Fuzzy A-ideals in MV-modules

Fereshteh Forouzesh

Received 19 December 2014; Revised 01 March 2015; Accepted 20 March 2015

Abstract. In the present paper, we introduce the notion of fuzzy A-ideals of MV-modules over PMV-algebras and several properties of fuzzy A-ideals are given. Using this concept, a prime fuzzy A-ideal is defined. Using a level set of a fuzzy set in MV-modules, we give a characterization of prime fuzzy A-ideals in MV-modules. Finally, we prove that the homomorphic image and preimage of prime fuzzy A-ideals are also prime fuzzy A-ideals in MV-modules.

2010 AMS Classification: 03B50, 06D35, 08A72.

Keywords: A-ideal, fuzzy A-ideal, prime fuzzy A-ideal.

Corresponding Author: Fereshteh Forouzesh (frouzesh@bam.ac.ir, ffrouzesh@yahoo.com)

1. Introduction

The study of MV-algebras was initiated by C. Chang (1958) [1]. MV-algebras are algebraic counterpart of the Łukasiewicz infinite many valued propositional logic.

Since then, product MV-algebras, (or PMV-algebras, for short) were introduced by Di Nola and Dvurecenskij (1998). In fact PMV-algebras are MV-algebras with product which are defined on the whole MV-algebras and are associative and left/right distributive with respect to a partial addition.

In 2003, Di Nola. et. al. [4] introduced MV-modules over PMV-algebras. These structures naturally correspond to lu-modules over lu-ring. They proved the equivalence between the category of lu-modules over (R, v) and the category of MV-modules over $\Gamma(R, v)$. They also proved the natural equivalence between MV-modules and truncated modules [4].

The concept of fuzzy set was formulated by Zadeh [13]. Since then, the theory of fuzzy sets developed by Zadeh and others has evoked tremendous interest among researchers working in different branches of mathematics. Since then fuzzy ideals and fuzzy filters theory have been applied to other algebraic structures (see [5, 9, 14, 12]). In 1994, Hoo [7] defined fuzzy ideals of BCI, BCK, and MV-algebras and investigated some properties.
In [6], we introduced and studied the notion of prime A-ideals in MV-modules. In this paper, we study the notion of fuzzy A-ideals in MV-modules over PMV-algebras. We give other characterizations of fuzzy A-ideals of MV-modules. We introduce the notion of a fuzzy A-ideal generated by a fuzzy set. We define and investigate the notion of prime fuzzy A-ideals of an MV-module. Also, we establish some properties for a prime fuzzy A-ideal in MV-modules.

2. Preliminaries

We recollect some definitions and results which will be used in the following:

Definition 2.1 ([1]). An MV-algebra is a structure $(A, \oplus, *, 0)$, where \oplus is a binary operation, $*$ is a unary operation, and 0 is a constant such that the following axioms are satisfied for any $x, y \in A$:

$($MV1$)$ $(A, \oplus, 0)$ is an abelian monoid,

$($MV2$)$ $(x^*)^* = x$,

$($MV3$)$ $0^* \oplus x = 0^*$,

$($MV4$)$ $(a^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

Note that $1 = 0^*$ and the auxiliary operation \odot as follow:

$$x \odot y = (x^* \oplus y^*)^*.$$

We recall that the natural order determines a bounded distributive lattice structure such that

$$x \lor y = x \oplus (x^* \odot y) = y \oplus (x \odot y^*) \quad \text{and} \quad x \land y = x \odot (x^* \oplus y) = y \odot (y^* \oplus x).$$

Lemma 2.2 ([2]). In each MV-algebra, the following relations hold for all $x, y, z \in A$:

1. If $x \leq y$, then $x \odot z \leq y \odot z$ and $x \odot z \leq y \odot z$,
2. If $x \leq y$ and only if $x^* \oplus y = 1$ if and only if $x \odot y^* = 0$ if and only if there exists $u \in A$ such that $x \oplus u = y$,
3. If $x \leq y$ and $x \oplus y \leq x, y$,
4. If $x \leq y$ and $z \leq t$, then $x \odot z \leq y \odot t$,
5. $(x \odot y^*) \land (y \odot x^*) = 0$,
6. If $x \leq y$, then $y^* \leq x$.

Definition 2.3 ([1, 11]). An ideal of an MV-algebra A is a nonempty subset I of A satisfying the following conditions:

$I(1)$ If $x \in I$, $y \in A$ and $y \leq x$ then $y \in I$,

$I(2)$ If $x, y \in I$, then $x \odot y \in I$.

We denote by $Id(A)$ the set of ideals of an MV-algebra A.

Definition 2.4 ([3]). A product MV-algebra (or PMV-algebra, for short) is a structure $(A, \oplus, *, \cdot, 0)$, where $(A, \oplus, *, 0)$ is an MV-algebra and \cdot is a binary associative operation on A such that the following property is satisfied:

if $x + y$ is defined, then $x \cdot z + y \cdot z$ and $z \cdot x + z \cdot y$ are defined and

$$(x + y) \cdot z = x \cdot z + y \cdot z, \quad z \cdot (x + y) = z \cdot x + z \cdot y,$$

where $+$ is a partial addition on A, i.e., $x + y$ is defined if and only if $x \leq y^*$ and in this case we put $x + y := x \oplus y$.

2
If A is a PMV-algebra, then a unity for the product is an element $e \in A$ such that $e \cdot x = x \cdot e = x$ for any $x \in A$. A PMV-algebra that has unity for the product will be called unital.

Definition 2.5 ([4]). Let $(A, \oplus, *, \cdot, 0)$ be a PMV-algebra and $(M, \oplus, *, 0)$ an MV-algebra. We say that M is a (left) MV-module over A (or, simply, A-module) if there is an external operation:

$$\varphi : A \times M \rightarrow M, \quad \varphi(\alpha, x) = \alpha x,$$

such that the following properties hold for any $x, y \in M$ and $\alpha, \beta \in A$:

1. If $x + y$ is defined in M, then $\alpha x + \alpha y$ is defined and
 $$\alpha(x + y) = \alpha x + \alpha y,$$

2. If $\alpha + \beta$ is defined in A then $\alpha x + \beta x$ is defined in M and
 $$(\alpha + \beta)x = \alpha x + \beta x,$$

3. $(\alpha \cdot \beta)x = \alpha(\beta x)$.

We say that M is a unital MV-module if A is a unital PMV-algebra and M is an MV-module over A such that $1_A x = x$ for any $x \in M$.

Definition 2.6 ([4]). Let M and N be two MV-modules over a PMV-algebra A. An A-module homomorphism is an MV-algebra homomorphism $h : M \rightarrow N$ such that $h(\alpha x) = \alpha h(x)$, for any $\alpha \in A$ and $x \in M$.

Definition 2.7 ([4]). Let M be an A-module. Then ideal $I \subseteq M$ is called an A-ideal if it satisfies the following condition:

if $x \in I$ and $\alpha \in A$, then $\alpha x \in I$.

Lemma 2.8 ([4]). If M is an A-module, then the following properties hold for any $x, y \in M$ and $\alpha, \beta \in A$,

(a) $\alpha x^* \leq (\alpha x)^*$,

(b) $(\alpha x) \odot (\alpha y)^* \leq \alpha(x \odot y^*)$,

(c) $\alpha(x \odot y) \leq \alpha x \odot \alpha y$,

(d) If $x \leq y$, then $\alpha x \leq \alpha y$.

Definition 2.9 ([6]). Let M be an A-module. Then an A-ideal P of an MV-module M is a prime A-ideal, if (i) $P \neq M$ (ii) for every $\alpha \in A$, $x \in M$ if $\alpha x \in P$, then $x \in P$ or $\alpha \in (P : M)$, where $(P : M) = \{r \in A : r M \subseteq P\}$ and $r M = \{r m \mid m \in M\}$.

Definition 2.10 ([13]). A fuzzy set in A is a mapping $\mu : A \rightarrow [0, 1]$. Let μ be a fuzzy set in A, $t \in [0, 1]$, the set $\mu_t = \{x \in A : \mu(x) \geq t\}$ is called a level subset of μ. For any fuzzy sets μ, ν in A, we define

$$\mu \preceq \nu \text{ if and only if } \mu(x) \leq \nu(x) \text{ for all } x \in A.$$

Definition 2.11 ([13]). Let X, Y be two sets. μ is a fuzzy subset of X, μ' is a fuzzy subset of Y and $f : X \rightarrow Y$ is a homomorphism. The image of μ under f denoted by $f(\mu)$ is a fuzzy set of Y defined by:
For all \(y \in Y \), \(f(\mu)(y) = \sup_{x \in f^{-1}(y)} \mu(x) \), if \(f^{-1}(y) \neq \emptyset \) and \(f(\mu)(y) = 0 \) if \(f^{-1}(y) = \emptyset \).

The preimage of \(\mu' \) under \(f \) denoted by \(f^{-1}(\mu') \) is a fuzzy set of \(X \) defined by: For all \(x \in X \), \(f^{-1}(\mu')(x) = \mu'(f(x)) \).

Definition 2.12 ([13]). A fuzzy subset \(\mu \) of \(X \) has sup-property if for any nonempty subset \(Y \) of \(X \), there exists \(y_0 \in Y \) such that \(\mu(y_0) = \sup_{y \in Y} \mu(y) \).

Theorem 2.13 ([7]). Let \(\mu \) be a fuzzy ideal in \(A \). For any \(x, y, z \in A \), the following hold:

(a) \(\mu(x \oplus y) = \mu(x) \land \mu(y) \),
(b) \(\mu(x \lor y) = \mu(x) \land \mu(y) \),
(c) \(\mu(x \land y) \geq \mu(x) \lor \mu(y) \).

3. **FUZZY \(A \)-IDEALS OF \(MV \)-MODULES**

In this section, we investigate fuzzy \(A \)-ideals of an \(MV \)-module \(M \) over \(PMV \)-algebra \(A \).

In sequel section, \(M \) is an \(MV \)-module over \(PMV \)-algebra \(A \) and \(A \) is a \(PMV \)-algebra.

Definition 3.1. A fuzzy set \(\mu \) in an \(MV \)-module \(M \) is called a fuzzy \(A \)-ideal of \(M \) if it satisfies for all \(x, y \in M \) and \(\alpha \in A \):

(d1) \(\mu(0) \geq \mu(x) \),
(d2) \(\mu(y) \geq \mu(x) \lor \mu(y \circ x^*) \),
(d3) \(\mu(\alpha x) \geq \mu(x) \).

The following example, shows that fuzzy \(A \)-ideals in \(MV \)-modules exist and a fuzzy set may not be a fuzzy \(A \)-ideal in \(MV \)-module.

Example 3.2. Let \(A = \{0, 1, 2\} \) be a linearly ordered set (chain). \(A \) is an \(MV \)-algebra with operations \(\land = \min \), \(x \lor y = \min\{2, x+y\} \) and \(x \circ y = \max\{0, x+y-2\} \), for every \(x, y \in A \) [8]. Also, \(A \) is \(PMV \)-algebra with the following operations:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

and \(A \) becomes an \(A \)-module over \(A \) with the external operation defined by \(\alpha x = \alpha \cdot x \), for any \(\alpha \in A \) and \(x \in A \). (i) Define a fuzzy set \(\mu \) in \(A \) by \(\mu(0) = 0.7 \), \(\mu(1) = 0.4 \) and \(\mu(2) = 0.4 \). It easy checked that \(\mu \) is a fuzzy \(A \)-ideal of \(A \).

(ii) We define a fuzzy set \(\mu \) in \(A \) as follows: \(\mu(0) = 0.7 \), \(\mu(1) = 0.4 \) and \(\mu(2) = 0.6 \). Since \(\mu(22) = \mu(2 \cdot 2) = \mu(1) = 0.4 \neq \mu(2) = 0.6 \), \(\mu \) is not a fuzzy \(A \)-ideal of \(A \).

Example 3.3. Let \((R, v)\) be an \(lu \)-ring and \(G \) be an \(lu \)-group such that \(R \times G \) is the lexicographic product. Then \(A = \Gamma(R, v) = [0, v]_R \) is a \(PMV \)-algebra. Also, \(M = \Gamma(R \times G, (v, 0)) = [(0, 0), (v, 0)]_{R \times G} \) is an \(MV \)-module over \(A \) with operation \(\circ : [0, v]_R \times M \to M \) such that \(r \circ (q, x) := (r \cdot q, x) \), for all \(r, q \in [0, v]_R, x \in M \).

Define a fuzzy set \(\mu \) in \(M \) by \(\mu((0, 0)) = \alpha_1 \) and \(\mu((x, y)) = \alpha_2 \), for all \((x, y) \neq (0, 0) \) such that \(0 \leq \alpha_2 < \alpha_1 \leq 1 \). It is clear that \(\mu \) is a fuzzy \(A \)-ideal.
Example 3.4. Let \(M_2(\mathbb{R}) \) be the ring of square matrices of order 2 with real elements and 0 be the matrix with all element 0. If we define the order relation on components \(A = (a_{ij})_{i,j=1,2} \geq 0 \) if \(a_{ij} \geq 0 \) for any \(i,j \), such that \(v = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \), then \(A = \Gamma(M_2(\mathbb{R}),v) \) is a \(P \text{MV} \)-algebra. Let \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \) be the direct product with the order relation defined on components. If \(M = \Gamma(\mathbb{R}^2,u) \) is an \(\text{MV} \)-algebra, where \(u = (1,1) \), then \(M \) is an \(A \)-module \([4]\), where the external operation is the usual matrix multiplication

\[
(A, (x, y)) \mapsto A \begin{pmatrix} x \\ y \end{pmatrix}.
\]

Define a fuzzy set \(\mu \) in \(M \) by

\[
\mu((x, y)) = \begin{cases}
1 & \text{if } (x, y) = (0, 0) \\
\alpha_1 & \text{if } (0, 0) \prec (x, y) \prec (1/2, 1/2) \\
\alpha_2 & \text{if } (1/2, 1/2) \leq (x, y) \prec (1, 1) \\
0 & \text{if } (x, y) = (1, 1)
\end{cases}
\]

such that \(0 \prec \alpha_1 \prec \alpha_2 \prec 1 \).

\[
\mu\left(\begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}\right) = \mu\left(\begin{pmatrix} 1/4 \\ 1/4 \end{pmatrix}\right) = \alpha_1 \neq \mu((1/2, 1/2)) = \alpha_2,
\]

hence \(\mu \) is not fuzzy \(A \)-ideal of \(M \).

It is not difficult to show the following:

Remark 3.5. A fuzzy set \(\mu \) is a fuzzy \(A \)-ideal, if it satisfies for all \(x, y \in M \) and \(\alpha \in A \):

(i) \(\mu(x \oplus y) \geq \mu(x) \land \mu(y) \),

(ii) if \(y \leq x \), then \(\mu(y) \geq \mu(x) \),

(iii) \(\mu(\alpha x) \geq \mu(x) \).

Theorem 3.6. If \(\mu \) is a fuzzy \(A \)-ideal of \(M \), then for all \(x, y, z \in M \), \(\alpha \in A \),

\[
z \odot x^* \odot (\alpha y)^* = 0 \implies \mu(z) \geq \mu(x) \land \mu(\alpha y).
\]

Proof. Since \(z \odot x^* \odot (\alpha y)^* = 0 \), by Lemma 2.2 (2), \(z \leq x \odot \alpha y \), it follows from Theorem 2.13 (a) that \(\mu(z) \geq \mu(x \odot \alpha y) = \mu(x) \land \mu(\alpha y) \).

In the following lemma, we show that if \(M \) is a unital \(A \)-module, then the converse of the above theorem is true.

Lemma 3.7. Let \(M \) be a unital \(A \)-module. If for all \(x, y, z \in M \) and \(\alpha \in A \),

\[
z \odot x^* \odot (\alpha y)^* = 0, \text{ implies } \mu(z) \geq \mu(x) \land \mu(\alpha y),
\]

then \(\mu \) is a fuzzy \(A \)-ideal of \(M \).

Proof. Since \(0 \odot x^* \odot (\alpha x)^* = 0 \), for all \(x \in M \), \(\mu(0) \geq \mu(x) \land \mu(\alpha x) \), also, since \(\alpha x \leq 1x = x, \mu(\alpha x) \geq \mu(x) \), hence \(\mu(0) \geq \mu(x) \). Since \(\alpha x \leq x \), by Lemma 2.2 (1) and (6), we have \(\alpha x \odot x^* \odot 0^* \leq \alpha x \odot (\alpha x)^* \odot 0^* = 0 \). Hence \(\alpha x \odot x^* \odot 0^* = 0 \). This results by hypothesis, \(\mu(\alpha x) \geq \mu(x) \land \mu(0) = \mu(x) \). Thus \(\mu(\alpha x) \geq \mu(x) \).

Also, let \(y \leq x \). Hence by Lemma 2.2 (2), we have \(y \odot x^* \odot 0^* = 0 \). It follows that \(\mu(y) \geq \mu(x) \).

Finally, since \(0 = (x \oplus y) \odot (x \oplus y)^* = (x \oplus y) \odot x^* \odot (1y)^* = 0 \), we conclude that \(\mu(x \oplus y) \geq \mu(x) \land \mu(y) \). Therefore \(\mu \) is a fuzzy \(A \)-ideal of \(M \).

It is not difficult to show the following:
Corollary 3.8. Let μ be a fuzzy set in unital A-module M. μ is a fuzzy A-ideal if and only if for all $x, y, z \in M$, $z \leq x \oplus \alpha y$ implies $\mu(z) \geq \mu(x) \wedge \mu(\alpha y)$.

Now, we describe the transfer principle [10] for fuzzy ideals in terms of level subsets:

Proposition 3.9. Let μ be a fuzzy set in M. Then μ is a fuzzy A-ideal of M if and only if its level subset μ_t is empty or is an A-ideal of M, for all $t \in [0, 1]$.

Proof. Let μ be a fuzzy A-ideal of M. Suppose that $t \in [0, 1]$ and $x \in \mu_t$, $\mu(x) \geq t$, since μ is a fuzzy A-ideal $\mu(0) \geq \mu(x)$, therefore $0 \in \mu_t$. Also, let $x \in \mu_t$. We only show that for all $\alpha \in A$, $\alpha x \in \mu_t$.

Since $\mu(\alpha x) \geq \mu(x) \geq t$, thus $\mu(\alpha x) \geq t$. Therefore $\alpha x \in \mu_t$. This results μ_t is an A-ideal of M.

Conversely, let μ_t be an A-ideal of M. We only show that $\mu(\alpha x) \geq \mu(x)$. If not, then there exist $a \in A$ and $y \in M$ such that $\mu(ay) < \mu(y)$. Setting $t_0 = 1/2(\mu(ay) + \mu(y))$. We have $\mu(ay) < t_0 < \mu(y)$. We conclude that $y \in \mu_{t_0}$ while $ay \notin \mu_{t_0}$, which is a contradiction. Thus μ is a fuzzy A-ideal of M. \square

Corollary 3.10. J is an A-ideal of M if and only if χ_J is a fuzzy A-ideal of M.

Corollary 3.11. If μ is a fuzzy A-ideal of M, then $I = \{x \in M|\mu(x) = \mu(0)\}$ is an A-ideal of M.

The following example shows that the converse of the above corollary does not hold.

Example 3.12. Let A be an MV-module from Example 3.2. Define a fuzzy set μ in A by $\mu(x) = 1/3$, if $x = 0$ and $\mu(x) = 3/4$, if $x \neq 0$. Then $I = \{x \in A|\mu(x) = \mu(0)\} = \{0\}$ is an A-ideal of A but μ is not a fuzzy A-ideal of A.

Note. The meet of two fuzzy ideals μ_1 and μ_2 of M is defined as follows:

$$\mu_1 \wedge \mu_2 = \mu_1 \cap \mu_2.$$

Easily, we can show that the following lemma holds.

Lemma 3.13. Let μ_i, for all $i = 1, 2$ be fuzzy A-ideals of M. Then $\mu_1 \wedge \mu_2$ is a fuzzy A-ideal of M.

In general, it is not difficult to see the following:

Corollary 3.14. Let μ_i, for all $i \in I$ be fuzzy A-ideals of M. Then $\bigwedge_{i \in I} \mu_i$ is a fuzzy A-ideal of M.

Now, we introduce the notion of a fuzzy A-ideal of M generated by a fuzzy set in M.

Definition 3.15. Let f be a fuzzy set in M. A fuzzy A-ideal g in M is said to be generated by f, if $f \leq g$ and for any fuzzy A-ideal h in M, $f \leq h$ implies $g \leq h$. The fuzzy A-ideal generated by f will be denoted by (f).
Theorem 3.16. If \(f \) is a fuzzy set, then
\[
(f)(x) = \bigvee \{f(a_1) \land \cdots \land f(a_n) \land f(\alpha_1 b_1) \land \cdots \land f(\alpha_m b_m) \mid a_1, \cdots, a_n, b_1, \cdots, b_n \in M, \alpha_1, \cdots, \alpha_n \in A \text{ and } x \leq a_1 + \cdots + a_n + \alpha_1 b_1 + \cdots + \alpha_m b_m \}
\]

Proof. Let
\[
\mu(x) = \bigvee \{f(a_1) \land \cdots \land f(a_n) \land f(\alpha_1 b_1) \land \cdots \land f(\alpha_m b_m) \mid a_1, \cdots, a_n, b_1, \cdots, b_n \in M, \alpha_1, \cdots, \alpha_n \in A \text{ and } x \leq a_1 + \cdots + a_n + \alpha_1 b_1 + \cdots + \alpha_m b_m \}
\]

(1) We show that \(\mu \) is a fuzzy \(A \)-ideal. Obviously, \(\mu(0) \geq \mu(x) \), for all \(x \in M \).

(2) Let \(x, y \in M \). If there exist \(s_1, \cdots, s_n, t_1, \cdots, t_r, k_1, \cdots, k_l, p_1, \cdots, p_m \in M \), \(\alpha_1, \cdots, \alpha_l, b_1, \cdots, b_r \in A \) such that \(x \leq s_1 + \cdots + s_n + \alpha_1 k_1 + \cdots + \alpha_l k_l \) and \(x^* \lor y \leq t_1 + \cdots + t_r + p_1 b_1 + \cdots + p_m b_m \). Then \(y \leq x \lor y = x \lor (x^* \lor y) \leq s_1 + \cdots + s_n + \alpha_1 k_1 + \cdots + \alpha_l k_l + t_1 + \cdots + t_r + p_1 b_1 + \cdots + p_m b_m \). By Remark 3.5 (ii) and Theorem 2.13 (a), \(\mu(y) \geq f(s_1) \land \cdots \land f(s_n) \land f(t_1) \land \cdots \land f(t_r) \land f(\alpha_1 k_1) \land \cdots \land f(\alpha_l k_l) \land f(p_1 b_1) \land \cdots \land f(p_m b_m) \).

Denote by \(\Gamma_1 = \{f(a_1) \land \cdots \land f(a_k) \land f(\alpha_1 b_1) \land \cdots \land f(\alpha_m b_m) \mid x \leq a_1 + \cdots + a_k + \alpha_1 b_1 + \cdots + \alpha_m b_m \} \)

\(\Gamma_2 = \{f(d_1) \land \cdots \land f(d_j) \land f(\beta_1 c_1) \land \cdots \land f(\beta_l c_l) \mid x^* \lor y \leq d_1 + \cdots + d_j + \beta_1 c_1 + \cdots + \beta_l c_l \} \), for some \(\beta_1, \cdots, \beta_l \in A \), \(d_1, \cdots, d_j, c_1, \cdots, c_l \in M \).

\(\mu(x) \land \mu(x^* \lor y) = \bigvee \Gamma_1 \land \bigvee \Gamma_2 = \bigvee \{f(d_1) \land \cdots \land f(d_j) \land f(\beta_1 c_1) \land \cdots \land f(\beta_l c_l) \mid x \leq a_1 + \cdots + a_k + \alpha_1 b_1 + \cdots + \alpha_m b_m, x^* \lor y \leq d_1 + \cdots + d_j + \beta_1 c_1 + \cdots + \beta_l c_l \} \). Hence \(\mu(x) \land \mu(x^* \lor y) \leq \mu(y) \).

Now, we show that \(\mu(\alpha x) \geq \mu(x) \).

Let \(x \in A \). If there exist \(q_1, \cdots, q_n, r_1, \cdots, r_m \in M, \gamma_1, \cdots, \gamma_m \in A \) such that \(x \leq q_1 + \cdots + q_n + r_1 \gamma_1 + \cdots + r_m \gamma_m \). Hence by Lemma 2.8 (d), (c), we have \(\alpha x \leq \alpha(q_1 + \cdots + q_n + r_1 \gamma_1 + \cdots + r_m \gamma_m) \leq \alpha q_1 + \cdots + \alpha q_n + r_1 \gamma_1 + \cdots + r_m \gamma_m \), hence \(\mu(\alpha x) \geq f(z_1) \land \cdots \land f(z_n) \land f(w_1 \gamma_1) \land f(w_2 \gamma_2) \land \cdots \land f(w_m \gamma_m) \), where \(\alpha q_i = z_i \in M \) and \(\alpha \cdot \gamma_i = w_i \in A \).

Denote by \(\Gamma = \{f(a_1) \land \cdots \land f(a_k) \land f(\alpha_1 b_1) \land \cdots \land f(\alpha_m b_m) \mid x \leq a_1 + \cdots + a_k + \alpha_1 b_1 + \cdots + \alpha_m b_m \} \).

We have \(\mu(x) = \bigvee \Gamma = \bigvee \{f(a_1) \land \cdots \land f(a_k) \land f(\alpha_1 b_1) \land \cdots \land f(\alpha_m b_m) \} \). Hence \(\mu(x) \geq \mu(x) \). It follows that \(\mu \) is a fuzzy \(A \)-ideal of \(M \).

Now, note that \(f \leq \mu \). Since \(x \leq x \lor x \), we get \(\mu(x) \geq f(x) \wedge f(x) = f(x) \), for all \(x \in A \). Let \(\nu \) be a fuzzy \(A \)-ideal such that \(f \leq \nu \). Then for any \(x \in M \), \(\mu(x) = \bigvee \{f(a_1) \land \cdots \land f(a_n) \land f(b_1 \alpha_1) \land \cdots \land f(b_m \alpha_m) \mid x \leq a_1 + \cdots + a_n + \alpha_1 b_1 + \cdots + \alpha_m b_m \} \leq \bigvee \{\nu(a_1) \land \cdots \land \nu(a_n) \land \nu(\alpha_1 b_1) \land \cdots \land \nu(\alpha_m b_m) \} \leq \nu(x) \), because by Remark 3.5 (ii) and Theorem 2.13 (a). Hence \(\mu \leq \nu \). Therefore \(\mu \) is the fuzzy \(A \)-ideal generated by \(f \), that is \(\mu = (f) \).

Theorem 3.17. Let \(f \) and \(g \) be fuzzy sets in \(M \). The following properties hold:
(a) if \(f \) is a fuzzy \(A \)-ideal of \(M \), then \((f) = f \),
(b) if \(f \leq g \), then \((f) \leq (g) \),
(c) \((0) = 0_A \),
(d) \((1_M) = 1_M \).
Example 3.18. Let A be the A-module in Example 3.2. Define a fuzzy set f in A by $f(2) = 0.5$, $f(1) = 0.5$ and $f(0) = 0.8$. We can check that the fuzzy A-ideal (f) generated by f is $(f)(0) = 0.8$, $(f)(1) = 0.5$ and $(f)(2) = 0.5$.

4. Prime fuzzy A-ideals in MV-modules

Definition 4.1. μ is called prime fuzzy A-ideal of an MV-module M over PMV-algebra A if, $\mu(rx) > \mu(x)$, $r \in A$, $x \in M$ implies $\mu(rx) \leq \mu(rm)$, for all $m \in M$.

The following example shows that a fuzzy A-ideal may not be a prime fuzzy A-ideal of M.

Example 4.2. Let $\Omega = \{1, 2\}$ and $A = \mathcal{P}(\Omega)$. Which is a PMV-algebra with $\oplus = \cup$ and $\circ = \cap$. If we consider $\mathcal{M} = \mathcal{P}(\Omega) = \{\{1\}, \{2\}, \{1, 2\}, \emptyset\}$, then \mathcal{M} becomes an MV-module over A with the external operation defined by $AX := \mathcal{M} \cap X$ for any $A \in \mathcal{A}$ and $X \in \mathcal{M}$. Define a fuzzy set μ with $\mu(\emptyset) = 1$ and $\mu(\{1\}) = \mu(\{2\}) = \mu(\{1, 2\}) = 0.5$. Obviously, μ is a fuzzy A-ideal of \mathcal{M}. Consider $r = \{2\}$ and $x = \{1\}$, we have $\mu(\{2\}\{1\}) = \mu(\emptyset) = 1 > \mu(\{1\})$, while $1 = \mu(\emptyset) = \mu(\{2\}\{1\}) \neq \mu(\{2\}\{1, 2\}) = \mu(\{2\}) = 0.5$. Hence μ is not a prime fuzzy A-ideal of \mathcal{M}.

Example 4.3. Let $l_3 = \{0, 1/2, 1\}$ and $M = l_3 \times l_3$ be an $A = \Gamma(\mathbb{Z}, 1)$-module with operations $(x, y) \odot (z, t) = [(x, y) - (1, 1) + (z, t)] \vee (0, 0)$, $(x, y)^* = (1, 1) - (x, y)$ and $\alpha(x, y) = (\alpha x, \alpha y)$, for any $\alpha \in A$ ($\alpha = 0$ or $\alpha = 1$), $(x, y) \in M$.

Define a fuzzy set μ by $\mu((0, 0)) = 0.8$ and $\mu((x, y)) = 0.3$, if $(x, y) \neq (0, 0)$. Consider $(x, y) \neq (0, 0)$ and $r = 0$, we have $0.8 = \mu(0(x, y)) = \mu((0, 0)) > \mu((x, y)) = 0.3$ implies $\mu(0(x, y)) \leq \mu(0(z, t))$, for all $(z, t) \in l_3 \times l_3$.

Hence μ is a prime fuzzy A-ideal of M.

Theorem 4.4. Let $f : X \to Y$ be onto MV-module homomorphism. Then the preimage of a prime fuzzy A-ideal μ under f is also a prime fuzzy A-ideal of X.

Proof. Suppose that μ is a prime fuzzy A ideal of Y.

(i) First, we show that $f^{-1}(\mu)$ is a fuzzy A-ideal on X. Since $0 = f(0) \leq f(x)$ and $f^{-1}(\mu)(x) = \mu(f(x)) \leq \mu(f(0)) = f^{-1}(\mu)(0)$. Also, we have $f^{-1}(\mu)(rx) = \mu(f(rx)) = \mu(f(rx)) \geq \mu(f(x)) = f^{-1}(\mu)(x)$.

Now, suppose that $f^{-1}(\mu)(rx) > f^{-1}(\mu)(x)$, then $\mu(rf(x)) = \mu(f(rx)) > \mu(f(x))$. Hence since μ is a prime fuzzy A-ideal of Y, $\mu(rf(x)) \leq \mu(rm)$, for all $m \in M$. Since f is onto, for all $m \in Y$, there exists $t \in X$ such that $f(t) = m$. This results $\mu(f(rx)) = \mu(rf(x)) \leq \mu(rf(t)) = \mu(f(rt))$. Thus $f^{-1}(\mu)(rx) \leq f^{-1}(\mu)(rt)$. Therefore $f^{-1}(\mu)$ is a prime fuzzy A-ideal of X.

Proposition 4.5. Let $f : X \to Y$ be an onto MV-module homomorphism. The image $f(\mu)$ of a prime fuzzy A-ideal μ with a sup-property is also a prime fuzzy A-ideal of Y.

Proof. Suppose that for all $y \in Y$, $f(\mu(ry)) > f(\mu(y))$. We show that $f(\mu)(ry) \leq f(\mu)(rs)$, for all $s \in Y$.

Let $y \in Y$ and $x \in f^{-1}(y)$. Hence $f(x) = y$, so $rf(x) = ry$, this results $f(rx) = ry$. Hence $rx \in f^{-1}(ry)$. By hypothesis, $\mu(rx) = sup_{t \in f^{-1}(ry)} \mu(t)$. Also, we have
A non-empty subset

Let \((A, \mu) \) be a fuzzy subset of \(M \) in an \(M \)-module. Assume that \(x = 0 \) is a prime fuzzy \(A \)-ideal of \(M \).

If \(x = 0 \), then \(\mu(x) = 0 \), hence \(x \in M \). If not, then \(\mu(x) > 0 \), and we obtain \(\mu(x) = 1 \).

Conversely, assume that \(x = 0 \) is a prime fuzzy \(A \)-ideal of \(M \). We prove that \(x \) is a prime fuzzy \(A \)-ideal of \(M \).

If \(x \in M \), then \(\mu(x) = 0 \), hence \(x \in M \). If not, then \(\mu(x) > 0 \), and we obtain \(\mu(x) = 1 \).

By hypothesis, we get \(1 = \mu(x) \leq \mu(rM) \), for all \(m \in M \). Thus \(\mu(rM) = 1 \). Therefore \(1 = \mu(x) = \mu(rM) \).

Now, we describe the transfer principle [10] for prime fuzzy \(A \)-ideals in terms of level subsets:

Theorem 4.6. A non-empty subset \(I \) of \(M \) is a prime \(A \)-ideal if and only if the characteristic function \(\chi_I \) is a prime fuzzy \(A \)-ideal of \(M \).

Proof. Assume that \(I \) is a prime \(A \)-ideal of \(M \). We will prove that \(\chi_I \) is a prime fuzzy \(A \)-ideal of \(M \).

Let \(x \in I \), \(r \in A \) and \(\chi_I(rx) > \chi_I(x) \). We show that

\[
\chi_I(rx) \leq \chi_I(rm), \quad \text{for all } m \in M
\]

If \(x \notin I \), then \(rx \notin I \) and we have \(1 = \chi_I(rx) \geq \chi_I(x) = 1 \).

Hence \(\mu(x) = 0 \), hence \(x \in M \). If not, then \(\mu(x) > 0 \), and we obtain \(\mu(x) = 1 \).

Conversely, assume that \(\chi_I \) is a prime fuzzy \(A \)-ideal of \(M \). We prove that \(I \) is a prime \(A \)-ideal of \(M \). Let \(rx \in I \) but \(x \notin I \), for \(x \in M \), \(r \in A \). Hence \(1 = \chi_I(rx) > \chi_I(x) = 0 \). By hypothesis, we get \(1 = \chi_I(rx) \leq \chi_I(rm) \), for all \(m \in M \). Hence \(\chi_I(rm) = 1 \), so \(rm \in I \), for all \(m \in M \). Thus \(rM \subseteq I \). This results \(I \) is a prime \(A \)-ideal of \(M \).

Now, we describe the transfer principle [10] for prime fuzzy \(A \)-ideals in terms of level subsets:

Theorem 4.7. A fuzzy subset \(\mu \) of an \(M \)-module \(M \) is a prime fuzzy \(A \)-ideal of \(M \), if and only if \(\mu(t) = \{ x \in A : \mu(x) \geq t \} \) is either empty or a prime \(A \)-ideal for every \(t \in [0, 1] \).

Proof. (i) Assume that \(\mu \) is a prime fuzzy \(A \)-ideal of \(M \). Let \(rx \in \mu(t), x \notin \mu(t), \) for \(r \in A \), \(x \in M \). We show that \(rM \subseteq \mu(t) \).

Since \(rx \in \mu(t) \) and \(x \notin \mu(t) \), \(\mu(rx) > t \) and \(\mu(x) < t \). By hypothesis, we conclude that \(t \leq \mu(rx) \leq \mu(rm) \), for all \(m \in M \). Thus \(t \leq \mu(rm) \), for all \(m \in M \). This results \(rm \in \mu(t) \), for all \(m \in M \). Therefore \(rM \subseteq \mu(t) \).

Conversely, let \(\mu(t) \) be a prime \(A \)-ideal of \(M \). Suppose that \(\mu(rx) > \mu(x) \), \(r \in A \), \(x \in M \). We show that \(\mu(rx) \leq \mu(rm) \), for all \(m \in M \). If not, then \(\mu(rx) > \mu(rm) \), for some \(n \in M \). Hence \(\mu(x) \vee \mu(rn) < \mu(rx) \). So there exists \(t_0 \in [0, 1] \) such that

\[
t_0 = (\mu(x) \vee \mu(rn) + \mu(rx))/2. \quad \text{Hence } \mu(x) \vee \mu(rn) < t_0 < \mu(rx) \quad \text{It follows that} \quad rx \in \mu(t_0), \quad \text{for } r \in A, \quad x \in M. \quad \text{Since } \mu(t_0) \text{ is a prime } A \text{-ideal of } M, \quad x \notin \mu(t_0) \text{ or } rM \subseteq \mu(t_0).

Hence \(\mu(x) \geq t_0 \) or \(\mu(rx) \geq t_0 \), for all \(y \in M \), since \(\mu(x) < t_0 \) and \(\mu(rn) < t_0 \), they are contradictions, thus \(\mu \) is a prime fuzzy \(A \)-ideal of \(M \).

Corollary 4.8. Let \(\mu \) be a fuzzy \(A \)-ideal of an \(M \)-module \(M \). The level ideal \(I = \{ x \in A : \mu(x) = \mu(0) \} \) is a prime \(A \)-ideal of \(M \) if \(\mu \) is a prime fuzzy \(A \)-ideal of \(M \).

5. Conclusions

MV-algebras were introduced by C. Chang [1] in 1958 in order to provide an algebraic proof for the completeness theorem of the Łukasiewicz infinite valued propositional logic.
Since then, Di Nola and Dvurecenskij in (1998) introduced the concept of PMV-algebras. In 2003, Di Nola et. al. [4] introduced MV-modules over PMV-algebras. In this paper, we defined and studied fuzzy A-ideals and introduced the notion of a fuzzy A-ideal generated by a fuzzy set. We introduced the concept of prime fuzzy A-ideals of an MV-module. We described the transfer principle for prime fuzzy A-ideals in terms of level subsets.

Finally, we proved that the homomorphic image and preimage of prime fuzzy A-ideals are also prime fuzzy A-ideals in MV-modules.

Acknowledgements. The authors thank the referees for their valuable comments and suggestions.

References

Fereshteh Forouzesh (frouzesh@bam.ac.ir, ffrouzesh@yahoo.com)
Assistant Professor, Faculty of Mathematics and computing, Higher Education complex of Bam, Kerman, Iran.