ1,2.intτsh of the global homogenous fuzzy neighborhood pre structure

h : FLX → FLX is defined by (ϕ1,2.intτsh µ)(x) = h(ẋ)(µ), for all x ∈ X and µ ∈ LX .
The ordered pair (X,ϕ1,2.intτsh) will be called characterize global fuzzy neighborhood
pre space. The associated characterized global fuzzy neighborhood pre topology gen-
erated by ϕ1,2.intτsh is stratified, that is, ϕ1,2.intτsh(ᾱ) = ᾱ, for all α ∈ L. In case of

h is global homogeneous fuzzy neighborhood structure, then µ
′

X ◦FLh◦FLη
′

X also is
and thus ϕ1,2.intτsh is ϕ1,2-interior operator of a stratified characterized fuzzy space

on X denoted also by (X,ϕ1,2.intτsh), that is, µ
′

X ◦FLh ◦FLη
′

X is identified with this
stratified characterized fuzzy space. This stratified characterized fuzzy space will
be called associated stratified characterized global fuzzy neighborhood space, by the
global homogeneous fuzzy neighborhood structures h.

(h, k)-Continuity. The mapping f between the global fuzzy neighborhood space
(X,h) into the global fuzzy neighborhood space (Y, k) is said to be (h, k)-continuous,

14
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provided

(3.2) FLf ◦ h ≤ k ◦ FLf.
Analogously, the mapping g : (X∗, h) → (Y ∗, k) between global homogenous fuzzy
neighborhood spaces is said to be (h, k)-continuous, provided FLg ◦ h ≤ k ◦ FLg.

Proposition 3.2. Let h : FLX → FLX be global fuzzy neighborhood structure and
let (X, τh) be the associated global fuzzy neighborhood space. If ϕ1, ϕ2 ∈ O(LX ,τh),
then h defines a characterized global fuzzy neighborhood space generated by ϕ1,2.intτh
on X given by:

µ ∈ ϕ1,2OF (X)τh ⇐⇒ µ(x) = h(ẋ)(µ) for each x ∈ X.

Proof. Condition (F1) of the fuzzy filter implies that 0 and 1 are members of
ϕ1,2OF (X)τh . If µ, η ∈ ϕ1,2OF (X)τh , then by the condition (F2), we have

h(ẋ)(µ ∧ η) = (µ ∧ η)(x).

Thus µ ∧ η ∈ ϕ1,2OF (X)τh .
Let {µi }i∈I be a family of members of ϕ1,2OF (X)τh . Since h is hull operator, it

follows that h(ẋ)(
∨
i∈I

µi) ≤ (
∨
i∈I

µi)(x). Since h is isotone, we have

h(ẋ)(
∨
i∈I

µi) ≥
∨
i∈I

h(ẋ)(µi) = (
∨
i∈I

µi)(x).

So, h(ẋ)(
∨
i∈I

µi) = (
∨
i∈I

µi)(x), for each x ∈ X. Hence
∨
i∈I

µi ∈ ϕ1,2OF (X)τh , i.e.,

ϕ1,2OF (X)τh is ϕ1,2.intτh operator for a characterized fuzzy space on X. Therefore
(X,ϕ1,2.intτh) is characterized global fuzzy neighborhood space. �

Proposition 3.3. Let f : (X,h) → (Y, k) be a mapping between global fuzzy
neighborhood pre spaces, let τh and τk be the fuzzy pre topologies associated to
h and k, respectively. Consider ϕ1, ϕ2 ∈ O(LX ,τh) and ψ1, ψ2 ∈ O(LY ,τk). If
f : (X,h) → (Y, k) is (h, k)-continuous, then f : (X,ϕ1,2.intτh) → (Y, ψ1,2.intτk)
between the associated characterized global fuzzy neighborhood pre spaces is ϕ1,2ψ1,2-
fuzzy continuous. In case, h and k are coincide up to identifications with ϕ1,2.intτh
and ψ1,2.intτk , respectively, then f : (X,h)→ (Y, k) is (h, k)-continuous if and only
if f : (X,ϕ1,2.intτh)→ (Y, ψ1,2.intτk) is ϕ1,2ψ1,2-fuzzy continuous.

Proof. Assume at first that f is (h, k)-continuous. For all η ∈ LY and x ∈ X, (3.1)
and (3.2) imply that

ϕ1,2.intτh(η ◦ f)(x) = h(ẋ)(η ◦ f)

= FLf(h(ẋ))(η) ≥ k(FLf(ẋ))(η)

= k(ẏ)(η) = (ψ1,2.intτkη)(f(x)),

where y = f(x) and ϕ1,2.intτh and ψ1,2.intτk are the ϕ1,2-interior and ψ1,2-interior
operators with respect to the associated characterized global fuzzy neighborhood
pre topologies, respectively. Then, (ψ1,2.intτkη) ◦ f ≤ ϕ1,2.intτh(η ◦ f), for all
η ∈ LY , which of course means from (2.7) that f is ϕ1,2ψ1,2-fuzzy continuous.
As in case of [15, 17], under the assumption that h and k coincide up to iden-
tifications with ϕ1,2.intτh and ψ1,2.intτk ,respectively the ϕ1,2ψ1,2-fuzzy continuity
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of f : (X,ϕ1,2.intτh) → (Y, ψ1,2.intτk) is equivalent to the (h, k)-continuity of f :
(X,h)→ (Y, k). �

Corollary 3.4. If f : (X,h) → (Y, k) is (h, k)-continuous mapping between global
homogenous neighborhood fuzzy pre spaces, then f : (X,ϕ1,2.intτsh)→ (Y, ψ1,2.intτsk )
between the associated stratified characterized global fuzzy neighborhood pre spaces is
ϕ1,2ψ1,2-fuzzy continuous.

Proof. Immediate from Proposition 3.3. �

4. Characterized fuzzy uniform spaces, characterized fuzzy perfect
topoeneous structures and characterized FR2 1

2
-spaces

In this section, we are going to investigate and study the notions of characterized
fuzzy uniform spaces and of characterized fuzzy perfect topoeneous structure as a
generalization of all the weaker and stronger forms of the notions of fuzzy uniform
spaces presented in [20] and of the fuzzy perfect topoeneous structure presented in
[19, 26], respectively. For this, we applied the notion of homogeneous fuzzy filter
at the point and at the fuzzy set which is defined by (2.1), the superior princi-
pal fuzzy filter [µ] generated by µ ∈ LX and the ϕ1,2-fuzzy neighborhoods at the
fuzzy set µ which is defined by (2.6) in the characterized fuzzy space (X,ϕ1,2.intτ ).
Moreover, the relation between the separated fuzzy uniform spaces, the associated
characterized uniform FT1-spaces, the associated characterized uniform FT3 and
the Fϕ1,2Ti-spaces which introduced in [2] are investigated for all i ∈ {1, 3}.

By a fuzzy relation on a set X, we mean the mapping R : X ×X → L, that is,
a fuzzy subset of X ×X. For each fuzzy relation R on X, the inverse R−1 of R is
the fuzzy relation on X defined by R−1(x, y) = R(y, x), for all x, y ∈ X. Let U be
a fuzzy filer on X × X. The inverse U−1 of U is a fuzzy filter on X × X defined
by U−1(R) = U(R−1), for all R ∈ LX×X . The composition R1 ◦ R2 of two fuzzy
relations R1 and R2 on a set X is fuzzy relation on X defined by:

(R1 ◦R2)(x, y) =
∨
z∈X

(
R2(x, z) ∧R1(z, y)

)
,

for all x, y ∈ X. For each pair (x, y) of elements x and y of X, the mapping (x, y)· :
LX×X → L defined by (x, y)·(R) = R(x, y), for all R ∈ LX×X is a homogeneous
fuzzy filter on X ×X.

Let U and V are fuzzy filers on X ×X such that (x, y)· ≤ U and (y, z)· ≤ V hold,
for some x, y, z ∈ X . Then the composition V ◦ U of V and U is a fuzzy filter ([20])
on X ×X defined by:

(V ◦ U)(R) =
∨

R2◦R1≤R

(
U(R1) ∧ V(R2)

)
,

for all R ∈ LX×X . The fuzzy uniform structure U ([20]) on a set X is said to be
separated, if for all x, y ∈ X with x 6= y there is R ∈ LX×X such that U(R) = 1 and
R(x, y) = 0. In this case, the fuzzy uniform space (X,U) is called a separated fuzzy
uniform space. Let U be a fuzzy uniform structure on a set X such that (x, y)· ≤ U
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holds, for all x ∈ X and let M ∈ FLX. Then the mapping U [M] : LX → L which
is defined by:

U [M](µ) =
∨

R(η)≤µ

(
U(R) ∧M(η)

)
,

for all µ ∈ LX is fuzzy filter on X, called the image of M with respect to the fuzzy
uniform structure U ([20]), where η,R[η] ∈ LX such that

R[η](x) =
∨
y∈X

(η(y), R(y, x)).

To each fuzzy uniform structure U on a set X is associated with a stratified fuzzy
topology τU on X. Consider ϕ1, ϕ2 ∈ O(LX ,τU ). Then the set of all ϕ1,2-open fuzzy

subsets of X related to τU forms a base for a characterized stratified fuzzy space on X
generated by the ϕ1,2-interior operator with respect to τU denoted by ϕ1,2.intU and
(X,ϕ1,2.intU ) is a characterized stratified fuzzy space. In this case, (X,ϕ1,2.intU )
will be called the associated characterized fuzzy uniform space which is stratified.
The related ϕ1,2-interior operator ϕ1,2.intU is given by:

(4.1) (ϕ1,2.intUµ)(x) = U [ẋ](µ),

for all x ∈ X and µ ∈ LX . The fuzzy set µ is said to be ϕ1,2U-fuzzy neighborhood
of x ∈ X provided U [ẋ] ≤ µ̇. Because of (2.1), (2.6) and (4.1), we have that

(4.2) U [ẋ] = Nϕ1,2
(x) and U [ν̇] = Nϕ1,2

(µ),

for all x ∈ X and µ ∈ LX . In this case,Nϕ1,2
(x) andNϕ1,2

(µ) are fuzzy neighborhood
filters of the associated characterized fuzzy uniform space (X,ϕ1,2.intU ) at x and µ,
respectively.

Proposition 4.1. Let X be a non-empty set, let U be a fuzzy uniform structure on X
and ϕ1, ϕ2 ∈ O(LX ,τU ). Then the fuzzy uniform space (X,U) is separated if and only

if the associated characterized fuzzy uniform space (X,ϕ1,2.intU ) is characterized
FT1-space.

Proof. Let (X,U) is separated and let x, y ∈ X such that x 6= y. Then, there exists
R1, R2 ∈ LX×X such that U(Ri) = 1 and Ri(x, y) = 0, for all i ∈ {1.2}. Consider
µ = R[y1] and η = R[x1]. Then we have

µ(x) = R1[y1](x) =
∨
z∈X

(
R1(z, x) ∧ y1(z)

)
= 0

and
η(y) = R2[x1](y) =

∨
z∈X

(
R2(z, y) ∧ x1(z)

)
= 0.

Moreover,
(ϕ1,2.intU µ)(y) = U [ẏ](µ) =

∨
R1(ρ)≤µ

(
U(R1) ∧ ρ(y)

)
= 1

and
(ϕ1,2.intU η)(x) = U [ẋ](η) =

∨
R1(ρ)≤η

(
U(R2) ∧ ρ(x)

)
= 1,

for all ρ ∈ LX . Thus, there exists µ, η ∈ LX and α, β ∈ L0 such that
µ(x) < α ≤ (ϕ1,2.intU µ)(y) and η(y) < β ≤ (ϕ1,2.intU η)(x).

So, (X,ϕ1,2.intU ) is characterized FT1-space.
17
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Conversely, let (X,ϕ1,2.intU ) be characterized FT1-space and let x 6= y in X.
Then, there exists µ, η ∈ LX and α, β ∈ L0 such that

µ(x) < α ≤ (ϕ1,2.intU µ)(y) and η(y) < β ≤ (ϕ1,2.intU η)(x).
This means that for all ρ ∈ LX ,∨

R1(ρ)≤µ

(
U(R1) ∧ ρ(y)

)
> µ(x) and

∨
R2(ρ)≤η

(
U(R2) ∧ ρ(x)

)
> η(y).

Thus, there is R1, R2 ∈ LX×X such that R1(x, y) = ϕ1,2.intU µ(y), if x = y and
R1(x, y) = µ(x), if x 6= y such that R1(x, y) = 0 and U(R1) = 1 and R2(x, y) =
ϕ1,2.intU η(x), if x = y and R2(x, y) = η(y) if x 6= y such that R2(x, y) = 0 and
U(R2) = 1 . So, in every case, (X,U) is separated. �

Corollary 4.2. Let X be a non-empty set, let U be a fuzzy uniform structure on X
and ϕ1, ϕ2 ∈ O(X,τU ). Then the fuzzy uniform space (X,U) is separated if and only
if the associated stratified fuzzy topological space (X, τU ) is Fϕ1,2-T1-space.

Proof. Immediate from Proposition 4.1 and Theorem 2.2 in [2]. �

Proposition 4.3 ([19]). For each fuzzy uniform structure U on a set X, the mapping
h : FLX → FLX which is defined by

(4.3) h(M) = U [M],

for all M∈ FLX, is a global homogeneous fuzzy neighborhood structure.

The mapping h will be called global homogeneous fuzzy neighborhood structure
associated to the fuzzy uniform structure U and will be denoted by hU . The global
fuzzy neighborhood structure h on a set X is said to be symmetric [13, 20], provided
that h(L)∧M exists if and only if L∧h(M) exists for allM,L ∈ FLX. As shown in
[20], for each fuzzy uniform structure U , the associated homogenous fuzzy neighbor-
hood structure hU is symmetric and both the global homogenous fuzzy neighborhood
structures associated to the fuzzy uniform structures U and its homogenization U∗
are coincide.

Proposition 4.4 ([20]). Let f : (X,U) → (Y,V) be uniformly fuzzy continuous
mapping between fuzzy uniform spaces. Then the mapping f : (X,hU ) → (Y, hV)
between the associated global homogeneous fuzzy neighborhood spaces is (hU , hV)-
fuzzy continuous.

Proposition 4.5. Let f : (X,U) → (Y,V) be uniformly fuzzy continuous mapping
between fuzzy uniform spaces, ϕ1, ϕ2 ∈ O(LX ,τU ) and ψ1, ψ2 ∈ O(LY ,τV). Then the
mapping f : (X,ϕ1,2.intU ) → (Y, ψ1,2.intV ) between the associated characterized
fuzzy uniform spaces is ϕ1,2ψ1,2-fuzzy continuous.

Proof. Immediate from Propositions 3.3 and 4.4. �

In the following proposition, we prove that for each fuzzy uniform structure on a
set X there is induced stratified fuzzy proximity on LX . Moreover, both the fuzzy
uniform structure and this induced stratified fuzzy proximity are associated with
the same stratified characterized fuzzy uniform space.
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Proposition 4.6. Let X be a non-empty set and let U be a fuzzy uniform structure
on X and ϕ1, ϕ2 ∈ O(X,τU ). Then the binary relation δU on LX defined by:

(4.4) µδ̄Uρ if and only if U [µ̇] ≤ ρ̇
′
,

for all µ, ρ ∈ LX is stratified fuzzy proximity on X. Moreover, both the fuzzy uniform
structure U and the induced stratified fuzzy proximity δU are associated with the same
stratified characterized fuzzy uniform space, that is, (X,ϕ1,2.intU ) = (X,ϕ1,2.intδU ).

Proof. By (4.2) and Proposition 2.1, we get δU which is defined by (4.4) is fuzzy
proximity on X. Since (X,ϕ1,2.intU ) is stratified, ᾱ is ϕ1,2-open in (X,ϕ1,2.intU ),

for all α ∈ L, i.e., U [ ˙̄α] ≤ ˙̄α, for all α ∈ L and then ᾱδ̄U ᾱ
′
, for all α ∈ L. Thus, δU is

stratified fuzzy proximity on X. By (4.4), we have x1δ̄Uµ
′

if and only if U [ẋ] ≤ µ̇,
i.e., µ is ϕ1,2δU -fuzzy neighborhood of x if and only if it is ϕ1,2U-fuzzy neighborhood
of x. So, both the fuzzy uniform structure U and the induced stratified fuzzy prox-
imity δU are associated with the same stratified characterized fuzzy uniform space,
i.e., (X,ϕ1,2.intU ) = (X,ϕ1,2.intδU ). �

Corollary 4.7. Let (X,U), (Y,V) be two fuzzy uniform spaces and let ϕ1, ϕ2 ∈
O(X,τδU ) and ψ1, ψ2 ∈ O(Y,τδV ). Then f : (X,U) → (Y,V) is uniformly fuzzy

continuous mapping between fuzzy uniform spaces if and only if the mapping f :
(X,ϕ1,2.intδU ) → (Y, ψ1,2.intδV ) between the associated stratified fuzzy proximity
spaces is ϕ1,2ψ1,2-fuzzy continuous.

Proof. Immediate from Propositions 4.5 and 4.6. �

By Propositions 2.2 and 4.6 and Corollary 4.7, we can deduce the following result:

Proposition 4.8. Let (X,U) be a fuzzy uniform space and let F,G ∈ P (X) such

that U [Ḟ ] = U [χ̇F ] ≤ χ̇G′ = Ġ
′

and ϕ1, ϕ2 ∈ O(X,τδU ). If Φ is the family of all

uniformly fuzzy continuous functions f : (X,U)→ (IL,U∗) for which x ∈ X implies
0̄ ≤ f(x) ≤ 1̄, then χF and χG are Φ-separable.

Proof. By Proposition 4.6, we have χF δ̄UχG. From Proposition 2.2, we get χF and
χG are Φ-separated by the ϕ1,2ψ1,2δU -fuzzy continuous mapping f : (X,ϕ1,2.intδU )→
(Y, ψ1,2.intδV ) between the associated stratified characterized fuzzy proximity spaces.
Corollary 4.7, implies that f : (X,U)→ (IL,U∗) is uniformly fuzzy continuous and
therefore χF and χG are Φ-separable. �

Now, we shall prove that the stratified characterized fuzzy uniform space which
associated with a fuzzy uniform structure is characterized FR2 1

2
-space in sense of

[8].

Proposition 4.9. Let X be a non-empty set and let U be a fuzzy uniform structure
on X and ϕ1, ϕ2 ∈ O(X,τU ). Then the associated stratified characterized fuzzy uni-
form space (X,ϕ1,2.intU ) with the fuzzy uniform structure U is characterized FR2 1

2
-

space.

Proof. Let x ∈ X, F ∈ ϕ1,2C(X) such that x 6∈ F . Since χF ′ is ϕ1,2U-fuzzy

neighborhood of x, U [ẋ] = Nϕ1,2(x) ≤ Ḟ ′ . On account of Proposition 4.8, we get that
x1 and χF are Φ-separated by the uniformly fuzzy continuous function f : (X,U)→
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(IL,U∗). By Proposition 4.5, the function f : (X,ϕ1,2.intU ) → (IL, ψ1,2.intU∗)
is ϕ1,2ψ1,2-fuzzy continuous. Consequently, (X,ϕ1,2.intU ) is characterized FR2 1

2
-

space. �

Corollary 4.10. Let (X,U) be a separated fuzzy uniform space and ϕ1, ϕ2 ∈ O(X,τU ).
Then the associated stratified characterized fuzzy uniform space (X,ϕ1,2.intU ) with
the fuzzy uniform structure U is characterized FT3 1

2
-space.

Proof. Immediate from Propositions 4.1 and 4.9.
�

Example of stratified characterized fuzzy uniform FR2 1
2
-space. In the

following, we give an example of a homogeneous fuzzy uniform structure and we
show that the associated stratified characterized fuzzy uniform space is characterized
uniform FR2 1

2
-space.

Example 4.11. The fuzzy metric in sense of S. Gähler and W. Gähler [14] canoni-
cally generate homogeneous fuzzy structure as follows: Consider X is non-empty set
and d is fuzzy metric on X, then the mapping Ud : LX×X → L which is defined by:

Ud(R) =
∨

0<δ,εα,δ◦d≤R

α,

for all R ∈ LX×X is homogeneous fuzzy uniform structures on X. Moreover, the
associated stratified characterized fuzzy uniform space (X,ϕ1,2.intUd) is identical
with the associated characterized fuzzy metrizable space (X,ϕ1,2.intτd), that is,
(X,ϕ1,2.intUd) = (X,ϕ1,2.intτd). By Proposition 3.1 in [9], (X,ϕ1,2.intτd) is charac-
terized FT4-space and thus (X,ϕ1,2.intUd) is characterized FT4-space. From Propo-
sition 4.6 in [8], we get (X,ϕ1,2.intUd) is characterized FR2 1

2
-space.

Remark 4.12. In Example 4.11, if we choose ϕ1 = intτ , ϕ2 = 1LX , ψ1 = int= and
ψ2 = 1LI , the associated stratified characterized fuzzy uniform space (X,ϕ1,2.intUd)
and the associated characterized fuzzy metrizable space (X,ϕ1,2.intτd) are identical
with the associated stratified fuzzy topological uniform space (X, τUd ) and the asso-

ciated fuzzy metrizable topological space (X, τd), respectively.

Some special characterization of fuzzy pre filters. The fuzzy topogeneous
order (resp. structure)� will be called perfect [26], if for each family (µi)i∈I of fuzzy
subsets of X such that µi � η, for all i ∈ I, it follows that

∨
i∈I

µi ≤ η holds, for some

η ∈ LX . As in [26], there is a one-to-one correspondence between the fuzzy perfect
topoeneous structures � on a set X and the characterized fuzzy spaces generated
by the ϕ1,2-interior operators ϕ1,2.int on X. This correspondence is given by:

µ� η if and only if µ ≤ ρ ≤ η for some ρ ∈ ϕ1,2OF (X),

for all µ, η ∈ LX and ϕ1,2OF (X) = {µ ∈ LX : µ � µ}. The fuzzy perfect topoe-
neous structure � in this case will be called characterized fuzzy perfect topoeneous
structure.

Specially, let (X, τ) be a stratified fuzzy topological space, ϕ1, ϕ2 ∈ O(X,τ) and
� is characterized completely symmetric fuzzy perfect topoeneous structure on X
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identified with the stratified characterized fuzzy space (X,ϕ1,2.intτ ). Then for each
α ∈ L0, let Rα : X ×X → L be the mapping satisfied that:

(4.5) Rα(x, x) = 1 and Rα[µ] =

{
{µ} if µ� (η ∧ ᾱ)for someη ∈ ϕ1,2OF (X),

{ 1 } otherwise,

for all x ∈ X and µ ∈ LX . As easily seen the mapping Rα fulfilled the following
properties for all α ∈ L0:

(1) if ϕ2 ≥ 1LX , then µ ≤ Rα[µ] holds, for all µ ∈ LX ,
(2) Rα[ᾱ] = ᾱ.
(3) if ϕ2 is isotone and idempotent operation, then Rα ◦Rα = Rα,
(4) if ϕ2 ≥ 1LX is isotone and ϕ1 is wfip with respect to ϕ1OF (X), then

Rα[µ] = µ, for all µ ∈ ϕ1,2OF (X).

Proposition 4.13. Let Uα be the set of all mappings Rα which is defined by (4.5)
for all α ∈ L0. Then the family

(
Uα
)
α∈L0

is a family of fuzzy pre filters on X ×X
satisfied the following axioms :

(R1) if α, β ∈ L0 with β ≥ α, then Uα ⊆ Uβ,
(R2) for each α ∈ L0 such that α =

∨
0<β<α

β, we have Uα =
⋂

0<β<α

Uβ,

(R3) for all α ∈ L0, Rα ∈ Uα and x ∈ X, we have Rα(x, x) ≥ α,
(R4) if Rα ∈ Uα, then R−1

α ∈ Uα,
(R5) for each α ∈ L0 and Rα ∈ Uα, we have

∨
Rβ◦Rβ≤Rα,Rβ∈Uβ

β ≥ α.

Proof. At first, we prove that Uα is a fuzzy pre filter on X × X, for all α ∈ L0.
Consider õ : X ×X → L is the mapping defined by : õ(x, y) = 0, for all x, y ∈ X.
Then, õ[µ](x) =

∨
y∈X

(
µ(y) ∧ õ(y, x)

)
= 0, for all µ ∈ LX and x ∈ X and even that

õ(x, x) = 0 6= 1. Thus, õ 6∈ Uα.
Now, let Rα ∈ Uα and Rα ≤ Rβ . Then, Rβ(x, x) = 1, for all x ∈ X and also

Rα[µ] ≤ Rβ [µ] holds, for all µ ∈ LX . In case of µ� (η∧ᾱ) for some η ∈ ϕ1,2OF (X),
we have µ ≤ ᾱ and Rβ(x, x) ≥ α. So Rβ [µ](x) =

∨
y∈X

(
µ(y) ∧ Rβ(y, x)

)
= µ(x), for

all x ∈ X, that is, Rβ [µ] = µ. Otherwise, if µ � (η ∧ ᾱ) does not holds, for all
η ∈ ϕ1,2OF (X), we get Rβ [µ] ≥ Rα[µ] = 1̄ holds, for all µ ∈ LX . Hence Rβ ∈ Uα.

Consider Rα, Rβ ∈ Uα. Then (Rα ∧ Rβ)(x, x) = Rα(x, x) ∧ Rβ(x, x) = 1, for all
x ∈ X. Since

(Rα ∧Rβ)[µ](x) =
∨
y∈X

(
µ(y) ∧ (Rα ∧Rβ)(y, x)

)
=

∨
y∈X

(
µ(y) ∧Rα(y, x)

)
∧
∨
y∈X

(
µ(y) ∧Rβ(y, x)

)
= Rα[µ](x) ∧Rβ [µ](x),

for all µ ∈ LX and x ∈ X, (Rα ∧ Rβ)[µ] = Rα[µ] ∧ Rβ [µ] for all µ ∈ LX . In case
of µ � (η ∧ ᾱ) for some η ∈ ϕ1,2OF (X), we have (Rα ∧ Rβ)[µ] = µ. Otherwise,
(Rα ∧ Rβ)[µ] = 1̄. Thus, (Rα ∧ Rβ) ∈ Uα. So, Uα is a fuzzy pre filter on X × X.
Hence the family

(
Uα
)
α∈L0

is a family of fuzzy pre filters on X ×X.
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Now, consider α, β ∈ L0 such that β ≥ α. Then in case of µ � (η ∧ ᾱ) for some
η ∈ ϕ1,2OF (X), we have Rα[µ] = µ and µ� (η ∧ ᾱ) ≤ (η ∧ β̄) implies µ� (η ∧ β̄)
and thus Rβ [µ] = µ = Rα[µ]. The other case of µ� (η∧β̄) for some η ∈ ϕ1,2OF (X),
we get Rβ [µ] = µ ≤ Rα[µ]. So Rβ [µ] ≤ Rα[µ] holds, for all µ ∈ LX . In every cases
of µ ∈ LX , it easily seen that also Rβ [µ] ≤ Rα[µ] holds. Hence, Uα ⊆ Uβ . Therefore
(R1) is fulfilled.

To fulfills (R2), let α ∈ L0 and α =
∨

0<β<α

β. Because of (R1), we get
⋂

0<βα

Uβ ⊆

Uα. In case of µ � (η ∧ ᾱ) for some η ∈ ϕ1,2OF (X), we have Rα[µ] = µ ≤ Rβ [µ]
holds, for all 0 < β < α and α =

∨
0<β<α

β. In case of µ � (η ∧ ᾱ) does not

holds for all η ∈ ϕ1,2OF (X), we get that Rα[µ] = 1̄ ≤
⋂

0<βα

Rβ [µ] = 1̄, that is,⋂
0<βα

Rβ [µ] ≥ Rα[µ], for all µ ∈ LX . Then Uα ⊆
⋂

0<βα

Uβ . Thus Uα =
⋂

0<βα

Uβ . So,

(R2) is fulfilled.
To prove (R3), from the fact that Rα[1̄] = 1̄, for all α ∈ L0, we get

Rα[1̄](x) =
∨
y∈X

(
1̄(y) ∧Rα(y, x)

)
=
∨
y∈X

Rα(y, x) = Rα(x, x) = 1,

for all x ∈ X, that is, Rα(x, x) ≥ α, for all α ∈ L0, Rα ∈ Uα and x ∈ X. Then, (R3)
is fulfilled.

Now, let Rα ∈ Uα. Since µ � (η ∧ ᾱ) holds for some η ∈ ϕ1,2OF (X), µ ≤ ᾱ

holds for all α ∈ L0. Then we get that Rα[µ](x) =
∨
y∈X

(
µ(y) ∧ Rα(y, x)

)
= µ(x),

because µ(x) ≤ α and Rα(x, x) ≥ α for all x ∈ X. In case of Rα[µ] = 1̄, we get

Rα[µ](x) =
∨
y∈X

(
µ(y) ∧Rα(y, x)

)
= Rα(x, x) = 1, for all x ∈ X. Since

R−1
α [µ](x) =

∨
y∈X

(
µ(y) ∧R−1

α (y, x)
)

=
∨
y∈X

(
µ(y) ∧Rα(x, y)

)
,

R−1
α [µ](x) = µ(x), for all x ∈ X in case of µ � (η ∧ ᾱ) for some η ∈ ϕ1,2OF (X).

Otherwise, R−1
α [µ](x) = Rα(x, x) = 1, for all x ∈ X. Thus, R−1

α ∈ Uα, for all
Rα ∈ Uα. So (R4) is also fulfilled.

Finally, since Rα ◦Rα = Rα, for all α ∈ L0 and Rα ∈ Uα,

α ≤
∨

Rβ∈Uβ ,Rβ≤Rα

β =
∨

Rβ∈Uβ ,Rβ◦Rβ≤Rα

β.

Then (R5) is fulfilled.
Consequently,

(
Uα
)
α∈L0

is a family of fuzzy pre filters on X × X fulfilled the

axioms (R1) to (R5). �

Now, we have the following important result which show that the associated
stratified characterized fuzzy uniform spaces with the fuzzy uniform structures are
compatible with the stratified characterized FR2 1

2
-spaces.

Proposition 4.14. Let (X, τ) be a fuzzy topological space, ϕ1, ϕ2 ∈ O(LX ,τ), ψ1, ψ2 ∈
O(LI ,=) and let Φ be the fuzzy function family of all ϕ1,2ψ1,2-fuzzy continuous func-
tions on X. If the characterized fuzzy space (X,ϕ1,2.intτ ) is stratified characterized
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FR2 1
2
-space, then the mapping U : LX×X → L which is defined by:

U(Rα) =
∨

Rβ∈Uα,Rβ≤Rα

α for all Rα ∈ LX×X ,

where Uα is the set of all mappings Rα defined by (4.5) is a fuzzy uniform structure
on X and the associated stratified characterized fuzzy uniform space (X,ϕ1,2.intτU )

with U is compatible with (X,ϕ1,2.intτ ).

Proof. Because of Proposition 4.13, U is fuzzy uniform structure on X. Now let
µ is ϕ1,2-open with respect to ϕ1,2.int

τU
such that µ 6= 1̄ and µ(x) = 1. Then,

ϕ1,2.intτU µ(x) =
∨

Rα[η]≤µ

(
Uα(Rα, η(x)

)
= 1, that is, there is some Rα0 ∈ Uα with

U(Rα0
) = 1 ≥ α such that Rα0

[η] = η ≤ µ and η � (ρ∧ᾱ) for some ρ ∈ ϕ1,2OF (X).
This means that ρ = (µ ∧ ᾱ) is ϕ1,2-open with respect to ϕ1,2.intτ and fulfilled
that η ≤ ρ ≤ µ, η(x) = 1 and ρ ∈ ϕ1,2OF (X), that is, ρ(x) = 1, ρ ≤ µ and
ρ ∈ ϕ1,2OF (X). Thus, µ is ϕ1,2-open with respect to ϕ1,2.intτ . So, ϕ1,2.intτU (µ) ≥
ϕ1,2.intτ (µ) holds for all µ ∈ LX . Hence ϕ1,2.intτU ≤ ϕ1,2.intτ .

Conversely, let µ is ϕ1,2-open with respect to ϕ1,2.intτ such that µ 6= 1̄ and
ϕ1,2.intτU (µ) 6= µ. Then there is x ∈ X such that ϕ1,2.intτU µ(x) = 0 and µ(x) >

0. Since x ∈ F
′

= S0µ ∈ ϕ1,2O(X) and (X,ϕ1,2.intτ ) is stratified characterized
FR2 1

2
-space, there exists a ϕ1,2ψ1,2-fuzzy continuous function f : (X,ϕ1,2.intτ ) →

(IL, ψ1,2.int=) such that f(x) = 1̄ and f(y) = 0̄ for all y ∈ F . Consider σ ∈ LX
defined by:

σ(y) =
(
R1(f(y))

)′
=
∨
α≥1

f(y)(α) for ally ∈ X.

Then σ(y) ≤ R0(f(y)) ≤ µ(y), for all y ∈ X. This means that
∨
α≥1

f(x)(α) = 1, for

all x1 ≤ σ and
∨
β≥0

f(y)(β) = 0, for all y1 ≤ µ
′
, that is, f(x) = 1̄, for all x1 ≤ σ

and f(y) = 0̄, for all y1 ≤ µ
′
. Thus, x1 and µ

′
are Φ-separated, for all x1 ≤ σ. So

σ and µ
′

are Φ-separated. Because of (2.8) and Proposition 2.3, we get σ � µ and
σ(x) = 1. Now,

ϕ1,2.intτU µ(x) =
∨

Rα[η]≤µ

(
Uα(Rα, η(x)

)
≥

∨
Rα[η]≤µ

η(x),

for some Rα ∈ Uα with U(Rα) = 1 ≥ α, which means that

ϕ1,2.intτU µ(x) ≥
∨

η�µ,µ∈ϕ1,2OF (X)

η(x)

and is also fulfilled when replacing η by σ, that is,

ϕ1,2.intτU µ(x) ≥
∨

η�µ,µ∈ϕ1,2OF (X)

η(x) ≥ σ(x) = 1.

So ϕ1,2.intτU µ(x) = 1 > 0, which is a contradiction and thus ϕ1,2.intτU µ = µ.

Hence, ϕ1,2.intτ µ ≥ ϕ1,2.intτU µ holds, for all µ ∈ LX . Therefore, ϕ1,2.intτ ≤
ϕ1,2.intτU . Consequently, (X,ϕ1,2.intτU ) = (X,ϕ1,2.intτ ). �
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5. New representations for the characterized fuzzy compact spaces
by characterized FT3 1

2
-space

The notion of ϕ1,2-fuzzy compactness of the fuzzy filters and of the fuzzy topo-
logical spaces are introduced in [7] by means of the ϕ1,2-fuzzy convergence in the
characterized fuzzy spaces. Moreover, the fuzzy compactness in the characterized
fuzzy spaces is also introduced by means of the ϕ1,2-fuzzy compactness of the fuzzy
filters and therefore it will be suitable to study here the relation between the char-
acterized fuzzy compact spaces and some of our classes of fuzzy separation axioms
in the characterized fuzzy spaces.

Let (X, τ) be a fuzzy topological space, F ⊆ X and ϕ1, ϕ2 ∈ O(LX ,τ). Then x ∈ X
is said to be ϕ1,2-adherence point for the fuzzy filter M on X [7], if the infimum
M∧Nϕ1,2

(x) exists for all ϕ1,2-fuzzy neighborhood filters Nϕ1,2
(x) at x ∈ X. As

shown in [7], the point x ∈ X is said to be ϕ1,2-adherence point for the fuzzy filter
M on X, if there exists a fuzzy filter K ∈ FLX finer than M and K -

ϕ1,2.int
x, that

is, K ≤ M and K ≤ Nϕ1,2
(x) are hold for some K ∈ FLX. The ordinary subset

F is said to be ϕ1,2-closed with respect to ϕ1,2.int, if M ≤ Nϕ1,2(x) implies x ∈ F
for some M ∈ FLF . The subset F is said to be ϕ1,2-fuzzy compact subset [6], if
every fuzzy filter on F has a finer ϕ1,2-fuzzy converging fuzzy filter, that is, every
fuzzy filter on F has ϕ1,2-adherence point in F . Moreover, the fuzzy topological
space (X, τ) is said to be ϕ1,2-fuzzy compact, if X is ϕ1,2-fuzzy compact. Generally,
the characterized fuzzy space (X,ϕ1,2.int) is said to be characterized fuzzy compact
space, if the related fuzzy topological space (X, τ) is ϕ1,2-fuzzy compact.

Proposition 5.1 ([5]). Let a fuzzy topological space (X, τ) be fixed and ϕ1, ϕ2 ∈
O(X,τ). Then every ϕ1,2-fuzzy compact subset of a characterized FT2-space (X,
ϕ1,2.int) is ϕ1,2-fuzzy closed and every characterized compact FT2-space (X,ϕ1,2.int)
is characterized FT4-space. Moreover, every ϕ1,2-fuzzy closed subset of a character-
ized fuzzy compact space (X,ϕ1,2.int) is ϕ1,2-fuzzy compact.

In the following at first we shall benefit from these facts. Consider the fuzzy unit
interval topological space (IL,=) be given and ψ1, ψ2 ∈ O(IL,=). Then:

(1) the usual topological space (I, TI) and the ordinary characterized usual space
(I, ψ1,2.intTI ) on the closed unite interval I = [0, 1] are compact ψ1,2T2-space and
characterized compact T2-space, respectively in the classical sense,

(2) the closed unite interval I is identified with the fuzzy number [0, 1]∼ in [14]
defined by [0, 1]∼(α) = 0, for all α ∈ I and [0, 1]∼(α) = 0, for all α 6∈ I,

(3) the characterized fuzzy unite space (IL, ψ1,2.int=) is up to a identification the
characterized usual space (I, ψ1,2.intTI ) in the classical sense.

Proposition 5.2. Let (IL,=) be a fuzzy unit interval topological space and ψ1, ψ2 ∈
O(LIL ,=). Then the characterized fuzzy unit interval space (IL, ψ1,2.int=) is charac-
terized fuzzy compact FT2-space.

Proof. Let (I, ψ1,2.intTI ) be an ordinary characterized usual space. Then,
(I, ψ1,2.intTI ) is characterized compact space in the classical sense, that is, every
filter on I has ψ1,2-adherence point. Consider the mapping f : (I, ψ1,2.intTI ) →
(IL, ψ1,2.int=) defined by: f(α) = α̃, for all α ∈ I. Then it is easily to seen
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that f is ψ1,2ψ1,2-fuzzy homeomorphism between (I, ψ1,2.intTI ) and (IL, ψ1,2.int=).
Thus, (IL, ψ1,2.int=) is characterized fuzzy compact space. Since (I, TI) is ψ1,2T2-
space, (I, ψ1,2.intTI ) is characterized T2-space. So by using the same ψ1,2ψ1,2-

fuzzy homeomorphism, we have for all α̃, β̃ ∈ IL such that α̃ 6= β̃, the infimum
Nψ1,2

(α̃) ∧ Nψ1,2
(β̃) does not exists. Hence, (IL, ψ1,2.int=) is characterized FT2-

space. Therefore (IL, ψ1,2.int=) is characterized fuzzy compact FT2-space. �

For more generally we have the following result:

Proposition 5.3. Let (IL,=) be a fuzzy unit interval topological space and ψ1, ψ2 ∈
O(LIL ,=). Then the characterized fuzzy unit interval space (IL, ψ1,2.int=) is charac-
terized FT3 1

2
-space.

Proof. Because of Proposition 5.2, the characterized fuzzy unit interval space
(IL, ψ1,2.int=) is characterized fuzzy compact FT2-space. Then from Proposition
5.1, we get (IL, ψ1,2.int=) is characterized FT4-space. Thus, Proposition 4.6 in [8]
gives us that, (IL, ψ1,2.int=) is characterized FT3 1

2
-space. �

Because of the ϕ1,2-fuzzy compactness in the characterized fuzzy spaces the Gen-
eralized Tychonoff Theorem is fulfilled ([8]) and from (3) in Proposition 2.4, the
characterized fuzzy product space of the characterized FT2-spaces is also character-
ized FT2-space. Then, by means of Propositions 5.1 and 5.2, the following result
goes clear.

Proposition 5.4. Let (IL,=) be a fuzzy unit interval topological space and ψ1, ψ2 ∈
O(LIL ,=). Then the characterized fuzzy cube is characterized FT2-space and it is
characterized FT4-space.

Proof. Since the characterized fuzzy cube is product of copies of (IL, ψ1,2.int=) and
by means of Proposition 5.2, (IL, ψ1,2.int=) is characterized fuzzy compact FT2-
space. Because of Proposition 2.4 part (3) and Generalized Tychonoff Theorem in [8],
it follows that, the characterized fuzzy cube is characterized FT2-space. Moreover,
Proposition 5.1 implies that the characterized fuzzy cube is characterized FT4-space.

�

Proposition 5.5. Let (X, τ) be a fuzzy topological spaces, ϕ1, ϕ2 ∈ O(LX ,τ) and
ψ1, ψ2 ∈ O(LIL ,=). Consider Φ is the family of all ϕ1,2ψ1,2-fuzzy continuous func-

tions f : (X,ϕ1,2.intτ ) → (IL, ψ1,2.int=) and for each f ∈ Φ, let Yf denote the
characterized fuzzy unit interval space and Y =

∏
f∈Φ

Yf with the characterized fuzzy

product space generated by ψ1,2.int=Y on it. If (X,ϕ1,2.intτ ) is characterized FT3 1
2
-

space, then X is ϕ1,2ψ1,2-fuzzy homeomorphic to a characterized fuzzy subspace of
Y . More precisely, the mapping e : X → Y , e(x) = x̂ =

∏
f∈Φ

xf , xf (x) = f(x) is a

ϕ1,2ψ1,2-fuzzy homeomorphism from X into e(X), when (X,ϕ1,2.intτ ) is character-
ized FT3 1

2
-space.

Proof. Let (X,ϕ1,2.intτ ) be characterized FT3 1
2
-space and consider the evaluation

mapping e : X → Y defined by: x 7→
(
f(x)

)
f∈Φ

= x̂ for x ∈ X. Because of Corollary

5.1 in [8], e is injective. Since f ∈ Φ and the projection mapping pf : Y ↪→ Yf is
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ψ1,2ψ1,2-fuzzy continuous, pf ◦ e : x 7→ f(x) is ϕ1,2ψ1,2-fuzzy continuous. Consider
e(X) = Z. Then e : (X,ϕ1,2.intτ ) → (Z,ψ1,2.int=Z ) is bijective ϕ1,2ψ1,2-fuzzy
continuous mapping.

Now, we show that e is ϕ1,2ψ1,2-fuzzy open mapping. As in the proof of Propo-
sition 5.2 in [8], the family

Ω = {f−1(µ) : f ∈ Φ and µ = ψ1,2.int=µ}
is a base for the characterized fuzzy space (X,ϕ1,2.intτ ). Since for a family (µj)j∈J
of fuzzy sets in X, we have

e
( ∨
j∈J

µj
)

=
∨
j∈J

e(µj) and e(µ1 ∧ . . . ∧ µn) = e(µ1) ∧ . . . ∧ e(µn).

To show that e is ϕ1,2ψ1,2-fuzzy open mapping, it is sufficient to show that e(ρ)
is ψ1,2-open in (Z,ψ1,2.int=Z ), for all ρ ∈ Ω. Let f ∈ Φ, µ = ψ1,2.int=µ in Yf and
ρ = f−1(µ) = µ ◦ f with ρ ∈ Ω. Then,

e(ρ)(x̂) =
∨

x∈e−1(x̂)

ρ(x) = ρ(x) = µ(f(x)) =
∨

x̂∈p−1
f (f(x))

µ(f(x)) = p−1
f (µ)(x̂),

for all x̂ = e(x) ∈ Z. Since p−1
f (µ)|Z= e(ρ) and pf is ψ1,2ψ1,2-fuzzy continuous,

p−1
f (µ)|Z is ψ1,2-open in (Z,ψ1,2.int=Z ), that is, e(ρ) is ψ1,2-open in (Z,ψ1,2.int=Z ).

Thus, e is ϕ1,2ψ1,2-fuzzy open mapping. So e : (X,ϕ1,2.intτ ) →
(Z,ψ1,2.int=Z ) is ϕ1,2ψ1,2-fuzzy homeomorphism. Hence, (X,ϕ1,2.intτ ) is
ϕ1,2ψ1,2-fuzzy homeomorphic to a characterized fuzzy subspace of Y =

∏
f∈Φ

Yf . �

Proposition 5.6. Let (X, τ) be a fuzzy topological spaces, ϕ1, ϕ2 ∈ O(LX ,τ) and
ψ1, ψ2 ∈ O(LIL ,=). Then (X,ϕ1,2.intτ ) is characterized FT3 1

2
-space if and only if X

is ϕ1,2ψ1,2-fuzzy homeomorphic to a characterized fuzzy subspace of the characterized
fuzzy cub.

Proof. The necessary of the condition follows from Proposition 5.5. For the suffi-
ciency, because of Proposition 5.3, (IL, ψ1,2.int=) is characterized FT3 1

2
-space. Be-

cause of Corollary 4.2 in [9], the characterized fuzzy product space of a characterized
FT3 1

2
-space is characterized FT3 1

2
-space. Then, (X,ϕ1,2.intτ ) itself characterized

FT3 1
2
-space. �

Proposition 5.7. Let (X, τ) be a fuzzy topological spaces and ϕ1, ϕ2 ∈ O(LX ,τ).
Then every characterized fuzzy compact space (X,ϕ1,2.intτ ) is characterized FT2-
space if and only if it is characterized FT3 1

2
-space.

Proof. Let (X,ϕ1,2.intτ ) be characterized fuzzy compact FT2-space. Then by Propo-
sition 5.1, (X,ϕ1,2.intτ ) is characterized FT4-space. Thus by Proposition 4.6 in [8],
(X,ϕ1,2.intτ ) is characterized FT3 1

2
-space.

Conversely, let (X,ϕ1,2.intτ ) be characterized FT3 1
2
-space. then by Propositions

3.2 in [8] and 2.4 part (1), it follows that (X,ϕ1,2.intτ ) is characterized fuzzy compact
FT2-space. �

Lemma 5.8 (5). Let (X, τ) and (X,σ) be two fuzzy topological spaces such that τ is
finer than σ, ϕ1, ϕ2 ∈ O(X,τ) and ψ1, ψ2 ∈ O(X,σ). If (X,ϕ1,2.intτ ) is characterized
fuzzy compact space, then (X,ψ1,2.intσ) is also characterized fuzzy compact space.
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From Lemma 5.8 and Corollary 3.3 in [9], we can prove the following result.

Proposition 5.9. Let (X, τ) and (X,σ) be two fuzzy topological spaces such that
τ is finer than σ, ϕ1, ϕ2 ∈ O(X,τ) and ψ1, ψ2 ∈ O(X,σ). If (X,ϕ1,2.intτ ) is char-
acterized fuzzy compact space and (X,ψ1,2.intσ) is characterized FT3 1

2
-space, then

(X,ϕ1,2.intτ ) and (X,ψ1,2.intσ) are equivalent.

Proof. Because of Corollary 3.3 in [9], we get (X,ϕ1,2.intτ ) is characterized FT3 1
2
-

space. By Lemma 5.8, we have (X,ψ1,2.intσ) is also characterized fuzzy compact
space. Then, the identity mapping idX : (X,ϕ1,2.intτ ) → (X,ψ1,2.intσ) is bijective
ϕ1,2ψ1,2-fuzzy continuous and ϕ1,2ψ1,2-fuzzy open, that is, idX is ϕ1,2ψ1,2-fuzzy
homeomorphism. Thus, (X,ϕ1,2.intτ ) and (X,ψ1,2.intσ) are equivalent. �

From Propositions 2.4 and 5.6, we have the following important characterization
for the characterized FT3 1

2
-spaces.

Theorem 5.10. Let (X, τ) be a fuzzy topological space and ϕ1, ϕ2 ∈ O(X,τ). Then,
the following axioms are equivalent:

(1) (X,ϕ1,2.intτ ) is characterized FT3 1
2
-space,

(2) (X,ϕ1,2.intτ ) is ϕ1,2ψ1,2-fuzzy homeomorphic to a characterized fuzzy subspace
of characterized fuzzy cub,

(3) (X,ϕ1,2.intτ ) is ϕ1,2ψ1,2-fuzzy homeomorphic to a characterized fuzzy subspace
of characterized fuzzy compact FT2-space,

(4) (X,ϕ1,2.intτ ) is ϕ1,2ψ1,2-fuzzy homeomorphic to a characterized subspace of
characterized FT4-space.

Proof. Let (X,ϕ1,2.intτ ) be characterized FT3 1
2
-space. Then by Proposition 5.6, it

follows that (2) is fulfilled. Thus, (1) implies (2). Consider (2) is fulfilled. since every
characterized fuzzy cub is characterized fuzzy compact FT2-space, (3) is fulfilled.
So, (2) implies (3). Obviously, (3) implies (4), because every characterized fuzzy
compact FT2-space is characterized FT4-space.

Finally, let (4) be fulfilled. Then by Proposition 2.4, every characterized fuzzy
subspace of a characterized FT4-space is characterized FT4. Thus Proposition 4.6 in
[8], (X,ϕ1,2.intτ ) is characterized FT3 1

2
-space. So, (1) is fulfilled. Hence (4) implies

(1). �

6. Conclusions

In this research work, we introduced and studied four new notions. The notions
are named characterized global fuzzy neighborhood space, characterized global fuzzy
neighborhood pre space, characterized fuzzy uniform space and characterized fuzzy
perfect topoeneous structure. The properties of such characterized fuzzy spaces
were deeply studied. Some sorts of relationship were introduced among such char-
acterized fuzzy spaces and other published characterized fuzzy spaces presented by
the authors. Each global fuzzy neighborhood structure introduced a characterized
global fuzzy neighborhood space, however each global fuzzy neighborhood pre struc-
ture is identified with a characterized global fuzzy neighborhood pre space. In case
of the homogenous global fuzzy neighborhood structures and of the homogenous
global fuzzy neighborhood pre structures the stratified characterized global fuzzy
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neighborhood spaces and the stratified characterized global fuzzy neighborhood pre
spaces were introduced. We proved that the mappings between the characterized
fuzzy pre spaces are ϕ1,2ψ1,2-fuzzy continuous if the related mappings between the
global fuzzy neighborhood pre spaces are (h, k)-continuous. The vise versa is true
when h and k are coincide up to identifications with ϕ1,2.intτh and ψ1,2.intτk , re-
spectively. The fuzzy uniform spaces are separated if and only if the associated
characterized fuzzy uniform spaces are characterized FT1-spaces. The mappings
between the associated characterized fuzzy uniform spaces are ϕ1,2ψ1,2-fuzzy con-
tinuous if the related mappings between the fuzzy uniform spaces are fuzzy uniform
continuous. For each fuzzy uniform structure on a set X, there is an induced strat-
ified fuzzy proximity on LX and both the fuzzy uniform structure and this induced
stratified fuzzy proximity are associated with the same stratified characterized fuzzy
uniform space. The associated stratified characterized fuzzy uniform space with the
fuzzy uniform structure is characterized FR2 1

2
-space and in case of the fuzzy uni-

form space is separated, then it is characterized FT3 1
2
-space. The relation between

characterized fuzzy compact spaces which introduced in [7] and some our of charac-
terized FTs-spaces for s ∈ {2, 3 1

2 , 4} are introduced by means of the characterized
fuzzy unit interval spaces, the characterized fuzzy FT2 and the characterized FT4

fuzzy cubes. Finally, we showed that the characterized fuzzy compact spaces and
the characterized FT3 1

2
-spaces are equivalent. Many new special classes from the

characterized fuzzy perfect topoeneous structures, characterized global fuzzy neigh-
borhood spaces, characterized fuzzy proximity spaces, characterized fuzzy compact
spaces and characterized fuzzy uniform spaces are listed in Table 1.
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Operations Character. Fuzzy Perfect Character. Global Fuzzy Character. Fuzzy Character. Fuzzy Character. Fuzzy

topogeneous Structure Neighborhood Space Proximity Space Compact Space Uniform Space

1 ϕ1 = int Fuzzy perfect Global fuzzy Fuzzy Proximity Fuzzy Compact Fuzzy Uniform

ϕ2 = 1LX topogeneous Str.,[19] neighborhood space[18] space [10] space [10] space [10]

2 ϕ1 = int Fuzzy perfect θ- Global fuzzy θ- Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = cl topogeneous str. neighborhood space θ-space θ-space θ-space

3 ϕ1 = int Fuzzy perfect δ- Global fuzzy δ- Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = int ◦ cl topogeneous str. neighborhood space δ-space δ-space δ-space

4 ϕ1 = cl ◦ int Fuzzy perfect semi Global fuzzy Semi Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = 1LX topogeneous str. neighborhood space semi space semi space semi space

5 ϕ1 = cl ◦ int Fuzzy perfect θ- semi Global fuzzy θ- semi Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = cl topogeneous str. neighborhood space θ- semi space θ- semi space θ- semi space

6 ϕ1 = cl ◦ int Fuzzy perfect δ-semi Global fuzzy δ-semi Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = int ◦ cl topogeneous str. neighborhood space δ-semi space δ-semi space δ-semi space

7 ϕ1 = int ◦ cl Fuzzy perfect pre- Global fuzzy pre- Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = 1LX topogeneous str. neighborhood space pre-space pre-space pre-space

8 ϕ1 = cl ◦ int Fuzzy perfect semi Global fuzzy Semi Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = S.cl θ-topogeneous str. θ-neighborhood space semi θ-space semi θ-space semi θ-space

9 ϕ1 = cl ◦ int Fuzzy perfect semi Global fuzzy Semi Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = S.int ◦ S.cl δ-topogeneous str. δ-neighborhood space semi δ-space semi δ-space semi δ-space

10 ϕ1 = cl ◦ int ◦ cl Fuzzy perfect β- Global fuzzy β- Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = 1LX β-topogeneous str. neighborhood space β-space β-space β-space

11 ϕ1 = int ◦ cl ◦ int Fuzzy perfect λ- Global fuzzy λ- Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = 1LX topogeneous str. neighborhood space λ-space λ-space λ- space

12 ϕ1 = S.cl ◦ int Fuzzy perfect feebly Global fuzzy feebly Fuzzy proximity Fuzzy compact Fuzzy uniform

ϕ2 = 1LX topogeneous str. neighborhood space feebly space feebly space feebly space

Table 1: Some special classes of character. fuzzy perfect topog. struc., character. global fuzzy
neighbor. spaces, character. fuzzy proximity space, character. fuzzy compact spaces
and character. fuzzy uniform spaces.
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