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ABSTRACT. In this research work, four new notions are proposed and
investigated. The notions are named characterized global fuzzy neighbor-
hood space, characterized global fuzzy neighborhood pre space, charac-
terized fuzzy uniform space and characterized perfect fuzzy topoeneous
structure. The properties of such characterized fuzzy spaces are deeply
studied. Some sorts of relationship were introduced among such character-
ized fuzzy spaces and other published characterized fuzzy spaces presented
by the authors. Each global fuzzy neighborhood structure is identified
with characterized global fuzzy neighborhood space, however, each global
fuzzy neighborhood pre structure is identified with characterized global
fuzzy neighborhood pre space. The mappings between characterized fuzzy
pre spaces are 1,211 2-fuzzy continuous if the related mappings between
the associated global fuzzy neighborhood pre spaces are (h, k)-continuous.
The vise versa is true when h and k are coincide up to identifications with
¢p1,2.int-, and 11,2.int-, . For each fuzzy uniform structure on a set X,
there is induced stratified fuzzy proximity on L*. Both the fuzzy uni-
form structure and this induced stratified fuzzy proximity are associated
with the same stratified characterized fuzzy uniform space. The associated
characterized fuzzy uniform space is characterized fuzzy R,1-space and it
is characterized fuzzy T,1-space when the related fuzzy uniform space is
separated. Moreover, the relation between characterized fuzzy compact
spaces which introduced in [7] and some of our characterized fuzzy Ts-
spaces for s € {2,3%,4} are introduced. Finally, the characterized fuzzy
compact spaces and the characterized fuzzy T; 1-spaces are equivalent.
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1. INTRODUCTION

T'he notion of fuzzy filter has been introduced by Eklund et al.[12]. By means
of this notion the point-based approach to fuzzy topology related to usual points
has been developed. The more general concept for fuzzy filter introduced by Géahler
in [16] and fuzzy filters are classified by types. Because of the specific type of
fuzzy filter, however, the approach of Eklund is related only to fuzzy topologies
which are stratified, that is, all constant fuzzy sets are open. The more specific
fuzzy filters considered in the former papers are now called homogeneous. On the
ordinary topological space (X, T), the operation has been defined by Kasahara [24]
as a mapping ¢ from 7T into 2% such that A C A%, for all A € T. Kandil et
al.[23] extended Kasahars’s operations by introducing a operation on the class of all
fuzzy sets endowed with a fuzzy topology 7 as a mapping ¢ : LX — L¥ such that
inty < p® for all u € LX, where u¥ denotes the value of ¢ at p. The notions of the
fuzzy filters and the operations on the class of all fuzzy sets on X endowed with a
fuzzy topology 7 are applied in [1, 2, 3, 4, 5, 6, 7, 8, 9] to introduce a more general
theory including all the weaker and stronger forms of the fuzzy topology. By means of
these notions, the notion of ¢ o-interior of the fuzzy set, ¢ o-fuzzy convergence and
©1,2-fuzzy neighborhood filters are defined and applied to introduced many general
classes of separation axioms [2, 3, 4, 8, 9]. The notion of ¢ o-interior operator for
fuzzy sets is defined as a mapping 1 o.int : LX — LX which fulfill (I1) to (I5) in
[1]. There is a one-to-one correspondence between the class of all ;1 o-open fuzzy
subsets of X and these operators, that is, the class ¢1 2OF(X) of all 1 5-open fuzzy
subsets of X is characterized by these operators. Then the triple (X, ¢1 2.int) as will
as the triple (X, p120F (X)) will be called characterized fuzzy space of the 1 o-
open fuzzy subsets. The characterized fuzzy spaces are characterized by many of
characterizing notions in [1, 6], for example by the ¢ o-fuzzy neighborhood filters,
the o1 o-fuzzy interior of the fuzzy filters and by the set of ¢ o-inner points of the
fuzzy filters. Moreover, the notions of closeness and compactness in characterized

fuzzy spaces are introduced and studied in [7]. The notions of characterized fuzzy
T,-spaces, fuzzy ¢12-T, spaces, characterized fuzzy Rj-spaces and fuzzy ¢ 2-Rj
spaces are introduced and studied in [2, 3, 1, §] for all s € {0,1,2,2%,3,33,4} and

k€{0,1,2,21,3}.

This paper is devoted to introduce and study four new notions of the character-
ized fuzzy spaces named characterized global fuzzy neighborhood space, characterized
global fuzzy neighborhood pre space, characterized fuzzy uniform space and character-
ized fuzzy perfect topoeneous structure. Many relations between these characterized
fuzzy spaces and our characterized fuzzy Ts-spaces and characterized fuzzy R, 1-

spaces are investigated for s € {1,2,3,3%,4}. In section 2, some definitions and
notions related to fuzzy sets, fuzzy uniform structures and fuzzy uniform continu-
ity, fuzzy topologies, fuzzy filters, fuzzy filter bases, fuzzy filter functor and fuzzy
filter monads, fuzzy proximity space, fuzzy topogeneous orders and fuzzy topoge-
neous structure, operations on fuzzy sets, ¢1 o-fuzzy neighborhood filters, character-
ized fuzzy space, characterized fuzzy proximity space, ¢ 2-fuzzy convergence and
1,291 2-fuzzy continuous, the fuzzy function family, characterized fuzzy Ts-spaces
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and characterized fuzzy R, 1-spaces are given for s € {0,1,2,4}. Section 3, is de-
voted to introduce and study the notions of characterized global fuzzy neighborhood
space and the characterized global fuzzy neighborhood pre space by means of the
global fuzzy neighborhood structure and the homogenous global fuzzy neighborhood
structure, respectively. Each global fuzzy neighborhood structure is identified with
characterized global fuzzy neighborhood space, however each global fuzzy neigh-
borhood pre-structure is identified with characterized global fuzzy neighborhood
pre space. In case of the homogenous global fuzzy neighborhood structure and of
the homogenous global fuzzy neighborhood pre structure the stratified character-
ized global fuzzy neighborhood space and the stratified characterized global fuzzy
neighborhood pre space are introduced. We prove that the mappings between the
characterized fuzzy pre spaces are ¢ 291 2-fuzzy continuous if the related mappings
between the global fuzzy neighborhood pre spaces are (h, k)-continuous. The vise
versa is true when h and k are coincide up to identifications with ¢; ».int,, and
1 ,2.int,, , respectively. In section 4, the notions of characterized fuzzy uniform
spaces and characterized fuzzy perfect topoeneous structures are investigated and
studies. The fuzzy uniform space is separated if and only if the associated character-
ized fuzzy uniform space is characterized F'Tj-space in sense of Abd-Allah [2]. We
show that the mappings between the associated characterized fuzzy uniform spaces
are 1 211 o-fuzzy continuous if the related mappings between the fuzzy uniform
spaces are fuzzy uniform continuous. For each fuzzy uniform structure on a set
X, there is induced stratified fuzzy proximity on L* and both the fuzzy uniform
structure and this induced stratified fuzzy proximity are associated with the same
stratified characterized fuzzy uniform space. The associated stratified characterized
fuzzy uniform space with the fuzzy uniform structure is characterized by fuzzy R, 1-
space and therefore it is characterized by fuzzy T} 1-space when the fuzzy uniform
space is separated. The mean important result in this section is that the associated
stratified characterized fuzzy uniform spaces with the fuzzy uniform structures are
compatible with the stratified characterized fuzzy R, 1-spaces. Finally in section 5,
the relation between characterized fuzzy compact spaces which is introduced in [7]
and some of our characterized fuzzy Ts-spaces for s € {1,2,3, 3%, 4} are introduced
by help of the characterized fuzzy unit interval spaces and the characterized fuzzy
Ty-spaces and the fuzzy Ty-cubes which are investigated in the present section. Es-
pecially, we show that the characterized fuzzy compact spaces and the characterized
fuzzy T, 1-spaces are equivalent.

2. PRELIMINARIES

We begin by recalling some facts on the fuzzy filters. Let L be a completely dis-
tributive complete lattice with different least and last elements 0 and 1, respectively.
Let Ly = L\ {0}. Sometimes we will assume more especially that L is complete
chain, that is, L is a complete lattice whose partial ordering is a linear one. For a set
X, let LX be the set of all fuzzy subsets of X, that is, of all mappings f : X — L.
Assume that an order-reversing involution o — o of L is fixed. For each fuzzy set
pu € LX) let u/ denote the complement of p and it is defined by: ,u/ () = ,u(ac)/, for
all z € X. Denote by & to the constant fuzzy subset of X with value @ € L. For

3
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all z € X and for all a € Ly, the fuzzy subset z, of X whose value o at  and
0 otherwise is called a t fuzzy point in X. The set of all fuzzy point in X will be
denoted by S(X).

The fuzzy filter on the set X ([16]) is the mapping M : LX — L such that the
following conditions are fulfilled:

(F1) M(a) < a, forall « € L and M(1) =1,
(F2) M(p A p) = M(u) A M(p), for all p,p e L*.

The fuzzy filter M is called homogeneous ([12]), if M(@) = a, for all @ € L. For
each z € X, the mapping @ : LX — L defined by @(u) = u(z) for all p € L¥ is
an example of a homogeneous fuzzy filter on X. For each p € L¥, the mapping
f: LX — L defined by u(n) = A n(z), for all n € L is also homogeneous

0<n(z)
fuzzy filter on X, called homogenous fuzzy filter at the fuzzy set u € L~X. Let Fp X
and Fr, X denotes to the sets of all fuzzy filters and all of homogeneous fuzzy filters
on X, respectively. If M and N are fuzzy filters on a set X, then M is said to
be finer than A and it denoted by M < N, provided M(u) > N (p) holds, for all
pu € LX. Noting that if L is a complete chain then M is not finer than N and
it denoted by M £ N, provided there exists u € LX such that M(u) < N(u)

holds. As shown in [10], u < p if and only if i < p for all u,p € LX. For each
non-empty set A of the fuzzy filters on X, the supremum \/ M exists [16] and
MeA

it given by ( \/ M)u = A M(u), for all 4 € L*. Where as, the infimaum
MeA MeA
N\ M of A does not exists in general as a fuzzy filter. If the infimum A M

MeA McA
exists, then we have ( A M)(u) = V (My(p1) A=+ A My (), for all
MeA A Apn Sp,
My, MpeA
p € LX, where n is a positive integer, i1, ..., ity is a collection of fuzzy subsets such

that gy A .. Ay, < pand My, ..., M, are fuzzy filters from A. Let X be a set and
p € L, then the homogeneous fuzzy filter fi at p is the fuzzy filter on X given by:

(2.1) p=\ i

0<pu()

Fuzzy filter bases. A family (By)acr, of a non-empty subsets of L¥ is called
a valued fuzzy filter base [16], if the following conditions are fulfilled:

(V1) p € B, implies o < sup p,

(V2) For all a,8 € Ly with a A3 € Ly and all p € B, and p € Bg there are
v>aABand n < uApsuch that n € B,.

As shown in [16], each valued fuzzy filter base (Ba)acr, defines the fuzzy filter
M on X by M(u) = \/ a, for all p € L¥ and each fuzzy filter M can be
pPEBa, p<p

generated by a valued fuzzy filter base, e.g., by (a-pr M),er, with a-pr M = {p €

L¥ | a < M(p)}. (a-pr M)acr, is a family of fuzzy pre filters on X and is called

the large valued fuzzy filter base of M. Recall that a fuzzy pre filter on X [28] is a

non-empty proper subset F of L~ such that (1) p,p € F implies u A p € F and (2)
4
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from p € F and p < p it follows p € F.

Valued and superior principal fuzzy filters. Let a non-empty set X be
fixed, p € LX and o € L such that o < supy. Then the valued principal fuzzy filter
([16]) generated by p and «, will be denoted by [ i, ], is the fuzzy filter on X which
has (Bg)ger, with Bg = {u}, if 0 < 8 < o and Bg = {1}, otherwise as a valued
fuzzy filter base. For all n € LX, we have [p,a](n) = 0, if p £ 0, [p, a](n) = a,
if u <n#1and [p,a](n) =1, if n = 1. Moreover, for each 3 € Ly we have
B-prip,al={n|p<n} if B <aand B-prp,a] = {1} otherwise. The superior
principal fuzzy filter ([18]) generated by u, written [u], is the homogeneous fuzzy
filter on X which has B={puAa|ac€ L}U{a|a¢c L} as a superior fuzzy filter
base. As shown in [18], the superior principal fuzzy filter [ 1] is representable by a
fuzzy pre filter if and only if sup p = 1.

Fuzzy filter functors and fuzzy filter monads. The fuzzy filter functor
Fr : SET — SET is the covariant functor from the category SET of all sets to this
category which assigns to each set X the set Fr X and to each mapping f: X — Y
the mapping Fr f : FL X — FrY. The homogeneous fuzzy filter functor Fy, : SET —
SET is the sub fuzzy filter functor of F; which assigns to each set X the set Fp, X
and to each mapping f : X — Y the domain-range restriction Fpf : FL X — F Y
of the mapping Frf : FrX — FrY. For each set X, let nx : X — Fr X be the
mapping defined by nx(z) = i, for all x € X, and let ex : LX — L7tX be the
mapping for which ex (f)(M) = M(f) for all f € LX and M € FrX. Moreover, let
wx : Fr(FrLX) — FrX be the mapping which assigns to each fuzzy filter £ on Fr, X
the fuzzy filter ux (L) = Loex on X. n = (1x)xcob(sET) : id — Fr with id the
identity set functor and p = (ux)xcob(seT) : FL © Fr — F are natural transfor-
mations. (Fr,n,u) is a monad in the categorical sense, called the fuzzy filter monad
[16], that is, ux o FL(nx) = px onr,x = lr,x and px o Fr(px) = px © pr.x,
for each set X. Related to the sub functor F; of Fy, there are analogous natural
transformations as n and pu, denoted i’ and p/, respectively. i’ consists of the range-
restrictions n : X — FrX of the mappings nx. g is the family of all mappings
wy  FLFL X — Fp X defined by 'y (L) = L o €'y for all homogeneous fuzzy filters
L on Fr X, where ¢’y : LX — LF£¥ is the mapping given by e’y (f)(M) = M(f)
for all f € LX and M € FrX. As has been shown in [16], (Fp,n’,u’) is a sub
monad of (Fr,n, ), that is, for the inclusion mappings ix : FL X — F. X we have
nx =ix ony and pux o Frix oif, x = ix o 'y, for all sets X.

Relational fuzzy filters. For each non-empty set X, the fuzzy subset of X x X
will be called fuzzy relation on X. The constant fuzzy relation on X with value «
will be denoted by @. The fuzzy filter «f on X x X will also be called a relational
fuzzy filter on X. According to Proposition 1.3 in [18], the family (Uy)aer, of fuzzy
pre filters on X x X is the large valued fuzzy filter base of the relational fuzzy filter
U on X, that is, it coincides with (a-prif).cr, if and only if the following conditions
are fulfilled:

(ul) uw € U, implies o < supu,
(u2) 0 < B8 < o implies U, C Ug,
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(u3) For each o € Lo with \/ B=a wehavelly = () Us.
0<fB<a 0<fp<a

Examples of relational fuzzy filters on X are the 0, 1-fuzzy filters on X x X,
where the fuzzy filter is called a 0, 1-fuzzy filter, if it only has 0 and 1 as values. The
0, 1-fuzzy filters can be characterized as those fuzzy filters for which all a-fuzzy pre
filters coincide. A broader class of relational fuzzy filters, being of special interest in
the following, is that of relational sup fuzzy-filters, where the fuzzy filter U/ is said
to be a sup fuzzy-filter if (By)acr, with B, = {u € a-prid | U(u) = supu } is
a valued fuzzy filter base of . As shown in [18], all the 0, 1-fuzzy filters and all
of the homogeneous fuzzy filter U are sup fuzzy-filters. As can easily be shown by
examples that, there exist sup fuzzy-filters which are not 0, 1-fuzzy filters but not
homogeneous. Special homogeneous relational fuzzy filters on a set X, which will
appear in the sequel, are given by the pairs (z, y) of elements x, y of X. We mean the
fuzzy filters (z,y)" = nxxx(x,y), for which (z,y) (u) = u(z,y), for all u € LX*X.
As shown in [20], if U is a relational fuzzy filter on X such that (x,z)" < U holds for
all z € X and f: X — Y is a mapping, then Fp,(f x f)(U) [Frf(M)] is fuzzy filter
on Y, for all M € FLX. Moreover, Fr,f(U[M]) < Fr(f x f)(U) [Frf(M) holds.

Fuzzy uniform structures and fuzzy uniform continuity. Let X be a set.
By a fuzzy uniform structure & on X ([20]), we mean a relational fuzzy filter on X
such that the following conditions are fulfilled:

(U1) (z,z) <Uforall x € X,

(U2) U=U"1,

(U3) UoU < U.

The set X equipped with a fuzzy uniform structure U will be called a fuzzy
uniform space. According U being a sup-fuzzy uniform structure or a 0, 1-fuzzy
uniform structure or a homogeneous fuzzy uniform structure. The triple (X,U) will
be called a sup-fuzzy uniform space or a 0, 1-fuzzy uniform space or a homogeneous
fuzzy uniform space, respectively.

If (X,U) and (Y,V) are fuzzy uniform spaces, then the mapping f : (X,U) —
(Y, V) is said to be uniformly fuzzy continuous, provided

(2.2) FL(f x f) (U) < V holds.

Fuzzy topology. By a fuzzy topology on a set X ([11, 22]), we mean a subset of
LX which is closed with respect to all suprema and all finite infima and contains the
constant fuzzy sets 0 and 1. The set X equipped with a fuzzy topology 7 on X is
called fuzzy topological space. For each fuzzy topological space (X, 7), the elements
of 7 are called open fuzzy subsets of this space. If 71 and 75 are fuzzy topologies on a
set X, then 75 is said to be finer than 77 and 7 is said to be coarser than 75, provided
71 C 72 holds. The fuzzy topological space (X, 7) and also 7 are said to be strat-
ified provided @ € 7 holds, for all « € L, that is, all constant fuzzy sets are open [27].

Fuzzy proximity space. A binary relation § on L¥ is called fuzzy proximity
on X|[25], provided it fulfill the following conditions:
(P1) udp implies pdpu, for all u, p € LX, where 6 is the negation of §,
(P2) (uV p)on if and only if pudn and pdn, for all u, p,n € L,
6
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(P3) =0 or p =0 implies udp, for all pu, p € LX,

(P4) pdp implies o < p', for all p,p € LY,

(P5)if pdp, then there is an n € LX such that pudn and 1’ dp.

The set X equipped with a fuzzy proximity § on X is called a fuzzy proximity
space and will be denoted by (X, d). Every fuzzy proximity J on a set X is associated
a fuzzy topology on X denoted by 75. The fuzzy proximity § on the set X is said to
be separated if and only if for all 2,y € X such that x # y, we have z,0yg, for all
a, B € Ly.

Fuzzy topogeneous orders and fuzzy structures. The binary relation < on
L is said to be fuzzy topogeneous order on X [20], if the following conditions are
fulfilled:

(i) @ < &, for all « € {0,1},

(ii) if p < m, then pu <, for all u,n € LX,

(iil) if 1 < p << n < ny, then py <Ky,

(iv) if p1 < m1 and po < 12, then py A pe €K n1 Ane and pg V ug < mp Ve, for
all pi,n; € LX, where i,j € {1,2}.

The fuzzy topogeneous order < is said to be fuzzy topogeneous structure, if it
fulfilled the condition:

(v) if u < n, then there is ¢ € LX such that u < o and o < 0, for all u,n € LX.

The fuzzy topogeneous structure < is said to be fuzzy topogenous complemen-
tarily symmetric, if it fulfilled the condition:

(vi) if < 7, then " < p', for all pu,n € LX.

As shown in [19], every fuzzy topogeneous structure < is identify with the map-
ping N : L* — P(L¥) such that n € N(u) if and only if u < 1 holds for all
u,n € LX. The fuzzy topogeneous structures are classified by these mappings. As is
easily seen, each fuzzy topogeneous order A can be associated a fuzzy pre topology

intys on a set X by defining intayrpp = \/ 7, for all p € LX. In case of N is
neN (n)
fuzzy topogeneous structure, intys is interior operator for fuzzy topology 7ar on X

associated to NV.

Operation on fuzzy sets. In the sequel, let a fuzzy topological space (X, 7) be
fixed. By the operation ([23]) on the set X, we mean the mapping ¢ : LX — LX
such that int 4 < u% holds, for all 4 € LX, where u® denotes the value of ¢ at
p. The class of all operations on X will be denoted by O(.x ;). By the identity
operation on O x ;), we mean the operation 17x : LX — LX such that 1;x (u) = p
for all 4 € LX. Also by the constant operation on O(Lx ), we mean the operation
crx : LX — LX such that cpx(p) =1, for all p € LX. If < is a partially ordered
relation on O x ;) defined as follows: 1 < @g <= p%t < p#? for all p € LX,
then obviously, (O(rx -, <) is a completely distributive lattice. As an application
on this partially ordered relation, the operation ¢ : LX — L¥ will be called:

(i) isotone, if u < p implies p? < p¥, for all u,p € LX,

(ii) weakly finite intersection preserving (wfip, for short) with respect to A C L,
if pA ¥ < (pAp)¥ holds, for all p € A and p € LX,

(iii) idempotent, if u¥ = (u®)%, for all u € LX.

7
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The operations ¢, € O(px .y are said to be dual, if ¥u = co(p (cop)) or equiv-
alently pu = co(t (cop)) for all y € LX, where cop denotes the complementarily
of u. The dual operation of ¢ is denoted by @. In the classical case of L = {0, 1},
by the operation on a set X we mean the mapping ¢ : P(X) — P(X) such that
int A C A¥ for all A € P(X) and the identity operation on the class of all ordinary
operations O(p(x),r) on X will be denoted by ip(x) and defined by ip(x)(A) = A,
for all A € P(X).

p-open fuzzy sets. Let a fuzzy topological space (X,7) be fixed and ¢ €
O(rx 7). The fuzzy set p: X — L is called p-open fuzzy set, if p < p# holds. We
will denote to the class of all p-open fuzzy sets on X by ¢OF(X). The fuzzy set p
is called ¢-closed, if its complement cop is p-open. The operations ¢,9 € O x
are equivalent and written ¢ ~ v, if pPOF(X) = pOF(X).

1 2-interior of fuzzy sets. Let a fuzzy topological space (X, 7) be fixed and
¢1,p2 € O(x 7y. Then the 1 o-interior of the fuzzy set p: X — L is the mapping
©1,2.intpe : X — L defined by:

(2.3) 1,20t p = \/ p.
PEP1OF(X), pP2<p

That is, ¢1,2.intp is the greatest ¢q-open fuzzy set p such that p%? less than or
equal to p ([1]). The fuzzy set u is said to be @1 2-open if u < ¢ 2.int u. The class
of all ¢ 2-open fuzzy sets on X will be denoted by ¢1 2OF(X). The complement
co i of a the ¢; 2-open fuzzy subset p will be called ¢ 2-closed and the class of all
1,2-closed fuzzy subsets of X will be denoted by 1 2CF(X). In the classical case
of L = {0,1}, the fuzzy topological space (X, 7) is up to an identification by the
ordinary topological space (X,T) and ¢; o.int 44 is the classical one. Then, in this
case the ordinary subset A of X is ¢ 2-open if A C ¢ 9.int A. The complement of
a 1,2-open subset A of X will be called ¢ 2-closed. The class of all 1 2-open and
the class of all ¢ 2-closed subsets of X will be denoted by 1 20(X) and ¢ 2C(X),
respectively. Clearly, F is ¢1 o-closed if and only if 1 2.clp F' = F. As shown in [1],
if the fuzzy topological space (X, 7) is fixed and @1, p2 € O(1x -, then the set of all
@1,2-open fuzzy set of X is characterized by the ¢ o.int of the fuzzy set as follows:

(2.4) 0120F(X) = {pe L™ | p < g1 ointp}

and the following conditions are fulfilled:

(I1) if g3 > 1px, then 1 o.intp <  holds, for all u € LX,

(12) if pu < p, then @1 o.intp < 1 2.intp, for all u, p € L,

(13) @172.intT = T,

(I4) if wg > 1px is isotone and ¢ is wiip with respect to ¢p;OF(X), then
©1.0.intp A 1 2.intp = @y 0.int (A p), for all pu,p € L,

(I) if ¢y is isotone and idempotent, then g o.int (¢1,2.intp) = @1 2.inty, for all
we LX.

Independently on the fuzzy topologies, the notion of ¢ s-interior operator for
the fuzzy sets can be defined as a mapping o1 2.int : LX — LX which fulfill (I1)

8
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to (I5). It is well-known that (2.3) and (2.4) give a one-to-one correspondence be-
tween the class of all (1 2-open fuzzy sets and these operators, that is, ¢1,20F(X)
can be characterized by the ¢; o-interior operators. In this case (X, 1 2.int) as
will as (X, ¢1,20F (X)) will be called characterized fuzzy space ([1]) of the all @1 o-
open fuzzy subsets of X. If (X, 1 0.int) and (X, o.int) are two characterized
fuzzy spaces, then (X, ¢ o.int) is said to be finer than (X, 1), 2.int) and denoted by
©1,2.int < 4Py o.int provided ¢y 2.intp > 1Py o.intp holds, for all p € LX. The charac-
terized fuzzy space (X, @1 2.int) is said to be stratified if and only if ¢; 5.inta@ = @,
for all @« € L. As shown in [1], the characterized fuzzy space (X, 12.int) is
stratified, if the related fuzzy topology is stratified. Moreover, the characterized
fuzzy space (X, p1,2.int) is said to have the weak infimum property ([21]), provided
o120 (A @) = @1 2.intp A 1 o.int@, for all u € LX and o € L. The characterized
fuzzy space (X, p12.nt) is said to be strongly stratified [21], provided ¢j o.int is
stratified and have the weak infimum property.

Fuzzy unit interval. The fuzzy unit interval will be denoted by I and it is
defined in [24] as the fuzzy subset I, = {x € R} | « < 17}, where I = [0,1] is
the real unit interval and R} = {z € Ry | (0) = land0~ < z} is the set of all
positive fuzzy real numbers. Note that, the binary relation < is defined on Ry, as
follows:

LY <= 2oy < Yoy a0d Za, < Yoy,

for all z,y € Ry, where for all a € Ly,
Zo, =inf{z € R | 2(2) > a} and z,, =sup{z € R | z(2) > a}.
Note that the family 2 that defined by:

Q={Rs|I;, | 6 e IYU{R|I, | 6 € I}U{0™|I.}

is a base for a fuzzy topology < on Iy, and the order pair (I, ) is said to be fuzzy
unit interval topological space, where Rs and R® are the fuzzy subsets of R, defined
by: for all z € Ry, and § € R,

Rs(z) = \ z(a) and R® = (\/ z(a)).

a>d a>d

The restrictions of Rs and R® on I, are the fuzzy subsets Rs|I, and R5|I L, respec-
tively. Recall that R°(2) AR (y) < R°*7(x+y), where z+y is the fuzzy real number
defined by:

@+y)©) =V  (2(y)Ay(Q), forall € R.
v.CER,y+(=¢
Consider a fuzzy unit interval topological space (I, <) is given and 91, ¢2 € O(;, ).

Then in this work, the characterized fuzzy space (Ir, 1)1 2.intg) will be called char-
acterized fuzzy unit interval space and we define the Cartesian product of a number
of copies of the fuzzy unit interval I;, equipped with the product of the characterized
fuzzy unit interval spaces generated by 11 2.intg on it as a characterized fuzzy cube.

¢1,2-fuzzy neighborhood filters. An important notion in the characterized

fuzzy space (X, i 2.int) is that of a ¢ o-fuzzy neighborhood filter at the point

and at the ordinary subset in this space. Let (X, 7) be a fuzzy topological space

and 1,902 € O(x ;). As follows by (I1) to (I5), for each x € X, the mapping
9
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Ny, ,(x) : L* — L which is defined by:

(2.5) Ny o (@) (1) = (p1,2.int 1) (),

for all p € LX is fuzzy filter, called ¢ »-fuzzy neighborhood filter at x [1]. If
@ # F € P(X), then the ¢ - fuzzy neighborhood filter at F will be denoted by
Ny, ,(F) and it defined by

NW1,2(F) = \/ N4.01,2('T)'

z€F
Since Ny, ,(x) is fuzzy filter, for all x € X, N, ,(F) is also fuzzy filter on X.
Moreover, because of [xr] = \/ &, we have N, ,(F) > [xr]| holds. Furthermore,
zeF
the fuzzy filter F is defined by F = \/ & and we easily have that F < A, ,(F)
zeF

holds, for all F € P(X). Recall that the ¢ »-fuzzy neighborhood filter N, , (1) at
the fuzzy set p of X is defied as follows:

(2.6) Nowa(@)m) = (N Noya (@) (),

0<pu(z)

for all n € L¥. Obviously, 1 <N, ,(u), for all p € LX. If the related ¢y o-interior
operator fulfill the axioms (I1) and (I2) only, then the mapping Ny, ,(z) : L — L,
defined by (2.2) is a fuzzy stack ([21]), called 1 o-fuzzy neighborhood stack at z.
Moreover, if the (1 2-interior operator fulfill the axioms (I1), (I2) and (I4) such that
in (I4) instead of p € L¥, we take @, then the mapping N, ,(z) : L — L, is
a fuzzy stack with the cutting property, called ¢; o-fuzzy neighborhood stack with
the cutting property at x. The ¢ »-fuzzy neighborhood filters fulfill the following
conditions:

(N1) & <Ny, ,(x) holds for all z € X,

(N2) Ny, (2)() < N, (@) () holds, for all s, p € L and ju < p,

(N3) Ny @)y = Ny (0)(1) = Ny o (@)(1), for all z € X and o € L.
Clearly, y — Ny, , () (1) = @1,2.int p. The characterized fuzzy space (X, 1 2.int)

of all ¢ 9-open fuzzy subsets of a set X is characterized as a filter fuzzy pre topology
([1]), that is, as the mapping Ny, , : X — Fr X such that (N1) to (N3) are fulfilled.

1,211 2-fuzzy continuity. Let the fuzzy topological spaces (X, 1) and (Y, 72) be
fixed, p1,p2 € O(px 7,y and 91,92 € O(Lv ,). Then the mapping f : (X, 1 2.int) —
(Y, 1,2.int) is said to be ¢y 291 o-fuzzy continuous, if

(2.7) (Y1,2.int ) o f < 1.0t (no f),

for all n € LY [5]. If an order reversing involution ’ of L is given, then we have that
f is a 1,291 o-fuzzy continuous if and only if @1 2.cl(no f) < (1.2.cln) o f, for all
n e LY. Note that ©1,2.cl and v 5.cl, means that the closure operators related to
©1,2.int and 11 2.int, respectively which are defined by 1 2.clpp = co (p1,2.int cop),
for all 4 € LX. Obviously, if f is ¢1 211 o-fuzzy continuous and the inverse f=1 of f
exists, then f=1 : (Y, 0.int) — (X, ¢y 2.int) is ¥y 201 2-fuzzy continuous, that is,
(p12.int ) o f=1 < apy o.int (uo f1), for all 4 € LX. By means of characterizing,
the ¢y 9-fuzzy neighborhoods N, ,(x) of @1 .int and Ny, , () of 91 o.int which
10
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are defined by (2.5), the ¢1 211 o-fuzzy continuity of f can also be characterized as
follows:

The mapping f : (X, ¢1,2.int) — (Y, 91 2.int) is @1 291 2-fuzzy continuous if and
only if Ny, ,(f(x)) > Frf(Ny, ,(x)) holds, for each z € X.

Obviously, in case of L = {0,1}, ¢1 = ¢1 = int, po = 1px and ¢y = 1v, the
1,201 2-fuzzy continuity coincides with the usual fuzzy continuity.

Characterized fuzzy proximity spaces. Let a fuzzy topological space (X, 1)
be fixed and ¢1,p2 € O(rx ;). Then each fuzzy proximity 6 on X is associated a
set of all ¢ 2-open fuzzy subsets of X with respect to § denoted by @1 20F(X)s.
The triple (X, ¢1,20F (X)s as will as (X, ¢1 2.ints) is said to be characterized fuzzy
proximity space [5]. The related @1 o-interior and the ¢; o-closure operators ¢ 2.ints
and (1 2.cls are given by:

prointsp=\/ pand proclsp= A p,
u Sp o ou
respectively, for all u € LX. Obviously, from the definition of the complementarily
symmetric fuzzy topogeneous structure, there is an identification between the fuzzy
proximity § and the complementarily symmetric fuzzy topogeneous structure < on
the same set X given by:

(2.8) p<n = ubn,
for all u,n € LX.

Proposition 2.1 ([5]). Let (X,7) be a fuzzy topological space and @1, 02 € O x 7.
Then the binary relation 6 on LX which is defined by:

pdp if and only if NV, ,(p) < it
for all p, p € LX is a fuzzy prozimity on X.

Proposition 2.2 ([8]). Let (X, 1,2.ints) be a characterized fuzzy proximity space
and F,G € P(X) such that xpdxg. If ® is the family of all p1 211 26-fuzzy con-
tinuous mappings f : (X, p1,2.nts) — (Ip,1,2.0nts<) for which x € X implies
0 < f(z) <1, then xr and xg are ®-separable.

Proposition 2.3 ([3]). Let a fuzzy topological space (X,T) be fized and ¢1,p2 €
O(rx 7y- If (X, p12.int;) is characterized FRQ%—space and ® is a fuzzy function
family of all p1 211 o-fuzzy continuous mappings, then the binary relation § on L
which is defied by: pdp <= p and p are ®-separated for all p,p € L, is fuzzy
prozimity on X compatible with the family of all @1 2-open fuzzy set p120F(X),
that is, (X, ¢1,2.int;) = (X, 1 2.ints).

Fuzzy function family. Let X be non-empty set. By the fuzzy function family
® on X, we mean the set of all fuzzy real functions f : X — I.
Consider p,n € LX. Then the fuzzy real functions f : X — Iy, is said to be
separate p and 7, if it fulfilled the following conditions:
(i) 0 < f(z) <1 holds, for all z € X,
11
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(ii) if 21,41 € S(X) such that z; < p and y; < 7, then f(z) =1 and f(y) = 0,
for all z,y € X.

Moreover, if ® is a fuzzy function family on X, then the fuzzy subsets u,n € LX
are called ®-separable or ®-separated, if there exists a fuzzy real function h € ¢
separating them.

Characterized fuzzy Ts;- and fuzzy ¢;-Ts spaces. The notions of charac-
terized fuzzy T- spaces and of fuzzy ¢, 2-T5 spaces are investigated and studied in
[2, 3, 8], for all s € {0,1,2,21,3,32,4}. These spaces depend only on the usual
points and the operation defined on the class of all fuzzy subsets of X endowed
with a fuzzy topological space (X, 7). The characterized fuzzy Ts- spaces and of
fuzzy ¢1,2-T, spaces will be denoted by characterized F'T- spaces and Fyq o-Tj
spaces, respectively for shorts. Let a fuzzy topological space (X,7) be fixed and
©1,P2 € O(LX’T). Then

(i) the characterized fuzzy space (X, 7 2.int) is said to be characterized FTj-
space (resp. characterized FTs-space), if for all z,y € X such that x # y, there
exist p, p € LX and a, B € Ly such that

u(x) < a < (p12.intp)(y) and p(y) < B < (p1,2.intp)(z)
(resp. the infimum N, ,(z) AN, ,(y) does not exists),

(ii) the related fuzzy topological space (X, 7) is said to be Fq 9-T1
(resp. F12-ToF 1 9-T5), if for all ,y € X such that « # y, we have & £ N, ,(y)
and y $ N‘PLQ (I)

Characterized fuzzy Rj- and fuzzy ¢, 2-Rj spaces. The notions of charac-
terized fuzzy Ry- and fuzzy i 2-Rj spaces are introduced and studied in [3, 4, g],
for all k € {0,1,2, 2%, 3}, by means of the notion of 1 »-fuzzy neighborhood filter at
a point x and at the ordinary subset of the characterized fuzzy space (X, ¢1 2.int),
and also by the notion of ¢ 211 o-fuzzy continuous. However, the notions of fuzzy
©1,2-R). spaces are also given by means of the ¢ »-fuzzy convergence at a point x and
at the ordinary set in the space. The characterized fuzzy Rj-spaces and fuzzy ¢; o-Rj,
spaces will be denoted by characterized F'Ry- and Fo; o- R}, spaces, respectively for
shorts. Let a fuzzy topological space (X, 7) be fixed and (1, ¢2 € O x ). Then the
characterized fuzzy space (X, ¢1,2.int) is said to be characterized FRZ%—space7 if for
all z € X, F € p12C(X) such that = ¢ F, there exists a (1 29 2-fuzzy continuous
mapping f : (X, 1 2.int) = (11,91 2.intg) such that f(z) =1 and f(y) = 0, for all
y € F. Moreover, (X, ¢12.int) is said to be characterized FT,-space, if it is char-
acterized FRy, and characterized FTy for k € {21,3} and s € {33,4}. The related
fuzzy topological space (X, 7) is said to be Fpq o-T, if it is Fpq o-Ry and Foq o-T7.

Proposition 2.4 ([2, 3]). Let a fuzzy topological space (X, T) be fized and 1,2 €
O(Lxﬂ.). Then
(1) every characterized F'T;-space (X, p1,9.int;) is characterized FT;_1-space for
each i € {1,2,3,4},
(2) the initial and final characterized fuzzy spaces of a family of characterized
FT;-spaces are also characterized F'T; -spaces for each i € {0,1,2,3,4},
12
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(3) the characterized fuzzy subspace and the characterized fuzzy product space
of a family of characterized F'T;-spaces are also characterized FT;-spaces for each
i€{0,1,2,3,4}.

3. CHARACTERIZED GLOBAL FUZZY NEIGHBORHOOD SPACES AND PRE SPACES

By the global fuzzy neighborhood structure on a set X [18], we mean the mapping
h: FrX — FrX such that the following axioms are fulfilled:

(N1) M < h(M) holds, for all M € Fr. X,
(N2) h(LV M) =h(L )\/h(M),forallﬁ,Me]:LX,
(N3) hoh=h.

( ) px o Frho Frnx < h holds,
where 1 and p are the natural transformations appearing in the fuzzy filter monad.
If h and k are global fuzzy neighborhood structures on a set X, then h is said to be
finer than k& and will be denoted by h < k, if the fuzzy filter h(M) is finer than the
fuzzy filter k(M), for all M € FrX. As shown in [18, 19], the fuzzy topogeneous
structures are characterized by means of the global fuzzy neighborhood structure.
However, the following weakening of the notion of the global fuzzy neighborhood
structure is used to characterizations of the fuzzy topogenuous orders.

By the global fuzzy neighborhood pre structure on a set X [13, 20], we mean the
mapping h : Fr X — FrX which fulfills the axioms (N1), (N2) and (N4). Each
global fuzzy neighborhood structure h associated canonically a fuzzy pre topology
7, on X. Recall that the fuzzy pre topology is usually defined as a fuzzy interior
operator, that is, as a mapping intj, : LX — LX such that int, 1 = 1, int,p < p and
inty, (uAn) = int uAinty,n for all u,n € LX. The global fuzzy neighborhood space and
the global homogenous fuzzy neighborhood space are sets equipped with global fuzzy
neighborhood structure h and global homogenous fuzzy neighborhood structure &
and will be denoted by (X, h) and (X, k), respectively. Consider o1, 2 € O(x -,
then the associated characterized fuzzy pre topology generated by 1 o.int,, of the
global fuzzy neighborhood pre structure h : F X — F1 X is defined by:

(3.1) (pr2-intr, p)(z) = h(E)(p),

for all # € X and pu € LX. For technical reason condition (N4) of the global fuzzy
neighborhood structure will also be applied in a more simple formulation given in
the following proposition.

Proposition 3.1. Condition (N4) of the global fuzzy neighborhood structure is equiv-
alent to the condition:

h(M)(p) < M(p1 2.int,, p) holds for all M € Fr X and p € L¥,
where 1 9.int,, p is the fuzzy set x — h(z)(p) of X.

Proof. From the definitions of the natural transformations pux and nx, it follows
that for all M € F1 X and p € LX, we have
(px o FLho Frnx)(M)(p) = px (Fr(h o nx)(M))(p)
= (Fr(honx)(M)oex)(p)
= Fr(honx)(M)(ex(p))
= M(ex(p) o honx)
13
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= M(z = h(#)(p))
= M(Lplyg.int-,—hp).
This shows that both the conditions are equivalent. O

Let h be global fuzzy neighborhood pre structure on a set X and M € FpX.
Then, h(M) is said to be fuzzy neighborhood of M with respect to h and the
mapping h o (1 9.int,, , which coincides with (ux o Frh o Frnx)(M) is said to be
¢1,2-fuzzy neighborhood of M with respect to the characterized fuzzy pre topol-
ogy generated by ¢; o.int;, . Note that, px o Frh o Frnx is itself a global fuzzy
neighborhood pre structure and it can be identified with the characterized fuzzy pre
topology generated by ¢ 2.int,, . In case of h is global fuzzy neighborhood structure,
then px o Frph o Frnx also is. In this case, 1 2.int,, is ¢ o-interior operator of a
characterized fuzzy space on X denoted by (X, ¢12.int;, ), that is, px o Frho Frnx
is identified with this associated characterized fuzzy space. This associated char-
acterized fuzzy space will be called characterized global fuzzy neighborhood space
associated by the global fuzzy neighborhood structures h.

If the fuzzy filter monad (Fr,n,p) is replaced by the homogeneous fuzzy fil-
ter monad (FL,nl, ul), then we have the global homogeneous fuzzy neighborhood
structure instead of the global fuzzy neighborhood structure, that is, the global ho-
mogeneous fuzzy neighborhood structure on a set X is the mapping h : Fy X — Fp X
such that the following axioms are fulfilled:

(N1') M < h(M) , for all M € F. X,

N2') R(LV M) =h(L)V h(M), for all L, M € FL X,
N3) hoh=h,

N4') p'y oFphoFrny <h.

If the axioms (1\'1/), (N2/) and (1\'4/) are only fulfilled, then h will be called global
homogeneous fuzzy neighborhood per structure.

Each global homogenous fuzzy neighborhood pre structure h on a set X is asso-
ciated canonically with a stratified fuzzy pre topology 7;; on X. Consider ¢y, 2 €
O(Lxﬁ). Then the associated stratified characterized fuzzy pre topology gen-
erated by ¢;o.int;s of the global homogenous fuzzy neighborhood pre structure
h:FLX — FLX is defined by (¢1,2.intrs p) () = h(i)(p), for all z € X and pu € L*.
The ordered pair (X, cplyg.intTi) will be called characterize global fuzzy neighborhood
pre space. The associated characterized global fuzzy neighborhood pre topology gen-
erated by 1 2.int.s is stratified, that is, ¢; o.int.; (@) = a, for all @ € L. In case of

(
(
(

h is global homogeneous fuzzy neighborhood structure, then u/X oFphoF L’?;c also is
and thus @172.intTﬁ is (1 o-interior operator of a stratified characterized fuzzy space
on X denoted also by (X, <p1,2.int75), that is, ,u/X oFrho FLn;( is identified with this
stratified characterized fuzzy space. This stratified characterized fuzzy space will
be called associated stratified characterized global fuzzy neighborhood space, by the
global homogeneous fuzzy neighborhood structures h.

(h, k)-Continuity. The mapping f between the global fuzzy neighborhood space
(X, h) into the global fuzzy neighborhood space (Y, k) is said to be (h, k)-continuous,
14
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provided
(3.2) Frfoh<koFrf.

Analogously, the mapping g : (X*, h) — (Y*, k) between global homogenous fuzzy
neighborhood spaces is said to be (h, k)-continuous, provided Frgoh < ko Fpg.

Proposition 3.2. Let h: F, X — Fr X be global fuzzy neighborhood structure and
let (X, 1) be the associated global fuzzy neighborhood space. If 1,02 € OLx 1.y,
then h defines a characterized global fuzzy neighborhood space generated by @1 2.int,,
on X given by:

wE€ ¢120F(X),;, < p(x)=h(@)(u) foreach xe€ X.

Proof. Condition (F1) of the fuzzy filter implies that 0 and 1 are members of
0120F(X),,. If pu,n € 01 20F(X),,, then by the condition (F2), we have
h(@)(pw An) = (nAn)().
Thus p An € 1 20F(X),,.
Let { t; }ier be a family of members of ¢1 2OF (X),,. Since h is hull operator, it
follows that h(Z)(V wi) < (V wi)(z). Since h is isotone, we have
iel iel

(@) (\/ 1) =\ h@) (i) = (\/ i) (2)-

iel iel iel

So, h(£)(V wi) = (V wi)(z), for each z € X. Hence \ u; € ¢120F(X),,, ie.,
il il il

©1,20F(X),, is ¢1,2.int,, operator for a characterized fuzzy space on X. Therefore

(X, ¢1,2.int, ) is characterized global fuzzy neighborhood space. O

Proposition 3.3. Let f : (X,h) — (Y,k) be a mapping between global fuzzy
neighborhood pre spaces, let 1p, and T be the fuzzy pre topologies associated to
h and k, respectively. Consider ¢1,p2 € Ox 5.y and Y1,¢2 € Oy o). If
f o (X,h) = (Y k) is (h, k)-continuous, then f : (X, @1 2.int;,) — (Y, 91 2.int,,)
between the associated characterized global fuzzy neighborhood pre spaces is ¢ 211 2-
fuzzy continuous. In case, h and k are coincide up to identifications with i 2.int,,
and 1 o.int,, , respectively, then f : (X, h) — (Y, k) is (h, k)-continuous if and only
if £ (X, @10.nt5,) = (Y, ¢ 2.00t,,) 15 1,291 2-fuzzy continuous.

Proof. Assume at first that f is (h, k)-continuous. For all n € LY and x € X, (3.1)
and (3.2) imply that

p12.ntr, (o f)(z) = h(E)(no f)

= Fof(h(@))(n) = k(FLf(E))(n)
k(@) (n) = ($r.2-nt7,0)(f(2)),
where y = f(z) and ¢ 2.int,, and ¥4 o.int,, are the ¢ o-interior and )y o-interior
operators with respect to the associated characterized global fuzzy neighborhood
pre topologies, respectively. Then, (¢12.int;,n) o f < 2.0t (n o f), for all
n € LY, which of course means from (2.7) that f is (1291 2-fuzzy continuous.
As in case of [15, 17], under the assumption that h and k coincide up to iden-
tifications with ¢y 2.int,, and v, 2.int,, ,respectively the ;211 o-fuzzy continuity

15
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of f: (X,p12.int;,) = (Y,41,2.int,, ) is equivalent to the (h, k)-continuity of f :
(X, h) = (Y, k). O

Corollary 3.4. If f : (X,h) — (Y, k) is (h,k)-continuous mapping between global
homogenous neighborhood fuzzy pre spaces, then f: (X, ¢1,2.int-2) — (Y, 91,2.int )
between the associated stratified characterized global fuzzy neighborhood pre spaces is
1,291 ,2-fuzzy continuous.

Proof. Immediate from Proposition 3.3. g

4. CHARACTERIZED FUZZY UNIFORM SPACES, CHARACTERIZED FUZZY PERFECT
TOPOENEOUS STRUCTURES AND CHARACTERIZED FRQ%—SPACES

In this section, we are going to investigate and study the notions of characterized
fuzzy uniform spaces and of characterized fuzzy perfect topoeneous structure as a
generalization of all the weaker and stronger forms of the notions of fuzzy uniform
spaces presented in [20] and of the fuzzy perfect topoeneous structure presented in
[19, 26], respectively. For this, we applied the notion of homogeneous fuzzy filter
at the point and at the fuzzy set which is defined by (2.1), the superior princi-
pal fuzzy filter [u] generated by p € L and the ¢; o-fuzzy neighborhoods at the
fuzzy set p which is defined by (2.6) in the characterized fuzzy space (X, @1 2.int;).
Moreover, the relation between the separated fuzzy uniform spaces, the associated
characterized uniform F'Ti-spaces, the associated characterized uniform FT3 and
the F'o1 oT;-spaces which introduced in [2] are investigated for all ¢ € {1, 3}.

By a fuzzy relation on a set X, we mean the mapping R : X x X — L, that is,
a fuzzy subset of X x X. For each fuzzy relation R on X, the inverse R~! of R is
the fuzzy relation on X defined by R™1(x,y) = R(y, z), for all 2,y € X. Let U be
a fuzzy filer on X x X. The inverse U~! of U is a fuzzy filter on X x X defined
by U7Y(R) = U(R™'), for all R € LX*X. The composition Ry o Ry of two fuzzy
relations R; and Ry on a set X is fuzzy relation on X defined by:

(Bro Ro)(w,y) = \/ (Ra(a2) A Raz,))),
ze€X

for all z,y € X. For each pair (z,y) of elements x and y of X, the mapping (z,y) :
LX*X — [ defined by (z,y) (R) = R(z,y), for all R € L**X is a homogeneous
fuzzy filter on X x X.

Let U and V are fuzzy filers on X x X such that (z,y) <U and (y,z) <V hold,
for some x,y,z € X . Then the composition Volf of V and U is a fuzzy filter ([20])
on X x X defined by:

Vouym) =\  (UB)AV(R)),

RyoR1<R

for all R € LX*X. The fuzzy uniform structure U ([20]) on a set X is said to be

separated, if for all 7,y € X with 2 # y there is R € L*X*%X such that U(R) = 1 and

R(z,y) = 0. In this case, the fuzzy uniform space (X,U) is called a separated fuzzy

uniform space. Let U be a fuzzy uniform structure on a set X such that (x,y) <U
16



A. S. Abd-Allah et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

holds, for all x € X and let M € Fz X. Then the mapping U[M] : LX — L which
is defined by:
UM(p) = \/  UE) A M),
R(m)<p
for all u € LX is fuzzy filter on X, called the image of M with respect to the fuzzy
uniform structure U ([20]), where 7, R[n] € L* such that

Rln)(z) = \/ (), R(y, z)).

yeX

To each fuzzy uniform structure U on a set X is associated with a stratified fuzzy
topology 7,, on X. Consider @1, ps € O(LX’TL{)' Then the set of all ¢y >-open fuzzy
subsets of X related to 7,, forms a base for a characterized stratified fuzzy space on X
generated by the ¢ o-interior operator with respect to 74 denoted by ¢ 2.int,, and
(X, ¢1,2.nt,,) is a characterized stratified fuzzy space. In this case, (X, 1 2.int,)
will be called the associated characterized fuzzy uniform space which is stratified.
The related ¢ o-interior operator ¢; 2.int,, is given by:

for all z € X and p € L¥. The fuzzy set u is said to be ¢; oU-fuzzy neighborhood
of x € X provided U[z] < fi. Because of (2.1), (2.6) and (4.1), we have that

(42) Z/[[J’J] = NlPl,z (l‘) and U[V} = Nkpl,z (:U’)’

forallz € X and p € L*. In this case, N, , (z) and N, , (n) are fuzzy neighborhood
filters of the associated characterized fuzzy uniform space (X, 1 2.int,,) at = and u,
respectively.

Proposition 4.1. Let X be a non-empty set, let U be a fuzzy uniform structure on X
and p1, s € O(LX,TM). Then the fuzzy uniform space (X,U) is separated if and only
if the associated characterized fuzzy uniform space (X, p1,2.inty) is characterized
F'Ty-space.

Proof. Let (X,U) is separated and let x,y € X such that x # y. Then, there exists
Ry, Ry € LX*X such that U(R;) = 1 and R;(x,y) = 0, for all i € {1.2}. Consider

= R[y1] and n = R[z1]. Then we have
w(x) = Rifyr](x) = V (Ri(z,2) Ayi(z)) =0

zeX
and
n(y) = Re[z1](y) = é/X (Ra2(2,y) Aai(z)) = 0.
Moreover,
(p1,2-inty 1) (y) = U] (1) = " (U(R1) A ply) =1
and -
(pr2ntyn)(z) =U[@](n) = V  (UR) Aplz)) =1,

R1(p)<n
for all p € LX. Thus, there exists u,n € LX and «, 8 € Lo such that
p(z) < a < (p12.nty 1) (y) and n(y) < B < (p1,2-inty n)(2).
So, (X, @1 2.inty) is characterized F'Tj-space.
17
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Conversely, let (X, 1 2.int,) be characterized FTi-space and let = # y in X.

Then, there exists p,n € LX and «a, 3 € Ly such that

p(x) < a < (p12.nty p)(y) and n(y) < B < (p1,2.inty n) ().
This means that for all p € LX,

Vo (UR) Ap(y) > pl@) and V (U(R2) A p(z)) > 0(y).

Ri(p)<p Ra(p)<n
Thus, there is Ry, Re € L*X*X such that Ri(z,y) = ¢1.2.inty u(y), if z = y and
Ri(z,y) = p(z), if x # y such that Ryi(z,y) = 0 and U(R;1) = 1 and Ry(z,y) =
¢1,2.nty n(z), if = y and Re(z,y) = n(y) if © # y such that Ra(z,y) = 0 and
U(R2) =1 . So, in every case, (X,U) is separated. O

Corollary 4.2. Let X be a non-empty set, let U be a fuzzy uniform structure on X
and @1, 02 € Ox 7). Then the fuzzy uniform space (X,U) is separated if and only
if the associated stratified fuzzy topological space (X, 1,) is Fy1 2-Th -space.

Proof. Tmmediate from Proposition 4.1 and Theorem 2.2 in [2]. O

Proposition 4.3 ([19]). For each fuzzy uniform structure U on a set X, the mapping
h:Fr X — Fp X which is defined by

(4.3) h(M) = UM,],
for all M € Fr. X, is a global homogeneous fuzzy neighborhood structure.

The mapping h will be called global homogeneous fuzzy neighborhood structure
associated to the fuzzy uniform structure & and will be denoted by hg;. The global
fuzzy neighborhood structure h on a set X is said to be symmetric [13, 20], provided
that h(L) AM exists if and only if LAh(M) exists for all M, L € Fr, X. Asshown in
[20], for each fuzzy uniform structure U, the associated homogenous fuzzy neighbor-
hood structure hys is symmetric and both the global homogenous fuzzy neighborhood
structures associated to the fuzzy uniform structures ¢/ and its homogenization U*
are coincide.

Proposition 4.4 ([20]). Let f : (X,U) — (Y, V) be uniformly fuzzy continuous
mapping between fuzzy uniform spaces. Then the mapping f : (X, hy) — (Y, hy)
between the associated global homogeneous fuzzy neighborhood spaces is (hy, hy)-
fuzzy continuous.

Proposition 4.5. Let f: (X,U) — (Y, V) be uniformly fuzzy continuous mapping
between fuzzy uniform spaces, ¢1,p2 € O(px 5,y and P1,v%2 € Oy ;). Then the
mapping f 1 (X, p12.dnt,) — (Y,12.int,,) between the associated characterized
fuzzy uniform spaces is @1 211 2-fuzzy continuous.

Proof. Immediate from Propositions 3.3 and 4.4. O

In the following proposition, we prove that for each fuzzy uniform structure on a
set X there is induced stratified fuzzy proximity on LX. Moreover, both the fuzzy
uniform structure and this induced stratified fuzzy proximity are associated with
the same stratified characterized fuzzy uniform space.

18
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Proposition 4.6. Let X be a non-empty set and let U be a fuzzy uniform structure
on X and ¢1,92 € O(x,7,)- Then the binary relation 6y on LX defined by:

(4.4) pdyp if and only if U[j) <

for all i, p € LX is stratified fuzzy proxzimity on X. Moreover, both the fuzzy uniform
structure U and the induced stratified fuzzy prozimity éy are associated with the same
stratified characterized fuzzy uniform space, that is, (X, p1 2.int,,) = (X, p1,2.ints,, ).

Proof. By (4.2) and Proposition 2.1, we get &, which is defined by (4.4) is fuzzy
proximity on X. Since (X, 1 2.int,, ) is stratified, & is ¢1 2-open in (X, 1 2.int,,),
for all a € L, i.e., U]d] < &, for all a € L and then adya , for all a € L. Thus, 0y is
stratified fuzzy proximity on X. By (4.4), we have z1d,p if and only if U[i] < f,
i.e., p is @1 20y-fuzzy neighborhood of  if and only if it is ¢ 2U-fuzzy neighborhood
of . So, both the fuzzy uniform structure & and the induced stratified fuzzy prox-
imity dy; are associated with the same stratified characterized fuzzy uniform space,
ie., (X, p1,2.nt,) = (X, @1 2.ints, ). O

Corollary 4.7. Let (X,U), (Y,V) be two fuzzy uniform spaces and let ¢1,ps €
O(Xmsu) and 1,90y € O(yﬂv), Then f : (X,U) — (Y,V) is uniformly fuzzy
continuous mapping between fuzzy uniform spaces if and only if the mapping [ :
(X, 1,2.nts,) — (Y, 1)1 0.int5,) between the associated stratified fuzzy prozimity
spaces s 1 21 2-fuzzy continuous.

Proof. Immediate from Propositions 4.5 and 4.6. O
By Propositions 2.2 and 4.6 and Corollary 4.7, we can deduce the following result:

Proposition 4.8. Let (X,U) be a fuzzy uniform space and let F,G € P(X) such
that U[F] = Ulxr] < Xo = G and 1,09 € O(X,ms,,)- If ® is the family of all
uniformly fuzzy continuous functions f: (X,U) — (I, U*) for which x € X implies
0 < f(x) <1, then xr and xg are ®-separable.

Proof. By Proposition 4.6, we have y pdyxq. From Proposition 2.2, we get y and
X¢ are ®-separated by the @1 211 26y-fuzzy continuous mapping f : (X, @1 2.ints,, ) —
(Y, 91 2.ints,, ) between the associated stratified characterized fuzzy proximity spaces.
Corollary 4.7, implies that f : (X,U) — (I, U*) is uniformly fuzzy continuous and
therefore xp and yg are ®-separable. O

Now, we shall prove that the stratified characterized fuzzy uniform space which
associated with a fuzzy uniform structure is characterized F'R, 1-space in sense of

[5]-

Proposition 4.9. Let X be a non-empty set and let U be a fuzzy uniform structure
on X and ¢1,92 € O(x r,)- Then the associated stratified characterized fuzzy uni-
form space (X, p1,2.int,,) with the fuzzy uniform structure U is characterized FRQ%—
space.

Proof. Let © € X, F € ¢12C(X) such that + ¢ F. Since xp is ¢12U-fuzzy
neighborhood of z, U[i] = N,, , () < F'. On account of Proposition 4.8, we get that

x1 and xF are ®-separated by the uniformly fuzzy continuous function f : (X,U) —
19
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(Ir,U*). By Proposition 4.5, the function f : (X, ¢ 2.nty) — (I, 1,2.inty~)
is 1,241 o-fuzzy continuous. Consequently, (X, 7 2.int,,) is characterized FRQ%—
space. O

Corollary 4.10. Let (X,U) be a separated fuzzy uniform space and @1, p2 € O(x 7,)-
Then the associated stratified characterized fuzzy uniform space (X, @1 2.int,,) with
the fuzzy uniform structure U is characterized FTy 1-space.

Proof. Immediate from Propositions 4.1 and 4.9.
O

Example of stratified characterized fuzzy uniform FR, 1-space. In the
following, we give an example of a homogeneous fuzzy uniform structure and we
show that the associated stratified characterized fuzzy uniform space is characterized
uniform F'R,1-space.

Example 4.11. The fuzzy metric in sense of S. Géahler and W. Géhler [14] canoni-
cally generate homogeneous fuzzy structure as follows: Consider X is non-empty set
and d is fuzzy metric on X, then the mapping Uy : LX*X — L which is defined by:

Us(R) = \/ «,

0<8,e0.50d<R

for all R € L¥*X is homogeneous fuzzy uniform structures on X. Moreover, the
associated stratified characterized fuzzy uniform space (X, 1 2.inty,) is identical
with the associated characterized fuzzy metrizable space (X, 1 0.int,,), that is,
(X, ¢1,2.nt, ) = (X, 1,2.int,, ). By Proposition 3.1 in [9], (X, ¢1,2.int,,) is charac-
terized F'Ty-space and thus (X, ¢; 2.intyy, ) is characterized FTy-space. From Propo-
sition 4.6 in [8], we get (X, p1,2.inty, ) is characterized FR,1-space.

Remark 4.12. In Example 4.11, if we choose 1 = int, 2 = 1;x, 1 = intg and
19 = 11, the associated stratified characterized fuzzy uniform space (X, ¢1,2.inty, )
and the associated characterized fuzzy metrizable space (X, @1 2.int-,) are identical
with the associated stratified fuzzy topological uniform space (X, Tud> and the asso-
ciated fuzzy metrizable topological space (X, 74), respectively.

Some special characterization of fuzzy pre filters. The fuzzy topogeneous
order (resp. structure) < will be called perfect [26], if for each family (u;);er of fuzzy
subsets of X such that u; < ), for all i € I, it follows that \/ u; < n holds, for some

iel
n € LX. As in [20], there is a one-to-one correspondence between the fuzzy perfect
topoeneous structures < on a set X and the characterized fuzzy spaces generated
by the ¢ o-interior operators ¢ 2.int on X. This correspondence is given by:

< nif and only if p < p < n for some p € p; ;OF(X),

for all u,n € LY and 1 20F(X) = {p € L* : pu < p}. The fuzzy perfect topoe-
neous structure < in this case will be called characterized fuzzy perfect topoeneous
structure.
Specially, let (X, 7) be a stratified fuzzy topological space, 1,92 € O(x ;) and
< is characterized completely symmetric fuzzy perfect topoeneous structure on X
20
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identified with the stratified characterized fuzzy space (X, ¢1,2.int;). Then for each
a € Ly, let R, : X x X — L be the mapping satisfied that:

if u < (n A a)for somen € p120F(X),
(4.5) Ruo(z,2) =1 and Ru[p] = { {n} < ( ) 1 € ¢120F(X)

{1} otherwise,

for all z € X and pu € LX. As easily seen the mapping R, fulfilled the following
properties for all a € Ly:

(1) if g > 1Lx then u < R,[u] holds, for all p € L¥,

(2) Rala] =
(3) if o is 1sotone and idempotent operation, then R, o R, = Rq,
(4) if po > 1px is isotone and ¢y is wiip with respect to ¢1OF(X), then
R[] = u, for all pp € @1 ,OF(X).

Proposition 4.13. Let U, be the set of all mappings R, which is defined by (4.5)
for all a € Ly. Then the family (u(l)OtELQ is a family of fuzzy pre filters on X x X
satisfied the following azioms :

(R1) if o, B € Lo with B > «, then Uy, C Ug,

2) for each oo € Lo such that o = \/ B, we have U, = () Ug,
0<f<a 0< <
R3) for alla € Ly, Ry € U, and x € X, we have R, (z,z) > «,

R4) if Ry € Uy, then R € U,
R5)

for each o € Ly and R, € U,, we have V B> a.
RgoRs<Ra,Rz€lUs

R
(
(
(

Proof. At first, we prove that U, is a fuzzy pre filter on X x X, for all a € Lg.

Consider 6 : X x X — L is the mapping defined by : é(z,y) = 0, for all z,y € X.

Then, o[u](z) = V (u(y) Ad(y,z)) =0, for all p € L* and = € X and even that
yeX

o(x,z) =0+ 1. Thus, 6 € U,.

Now, let R, € U, and R, < Rg. Then, Rg(z,z) = 1, for all z € X and also
Rao[u] < Rglp] holds, for all € LX. In case of u < (nAa) for some n € 1 20F(X),
we have < @ and Rg(z,x) > a. So Rg[u](z) = \ (u(y) A Rs(y,x)) = p(x), for

yeX

all x € X, that is, Rglu] = p. Otherwise, if 1 < (n A &) does not holds, for all
n € 0120F(X), we get Rg[u] > Ro[p] =1 holds, for all u € LX. Hence Rg € U,.

Consider Ry, Rg € U,. Then (Ry A Rg)(x,x) = Ro(x,x) A Rg(x,xz) = 1, for all
x € X. Since

(Ra ARl(@) = \/ () A (Ra A Re)(y, )

yeX

=V (1) A Raly, ) A (60) A Raty,2)

yeX yeX
= Ralpl(x) A Rplpl(z),

for all p € LY and z € X, (Ro A Rp)[u] = Ra[u] A Ralu] for all p € LX. In case
of p < (n A @) for some n € ¢12,0F(X), we have (Ry A Rg)[u] = p. Otherwise,
(Ra A Rg)lu] = 1. Thus, (Ra A Rg) € Us. So, Uy is a fuzzy pre filter on X x X.
Hence the family (Z/{a) is a family of fuzzy pre filters on X x X.

21
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Now, consider «, § € Lo such that 8 > «. Then in case of y < (n A &) for some
n € p120F(X), we have Ry[u] = pand p < (n A @) < (n A B) implies p < (n A )
and thus Rg[u] = p = Ra[u]. The other case of u < (nAB) for some n € o1 20F(X),
we get Rglu] = 1 < Ralu]. So Rglu] < Ra[u] holds, for all 4 € LX. In every cases
of u € LX, it easily seen that also Rg[u] < Rq[u] holds. Hence, U, C Ug. Therefore
(R1) is fulfilled.

To fulfills (R2), let @« € Ly and o= \/ 3. Because of (R1), we get [\ Up C

0<fB<a 0<Ba
Uy. In case of pp < (n A @) for some 1 € @1 20F(X), we have Ro[u] = p < Rg[y]
holds, for all 0 < 8 < a¢ and & = \/ f. In case of 4 < (n A &) does not
0<f<a
holds for all € ¢120F(X), we get that Ro[u] = 1 < () Rglu] = 1, that is,
0<Ba
N Ralu] > Rapl, for all p € LX. Then U, € () Ug. Thus U, = () Us. So,
0<Ba 0<fa 0<fa

(R2) is fulfilled.
To prove (R3), from the fact that R,[1] =1, for all a € Lo, we get

Ro[() = \/ (1) A Raly: ) = \/ Raly,2) = Ra(w,2) = 1,
yeX yeX
for all z € X, that is, Ry(x,2) > a, for all & € Lo, Ry € U, and z € X. Then, (R3)
is fulfilled.
Now, let R, € U,. Since p < (n A @) holds for some 1 € ¢1 2,0F(X), p < &
),

holds for all & € Lg. Then we get that R,[u|(z) = V (p(y) A Ra(ym)) = u(zx
yeX

because ,u ) < @ and R, ( x) > a for all z € X. In case of R,[u] = 1, we get
R, =\ ( )) = Ry(z,z) =1, for all z € X. Since
yeX

By (@) = \/ (u(y)AR:(y,x)) = \/ (1) A Ralz.9)),

yeX yeX

R;Yu](x) = p(z), for all z € X in case of u < (n A @) for some n € 1 20F(X).
Otherwise, R_'[u](x) = Rq(z,2) = 1, for all x € X. Thus, R,! € U,, for all
R, € U,. So (R4) is also fulfilled.

Finally, since R, o R, = R, for all a € Ly and R, € Uy,

a < \/ B = \/ B.
R/;GZ/{B,RgSRQ RﬁGU@,RﬁORﬁSRa
Then (R5) is fulfilled.
Consequently, (Ua) ., is a family of fuzzy pre filters on X x X fulfilled the

axioms (R1) to (R5). O

Now, we have the following important result which show that the associated
stratified characterized fuzzy uniform spaces with the fuzzy uniform structures are
compatible with the stratified characterized F R, 1-spaces.

Proposition 4.14. Let (X, ) be a fuzzy topological space, @1, 92 € O(rx 1y, 1,12 €

O(r1.3) and let @ be the fuzzy function family of all p1 991 2-fuzzy continuous func-

tions on X. If the characterized fuzzy space (X, @1 2.int,) is stratified characterized
22
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FRQ%—space, then the mapping U : LX*X — L which is defined by:

U(Ry) = \/ o for all Ry € LX*X,
Rg€Un,Rg<Rq

where Uy, is the set of all mappings R, defined by (4.5) is a fuzzy uniform structure
on X and the associated stratified characterized fuzzy uniform space (X, <p172.int7u)
with U is compatible with (X, p1 2.int;).

Proof. Because of Proposition 4.13, U is fuzzy uniform structure on X. Now let
i is @1 2-open with respect to @172.intm such that p # 1 and u(x) = 1. Then,
proint; p(x) = \/  (Us(Ra,n(x)) = 1, that is, there is some R,, € Uy with
Ra[n]<p

U(Ra,) =1 > asuch that Ry, [n] =n < pand n < (pAa) for some p € 1 20F(X).
This means that p = (u A &) is @1 2-open with respect to ¢j 2.int, and fulfilled
that n < p < p, n(z) =1 and p € ¢120F(X), that is, p(z) = 1, p < p and
p € p120F(X). Thus, p is @1 2-open with respect to o1 2.int,. So, P1,2.int, (1) >
¢1.2.int, (1) holds for all u € L*. Hence ¢1,2.intr < o1 2.intb;.

Conversely, let 1 is o1 2-open with respect to ¢j2.int, such that g # 1 and
¢1,2.int; (u) # p. Then there is x € X such that ¢ 2.int, p(z) = 0 and p(z) >
0. Since z € F = Sopt € 91,20(X) and (X, ¢1,2.int,) is stratified characterized
FRZ%—space, there exists a @1 211 o-fuzzy continuous function f : (X, ¢ 2.int;) —
(I, %1 2.intg) such that f(z) = 1 and f(y) = 0 for all y € F. Consider o € L
defined by:

a(y) = (R"(f()) =\ fw)(a) for ally € X.
a>1
Then o(y) < Ro(f(y)) < u(y), for all y € X. This means that \/ f(z)(a) =1, for
a>1

all z; < o and \/ f(y)(8) = 0, for all y; < p, that is, f(x)
820

and f(y) =0, for all y; < . Thus, z; and ,u/ are ®-separated, for all z; < o. So
o and p' are ®-separated. Because of (2.8) and Proposition 2.3, we get o < p and
o(x) =1. Now,

proint, @) =\ Us(Rain(@) = \/ (),

1, forall z; < o

Ra[n]<p Ra[n]<p
for some R, € U, with U(R,) =1 > «, which means that
p1 2.0ty () > \V n(x)

N, pE€p1,20F (X)
and is also fulfilled when replacing n by o, that is,
P1,2.int; p(x) > \/ n(z) > o(x) = 1.
N, pE€P1,20F (X)
So <p172.intTM,u(x) = 1 > 0, which is a contradiction and thus pr2Anty p = p.
Hence, i o2.int; pp > ¢172.intfu p holds, for all p € LX. Therefore, 1,2.int; <

p1,2.i0t, . Consequently, (X,<p172.int7u) = (X, @1 2.int ;). O
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5. NEW REPRESENTATIONS FOR THE CHARACTERIZED FUZZY COMPACT SPACES
BY CHARACTERIZED FT%-SPACE

The notion of ¢; o-fuzzy compactness of the fuzzy filters and of the fuzzy topo-
logical spaces are introduced in [7] by means of the ¢ o-fuzzy convergence in the
characterized fuzzy spaces. Moreover, the fuzzy compactness in the characterized
fuzzy spaces is also introduced by means of the ¢; o-fuzzy compactness of the fuzzy
filters and therefore it will be suitable to study here the relation between the char-
acterized fuzzy compact spaces and some of our classes of fuzzy separation axioms
in the characterized fuzzy spaces.

Let (X, 7) be a fuzzy topological space, F' C X and 1, p2 € O x ). Thenz € X
is said to be ¢4 2-adherence point for the fuzzy filter M on X [7], if the infimum
M AN, ,(x) exists for all ) »-fuzzy neighborhood filters N, ,(z) at = € X. As
shown in [7], the point z € X is said to be ¢; o-adherence point for the fuzzy filter
M on X, if there exists a fuzzy filter K € Fr X finer than M and X —— =z, that

#1,2-int

is, K < M and K < N, ,(x) are hold for some K € FrX. The ordinary subset
F is said to be g1 o-closed with respect to @1 o.int, if M < N, ,(z) implies z € F
for some M € FpF. The subset F' is said to be ¢ o-fuzzy compact subset [6], if
every fuzzy filter on F' has a finer ¢ o-fuzzy converging fuzzy filter, that is, every
fuzzy filter on F' has ¢; p-adherence point in F'. Moreover, the fuzzy topological
space (X, 7) is said to be o1 o-fuzzy compact, if X is ¢ o-fuzzy compact. Generally,
the characterized fuzzy space (X, 1 2.int) is said to be characterized fuzzy compact
space, if the related fuzzy topological space (X, 7) is g1 2-fuzzy compact.

Proposition 5.1 ([5]). Let a fuzzy topological space (X, T) be fized and o1, p2 €
O(x,ry. Then every @1 2-fuzzy compact subset of a characterized FTy-space (X,
©1,2.00t) is @1 2-fuzzy closed and every characterized compact FTy-space (X, @1 2.int)
is characterized F'Ty-space. Moreover, every o1 2-fuzzy closed subset of a character-
ized fuzzy compact space (X, p1,2.0nt) is 1 o-fuzzy compact.

In the following at first we shall benefit from these facts. Consider the fuzzy unit
interval topological space (1, <) be given and 91,12 € O(;, ). Then:

(1) the usual topological space (I,T7) and the ordinary characterized usual space
(1,11 2.int,) on the closed unite interval I = [0, 1] are compact 11 oT5-space and
characterized compact Th-space, respectively in the classical sense,

(2) the closed unite interval I is identified with the fuzzy number [0,1]™ in [14]
defined by [0,1]~(a) =0, for all « € T and [0,1]~(a) =0, for all « & I,

(3) the characterized fuzzy unite space (Ir, 1 2.intg) is up to a identification the
characterized usual space (I, 2.intp,) in the classical sense.

Proposition 5.2. Let (I1,,S) be a fuzzy unit interval topological space and 11,19 €
O(riv,s)- Then the characterized fuzzy unit interval space (Ir,v1,2.intg) is charac-
terized fuzzy compact F'Ts-space.

Proof. Let (I,%19.inty,) be an ordinary characterized usual space. Then,

(I,41,2.intp,) is characterized compact space in the classical sense, that is, every

filter on I has 17 g-adherence point. Consider the mapping f : (I, 7 2.inty,) —

(IL,%1 2.intg) defined by: f(a) = @&, for all @ € I. Then it is easily to seen
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that f is ¢1 291 o-fuzzy homeomorphism between (1,1 o.inty,) and (11,1 2.intg).
Thus, ({1, 2.intg) is characterized fuzzy compact space. Since (I,77) is 91,2To-
space, (I,112.inty,) is characterized Th-space. So by using the same 1 291 o-
fuzzy homeomorphism, we have for all a, B € Iy, such that & # B, the infimum

Ny, (@) ANy, ,(B) does not exists. Hence, (I, 2.intg) is characterized F'T5-
space. Therefore (Ir, 1)1 2.intg) is characterized fuzzy compact FTs-space. O

For more generally we have the following result:

Proposition 5.3. Let (I1,<S) be a fuzzy unit interval topological space and 1,15 €
Or1z o). Then the characterized fuzzy unit interval space (I, 91 2.intg) is charac-
terized F'Ty1-space.

Proof. Because of Proposition 5.2, the characterized fuzzy unit interval space
(IL,%1 2.intg) is characterized fuzzy compact F'Ts-space. Then from Proposition
5.1, we get (Ir,91 o.intg) is characterized FT,-space. Thus, Proposition 4.6 in [8]
gives us that, (I, 2.intg) is characterized FTB%—space. O

Because of the ¢ 2-fuzzy compactness in the characterized fuzzy spaces the Gen-
eralized Tychonoff Theorem is fulfilled ([8]) and from (3) in Proposition 2.4, the
characterized fuzzy product space of the characterized F'Ts-spaces is also character-
ized F'T-space. Then, by means of Propositions 5.1 and 5.2, the following result
goes clear.

Proposition 5.4. Let (I1,,S) be a fuzzy unit interval topological space and 1,19 €
O(LIL’S). Then the characterized fuzzy cube is characterized FTs-space and it is
characterized F'Ty-space.

Proof. Since the characterized fuzzy cube is product of copies of (I1,1 2.intg) and
by means of Proposition 5.2, (I, 2.intg) is characterized fuzzy compact FT5-
space. Because of Proposition 2.4 part (3) and Generalized Tychonoff Theorem in [8],
it follows that, the characterized fuzzy cube is characterized F'T5-space. Moreover,
Proposition 5.1 implies that the characterized fuzzy cube is characterized F'Ty-space.

O

Proposition 5.5. Let (X,7) be a fuzzy topological spaces, ¢1,02 € O x ;) and
V1,92 € Opip ). Consider @ is the family of all 1291 2-fuzzy continuous func-
tions f : (X, p10.dnt;) — (Ip, Y1 2.intg) and for each f € @, let Yy denote the
characterized fuzzy unit interval space and Y = [] Yy with the characterized fuzzy
fee
product space generated by 11 o.intg, on it. If (X, @1 0.int;) is characterized FT3%-
space, then X is @1 291 2-fuzzy homeomorphic to a characterized fuzzy subspace of
Y. More precisely, the mapping e : X =Y, e(x) =& = [] xf, x5(x) = f(z) is a
fea

1,21 2-fuzzy homeomorphism from X into e(X), when (X, @1 2.int;) is character-
ized FT3; -space.

Proof. Let (X, 12.int;) be characterized F'Ty1-space and consider the evaluation

mapping e : X — Y defined by: x — (f(x))fe‘b

5.1 in [8], e is injective. Since f € ® and the projection mapping py : ¥ — Y7 is
25

= & for x € X. Because of Corollary
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1,241 2-fuzzy continuous, proe : x> f(x) is 1,21 2-fuzzy continuous. Consider
e(X) = Z. Then e : (X,p12.int;) — (Z,112.intg,) is bijective 1 211 o-fuzzy
continuous mapping.

Now, we show that e is @1 211 2-fuzzy open mapping. As in the proof of Propo-
sition 5.2 in [8], the family

Q= {fil(/u‘) c fedand p= 'l/ﬂyg.illtgp}
is a base for the characterized fuzzy space (X, ¢1 2.int;). Since for a family (p;);es
of fuzzy sets in X, we have

e( ‘\E/Jﬂj) = ‘\e/Je(Nj) and e(tir Ao A ) = e(pr) Ao Ae(pn).

To show that e is @1 211 2-fuzzy open mapping, it is sufficient to show that e(p)
is 91 9-open in (7,1 2.intg, ), for all p € Q. Let f € @, u = ¢y 2.intgp in Yy and
p=f"Yp)=po f with p € Q. Then,

ep)@) =\ p@)=p@)=pf=)=\  ulf@)=p;" (1)),

z€e—1(2) gep; ! (f(x))

for all & = e(x) € Z. Since p}l(,uI)Z: e(p) and py is 11 291 o-fuzzy continuous,
p;l(,ujz is 91 g-open in (Z, 1 2.intg, ), that is, e(p) is 11 2-open in (Z,¢1 o2.intg, ).
Thus, e is ;211 9-fuzzy open mapping. So e : (X,p12int;) —
(Z,¢1,2.ints,) is 1,291 2-fuzzy homeomorphism. Hence, (X, i 2.int;) is
1,21 2-fuzzy homeomorphic to a characterized fuzzy subspace of Y = [[ Y;. O
fed

Proposition 5.6. Let (X,7) be a fuzzy topological spaces, ¢1,02 € O x ;) and
Y1,¢2 € O, o). Then (X, 1,2.int,) is characterized FTB%—space if and only if X
is 1,291 2-fuzzy homeomorphic to a characterized fuzzy subspace of the characterized
fuzzy cub.

Proof. The necessary of the condition follows from Proposition 5.5. For the suffi-
clency, because of Proposition 5.3, (I1, 1 2.intg) is characterized FT3%—Space. Be-
cause of Corollary 4.2 in [9], the characterized fuzzy product space of a characterized
FTy1-space is characterized FTy1-space. Then, (X, p1,2.int,) itself characterized
FT, 1-space. O

Proposition 5.7. Let (X,7) be a fuzzy topological spaces and ¢1,02 € Ox 7.
Then every characterized fuzzy compact space (X, 1 2.int;) is characterized F'Ty-
space if and only if it is characterized FTS%-space.

Proof. Let (X, 1 ,2.int,) be characterized fuzzy compact FT5-space. Then by Propo-
sition 5.1, (X, @1 2.int;) is characterized F'Ty-space. Thus by Proposition 4.6 in [g],
(X, ¢1,2.int,) is characterized FTgé—space.

Conversely, let (X, @1 2.int,) be characterized F Tgé—space. then by Propositions
3.2in [8] and 2.4 part (1), it follows that (X, 1 2.int,) is characterized fuzzy compact
F'T,-space. O

Lemma 5.8 (5). Let (X, 7) and (X, 0) be two fuzzy topological spaces such that T is

finer than o, v1,p2 € O(x,+) and 1,92 € O(x o). If (X, @12.int,) is characterized

fuzzy compact space, then (X, 1 2.int,) is also characterized fuzzy compact space.
26
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From Lemma 5.8 and Corollary 3.3 in [9], we can prove the following result.

Proposition 5.9. Let (X,7) and (X,0) be two fuzzy topological spaces such that
T is finer than o, @1,02 € O(xry and 1,92 € Ox o). If (X, @10.int,) is char-
acterized fuzzy compact space and (X,vn 2.int,) is characterized FTg%-space, then
(X, p1,2.nt,) and (X, 11 2.int,) are equivalent.

Proof. Because of Corollary 3.3 in [9], we get (X, 1,2.int,) is characterized FTy,-
space. By Lemma 5.8, we have (X, 11 .int,) is also characterized fuzzy compact
space. Then, the identity mapping idx : (X, ¢1,2.0nt-) — (X, 91 2.int,) is bijective
1,201 2-fuzzy continuous and ¢ 217 o-fuzzy open, that is, idx is ;211 o-fuzzy
homeomorphism. Thus, (X, 1 2.int,) and (X, 41 2.int,) are equivalent. O

From Propositions 2.4 and 5.6, we have the following important characterization
for the characterized F'T}1-spaces.

Theorem 5.10. Let (X, 7) be a fuzzy topological space and 1,92 € O(x ). Then,
the following axioms are equivalent:

(1) (X, ¢1,2.int,) is characterized FT3%-5pace,

(2) (X, @1,2.int;) is @1 21 2-fuzzy homeomorphic to a characterized fuzzy subspace
of characterized fuzzy cub,

(3) (X, ¢1,2.int,) s v1,2Y1 2-fuzzy homeomorphic to a characterized fuzzy subspace
of characterized fuzzy compact FTs-space,

(4) (X, p1,2.nt;) is p1,291 2-fuzzy homeomorphic to a characterized subspace of
characterized F'Ty-space.

Proof. Let (X, 1 2.int;) be characterized FT3%—space. Then by Proposition 5.6, it
follows that (2) is fulfilled. Thus, (1) implies (2). Consider (2) is fulfilled. since every
characterized fuzzy cub is characterized fuzzy compact FTs-space, (3) is fulfilled.
So, (2) implies (3). Obviously, (3) implies (4), because every characterized fuzzy
compact F'Ts-space is characterized FTy-space.

Finally, let (4) be fulfilled. Then by Proposition 2.4, every characterized fuzzy
subspace of a characterized F'Ty-space is characterized F'Ty. Thus Proposition 4.6 in
[3], (X, ¢1,2.int-) is characterized F'Ty1-space. So, (1) is fulfilled. Hence (4) implies
(1). O

6. CONCLUSIONS

In this research work, we introduced and studied four new notions. The notions
are named characterized global fuzzy neighborhood space, characterized global fuzzy
neighborhood pre space, characterized fuzzy uniform space and characterized fuzzy
perfect topoeneous structure. The properties of such characterized fuzzy spaces
were deeply studied. Some sorts of relationship were introduced among such char-
acterized fuzzy spaces and other published characterized fuzzy spaces presented by
the authors. Each global fuzzy neighborhood structure introduced a characterized
global fuzzy neighborhood space, however each global fuzzy neighborhood pre struc-
ture is identified with a characterized global fuzzy neighborhood pre space. In case
of the homogenous global fuzzy neighborhood structures and of the homogenous
global fuzzy neighborhood pre structures the stratified characterized global fuzzy
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neighborhood spaces and the stratified characterized global fuzzy neighborhood pre
spaces were introduced. We proved that the mappings between the characterized
fuzzy pre spaces are i 211 2-fuzzy continuous if the related mappings between the
global fuzzy neighborhood pre spaces are (h, k)-continuous. The vise versa is true
when h and k are coincide up to identifications with ¢y ».int;, and 1)y 2.int,,, re-
spectively. The fuzzy uniform spaces are separated if and only if the associated
characterized fuzzy uniform spaces are characterized F'Tj-spaces. The mappings
between the associated characterized fuzzy uniform spaces are @1 211 2-fuzzy con-
tinuous if the related mappings between the fuzzy uniform spaces are fuzzy uniform
continuous. For each fuzzy uniform structure on a set X, there is an induced strat-
ified fuzzy proximity on LX and both the fuzzy uniform structure and this induced
stratified fuzzy proximity are associated with the same stratified characterized fuzzy
uniform space. The associated stratified characterized fuzzy uniform space with the
fuzzy uniform structure is characterized F'R,1-space and in case of the fuzzy uni-
form space is separated, then it is characterized F'T5 1-space. The relation between
characterized fuzzy compact spaces which introduced in [7] and some our of charac-
terized F'Tg-spaces for s € {2,3%,4} are introduced by means of the characterized
fuzzy unit interval spaces, the characterized fuzzy F7T5» and the characterized F'Ty
fuzzy cubes. Finally, we showed that the characterized fuzzy compact spaces and
the characterized F'Tj 1-spaces are equivalent. Many new special classes from the
characterized fuzzy perfect topoeneous structures, characterized global fuzzy neigh-
borhood spaces, characterized fuzzy proximity spaces, characterized fuzzy compact
spaces and characterized fuzzy uniform spaces are listed in Table 1.
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Operations Character. Fuzzy Perfect | Character. Global Fuzzy | Character. Fuzzy | Character. Fuzzy | Character. Fuzzy
topogeneous Structure Neighborhood Space Proximity Space Compact Space Uniform Space
1 @1 = int Fuzzy perfect Global fuzzy Fuzzy Proximity Fuzzy Compact Fuzzy Uniform
w2 =1, x topogeneous Str.,[19] neighborhood space[18] space [10] space [10] space [10]
2 @1 = int Fuzzy perfect 0- Global fuzzy 6- Fuzzy proximity Fuzzy compact Fuzzy uniform
w2 =cl topogeneous str. neighborhood space 6-space 6-space 6-space
3 @1 = int Fuzzy perfect 0- Global fuzzy §- Fuzzy proximity Fuzzy compact Fuzzy uniform
@2 = intocl topogeneous str. neighborhood space d-space d-space d-space
4 @1 =cloint Fuzzy perfect semi Global fuzzy Semi Fuzzy proximity Fuzzy compact Fuzzy uniform
w2 =1;x topogeneous str. neighborhood space semi space semi space semi space
5 @1 =cloint Fuzzy perfect 6- semi Global fuzzy 0- semi Fuzzy proximity Fuzzy compact Fuzzy uniform
w2 =cl topogeneous str. neighborhood space 6- semi space 6- semi space 6- semi space
6 @1 =cloint Fuzzy perfect d-semi Global fuzzy d-semi Fuzzy proximity Fuzzy compact Fuzzy uniform
@2 = int ocl topogeneous str. neighborhood space Jd-semi space Jd-semi space Jd-semi space
7 @1 =intocl Fuzzy perfect pre- Global fuzzy pre- Fuzzy proximity Fuzzy compact Fuzzy uniform
p2 =1, x topogeneous str. neighborhood space pre-space pre-space pre-space
8 @1 =cloint Fuzzy perfect semi Global fuzzy Semi Fuzzy proximity Fuzzy compact Fuzzy uniform
a2 = S.cl f-topogeneous str. 6-neighborhood space semi @-space semi @-space semi @-space
9 @1 =cloint Fuzzy perfect semi Global fuzzy Semi Fuzzy proximity Fuzzy compact Fuzzy uniform
@2 = S.int o S.cl d-topogeneous str. Jd-neighborhood space semi d-space semi d-space semi d-space
10| o1 =clointocl Fuzzy perfect (- Global fuzzy B- Fuzzy proximity Fuzzy compact Fuzzy uniform
w2 =1, x B-topogeneous str. neighborhood space B-space B-space [B-space
11| ¢1 =intocloint Fuzzy perfect - Global fuzzy - Fuzzy proximity Fuzzy compact Fuzzy uniform
w2 =1;x topogeneous str. neighborhood space A-space A-space A- space
12| ¢1 = S.cloint Fuzzy perfect feebly Global fuzzy feebly Fuzzy proximity Fuzzy compact Fuzzy uniform
w2 =1, x topogeneous str. neighborhood space feebly space feebly space feebly space
Table 1: Some special classes of character. fuzzy perfect topog. struc., character. global fuzzy

neighbor. spaces, character.

and character. fuzzy uniform spaces.
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fuzzy proximity space, character.

fuzzy compact spaces
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