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ABSTRACT. The main aim of this paper is to propose a new approach
for the ranking of generalized exponential trapezoidal fuzzy numbers. The
main advantage of the proposed approach is that the proposed approach
provide the correct ordering of generalized and normal trapezoidal fuzzy
numbers and also the proposed approach is very simple and easy to apply in
the real life problems. Also, with the help of several counter examples it is
proved that ranking method proposed by Chen and Chen 2009 is incorrect.
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1. INTRODUCTION

In most of cases in our life, the data obtained for decision making are only approx-
imately known. In1965, Zadeh [1] introduced the concept of fuzzy set theory to meet
those problems. In 1978, Dubois and Prade defined any of the fuzzy numbers as a
fuzzy subset of the real line [2]. Fuzzy numbers allow us to make the mathematical
model of linguistic variable or fuzzy environment. Most of the ranking procedures
proposed so far in the literature cannot discriminate fuzzy quantities and some are
counterintuitive. As fuzzy numbers are represented by possibility distributions, they
may overlap with each other, and hence it is not possible to order them. Ranking
fuzzy numbers were first proposed by Jain [3] for decision making in fuzzy situa-
tions by representing the ill-defined quantity as a fuzzy set. Since then, various
procedures to rank fuzzy quantities are proposed by various researchers. Bortolan
and Degani [4] reviewed some of these ranking methods for ranking fuzzy subsets
and fuzzy numbers. Chen [5] presented ranking fuzzy numbers with maximizing
set and minimizing set. Dubois and Prade [6] presented the mean value of a fuzzy
number. Chu and Tsao [7] proposed a method for ranking fuzzy numbers with the
area between the centroid point and original point. Deng and Liu [8] presented a
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centroid-index method for ranking fuzzy numbers. Liang et al. [9] and Wang and
Lee [10] also used the centroid concept in developing their ranking index. Chen and
Chen [11] presented a method for ranking generalized trapezoidal fuzzy numbers.
Abbasbandy and Hajjari [12] introduced a new approach for ranking of trapezoidal
fuzzy numbers based on the left and right spreads at some -levels of trapezoidal fuzzy
numbers. Chen and Chen [13] presented a method for fuzzy risk analysis based on
ranking generalized fuzzy numbers with different heights and different spreads. Also
Some of the interesting Approach Ranking Of Trapezoidal Fuzzy Number can be
found in Amit Kumar [14]. Moreover, S, Rezvani [15-24] proposed a method for
ranking in fuzzy numbers.

The main aim of this paper is to propose a new approach for the ranking of gener-
alized exponential trapezoidal fuzzy numbers. The main advantage of the proposed
approach is that the proposed approach provide the correct ordering of generalized
and normal trapezoidal fuzzy numbers and also the proposed approach is very simple
and easy to apply in the real life problems. Also, with the help of several counter
examples it is proved that ranking method proposed by Chen 2009 is incorrect.

2. PRELIMINARIES

Generally, a generalized fuzzy number A is described as any fuzzy subset of the
real line R, whose membership function p4 satisfies the following conditions,

(i) pa is a continuous mapping from R to the closed interval [0,1],
(ii) pa(z) =0,—c0 <u <cg,

(iii) pa(x) = L(z) is strictly increasing on [c, a],

(iv) pa(z) =w,a <z <b,

(v) pa(x) = R(z) is strictly decreasing on [b, d],

(Vi) pa(z) =0,d <z < 0

Where 0 < w < 1 and a, b, ¢, and d are real numbers. We call this type of generalized
fuzzy number a trapezoidal fuzzy number, and it is denoted bye A = (¢, a,b,d; w) R .

When w = 1, this type of generalized fuzzy number is called normal fuzzy num-
ber and is represented by A = (¢, a,b,d) L.

However, these fuzzy numbers always have a fix range as [c,d] . Here, we define
its general from as follows:

wef[(afw)/'\/] €T S a,
(2.1) falx) =< w a<z<b,
we_[(x_b)/ﬁ] b S €T

2
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where 0 < w < 1, a,b are real numbers, and ~, 3 are positive real numbers. we
denote this type of generalized exponential fuzzy number as A = (a,b,v,3; w)g.
Especially, when w = 1, we denote it as A = (a,b,7,8)E .

we define the representation of generalized exponential fuzzy number based on the
integral value of graded mean h-level as follow. Let the generalized exponential fuzzy
number A = (a,b,v,3)E, where 0 < w < 1, and ~, 8 are positive real numbers, a,b
are real numbers as in formula (2.1). Now, let two monotonic functions be

(2.2) L(z) = we—[(a—x)/ﬂ’ R(z) = we—l@=v)/8]

then the inverse functions of function L and R are L~! and R™! respectively. the h-
level graded mean value of generalized exponential fuzzy number A = (a,b,v, 8; w)g
can be express as

(2.3) h[L7Y(h) + R™(h)]/2

Definition 1. Let A = (a,b,7,3; w)g , be generalized exponential number, then
the graded mean integration representation of A is define by

(2.4) P(A) = (/Ow e (m;H (h)dh)//owhdh.

Theorem 1. Let A = (a,b,7,; w)g , be generalized exponential number with
0 < w < 1 and v, 3 are positive real numbers, a, b are real numbers. then the graded
mean integration representation of A is

a+b pB—v
Proof:
(2.6) L7H(h) = a —y(ln ),
(2.7) R7Y(h) = b+ B(In %).

P(A) = % /Ow hla+b4 (I ) A (n %)]dh/%uﬂ

_a+b By [Y w
= + 5 /Oh(lnh)

_a+b By (" v
- ot +T[/o hln(w)dh—/o hn(h) dh)

b _ w
Sk +L27/0 h{in(w) — In(h)] dh
a+b [B—v
=+

Remark 1. When y =08, P(A) = GTH’.
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3. ARITHMETIC OPERATIONS OF EXPONENTIAL Fuzzy NUMBERS AND RANKING
FuncTioN

Definition 2. suppose that A1 = (a1, b1,71, 51; w1)g and As = (ag,be,¥2, B2; we)E
are two generalized exponential fuzzy numbers. Let w = min{w;, ws}, according to
the essential of the second function principle, some arithmetical operations results
could be well define as follows.

(i) The addition of A; and Az is
(3.1) AL © Ay = (a1 + az, b1 +b2,71 + 72,81 + f2; W)k

where v1, Y2, a1, ag, b1, ba, 81, B2 are all real numbers, and 71,2, 81, B2 are positive.

(ii) The multiplication of A; and A is
(32) Al ® A2 = (a" b777ﬂ7 ’U))E
Where T = {ayaz, a1b2, biaz, bibs}, T = {y172,7102, G172, B152}

and a = min T = k'" element of T, and b = max T = [** element of T, then
v = k' element of Ty and 3 = I*" element of T}, where 1 <k <4,1<1<4.

(iii) —Ay = (=by, —ag, f2,72; w), then

(3.3) A1 © Ay = Ay © (—Az) = (a1 — ba, by — az, 71 + B2, f1 + Y25 0) E.
(iv) Let me RT, A= (a,b,7,3; w)g , then
(3.4) m® A = (ma,mb,my,mB; w)g
ifme R ,A=(a,b,7,8; w)g, then
(v) A%:(é,a—z,ﬁ%,%;w)g, We have
Ay 1 a by 11 f
3.6 7:A®7 =\ 5y yW)E,
(3.6) A ' (Az) (b2 az 2 72 e

where if a1b1, asba, 1,2, 81, B2 are all nonzero positive real numbers.

An efficient approach for comparing the fuzzy numbers is by the use of a rank-
ing function, ® : F(R) — R, where F(R) is a set of fuzzy numbers defined on set
of real numbers, which maps each fuzzy number into the real line, where a natural
order exists,

(1) A>B iff R(A) > R(B).

(2) A< B iff R(A) <R(B).

(3) A=B iff R(A) =R(B).

Remark 2. [15]. For all fuzzy numbers A, B, C and D, we have
4
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(1) A>B=AeC>BaC.
2)A>B=Ac C>Bo C.
B)A~B=Ae(C~Ba(C.
4)A>B,C>D=A&C>BaoD.

4. SHORTCOMINGS OF CHEN AND CHEN APPROACH [13]

In this section, on the basis of reasonable properties of fuzzy quantities [23] and
on the basis of height of fuzzy numbers, are pointed out. Let A and B be any two
fuzzy numbers. Then

A> B = Ac B> Bo B (Using Remark 2.),
That is
R(A) > R(B) = R(Ao B)>R(BoB).

In this subsection, several examples are choosen to prove that the ranking func-
tion proposed by Chen and Chen does not satisfy the reasonable property,
(4.1) A>B—-Ac B>Bo B

for the ordering of fuzzy quantities i.e., according to Chen Chen approach

A>DB, notresult A6 B>Bo B

Example 1. Let A = (0.1,0.3,0.3,0.5;1) and B = (0.2,0.3,0.3,0.4;1) be two
generalized trapezoidal fuzzy numbers. Then according to Chen and Chen approach
B > A, but

B A< AS A thatis, B> A not result BSA> A6 A.

Example 2. Let A = (0.1,0.3,0.3,0.5;0.8) and B = (0.1,0.3,0.3,0.5; 1) be two
generalized trapezoidal fuzzy numbers. Then according to Chen and Chen approach
B > A,but

BoA< A6 A thatis, B> A notresult B A> Ao A

Example 3. Let A = (—0.8,—-0.6,—0.4, —0.2;0.35) and B = (—0.4,—-0.3,—-0.2,—0.1;0.7)
be two generalized trapezoidal fuzzy numbers. Then according to Chen and Chen
approach A > B, but

A©B<B&B thatis, A> B not result A6 B> BoS B.

Example 4. Let A = (0.2,0.4,0.6,0.8;0.35) and B = (0.1,0.2,0.3,0.4;0.7) be two

generalized trapezoidal fuzzy numbers. Then according to Chen and Chen approach
5
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B > A, but
BoA<AS A thatis, B> A notresult BO A>AS A.

In some cases, Chen and Chen approach [2] states that the ranking of fuzzy numbers
depends upon height of fuzzy numbers while in several cases the ranking does not
depend upon the height of fuzzy numbers.

Let Ay = (a1,b1,71,01; wi) and As = (ag, ba, Y2, f2; w2) be two generalized trape-
zoidal fuzzy numbers. Then according to Chen and Chen [13] there may be two cases.

Case(1) If (a1 + by + 71 + B1) # 0, then

A<B Zf wy, < wa
(42) A>B ’Lf wy > Wa
A~B Zf w1 ~ Wy.

Case(2) If (a1 + b1 +71 + B1) =0, then A ~ B for all values of wy and ws.

According to Chen and Chen [13] in first case ranking of fuzzy numbers depends
upon height and in second case ranking does not depend upon the height which is
contradiction.

Example 5. Let A = (1,1,1,1;w;) and B = (1,1,1,1;ws) be two generalized
trapezoidal fuzzy numbers. Then according to Chen and Chen approach A < B if
wy < wg , A> Bifwy > ws and A = B if w; = wo.

Example 6. Let A = (—0.4,—-0.2,-0.1,0.7;w;) and B = (—0.4,—0.2, —0.1,0.7; ws)
be two generalized triangular fuzzy numbers. Then A = B for all values of w; and
wsa.

5. PROPOSED APPROACH

In this section, on the basis of property of ranking function, discussed in Section
3, a new approach is proposed for the ranking of generalized exponential trapezoidal
fuzzy numbers.
Let A1 = (a1,b1,71,P1;w1) and Ay = (az, ba,ye, f2; w2) be two generalized trape-
zoidal fuzzy numbers. Then

(1) A> Bif RM(A© B) > RM(B 6 B),
(2) A< Bif RM(A© B) < RM(B & B),

(3) A= B if RM(AS B) = RM(B O B).

5.1. Method to Find Value of R(A) and R(B). Let A = (a1,b1,71,B1;wr) and
B = (ag,ba, ¥2, f2; wa) be two any generalized exponential trapezoidal fuzzy number
Then with use [14], find the values of

* step 1. Find w = min{w;, w2}
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* step 2. Let pa(x) and pup(z) are the membership function of A and B respectively,
Then

wlLle_[(al_r)/'yl] T S a,
(5.1) palz) =14 wy a; <z < by,

’wlRlei[(Iibl)/ﬁl] bl § z,
and

w2L26—[(a2—w)/"{2] x < as,
(5.2) up(x) =< wo az < z < b,

w2R2ei[(Iib2)/52] b2 S T,
Put w = min{wy, w2}, Then

lee_[(al_x)/'Yl] €T S ai,
(5.3) palz)=4¢ w ay <z < by,

leef[(xlib)/ﬁl] bl S T,
and

wL2€7[(a27I)/72] T S as,
(54) [LB(I) = w as S X S bg,

wR2€_[(x_b2)/52] b2 S T,

With use equation (6), (7), we have
Li(h) = wLie (=1l o L4 (h) = ay — ~1(In %),

Rl(h) = leei[(zibl)/ﬁl] = Rl_l(h) = bl + ﬂl(ln %)
and

Lg(h) = nge—[(az—x)/’Yz] = L;l(h) = ag — ’)/Q(IH %),

Ro(h) = wRae~[@=02)/82] o RL(R) = by + Ba(In %).
So

R(A) = oz/ow[al ()] dh+ (1~ 0) /Ow[bl +8(m )] dn
—a[alw/owfyl(lnwlnh) dh]+(1a)[b1w/0w61(lnwlnh) dh]
(55) = alarw —yu) + (1 — a)lbrw + fru] = awfar — 1] + (L — a)uwby + 6.
R(B) :a/ow[az—w(m‘}j)] dh+(1—a)/0w[b2+ﬂg(1n§‘:)} dh

= afasw — /Ow Yo(Inw —Inh) dh] + (1 — a)[baw — /Ow B2(lnw —Inh) dh]
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(5.6) = alasw —yow] + (1 — a)[baw + Bow] = awlag — y2] + (1 — a)wlbz + B2].
Therefore
R(A) = awlar — ]+ (1 — a)w[by + B1],

R(B) = awlaz — ¥2] + (1 — a)w[bs + Pa).
Indeed, The index of optimism («) is representing the degree of optimism of a deci-
sion maker [16]. A larger value of v indicates a higher degree of optimism. For a = 0
and o = 1 value of R(A) and R(B) represents the view points of a pessimistic and
optimistic decision maker respectively while for o = 0.5 values of :8(A) and R(B)
represents the view points of a moderate decision maker.

Remark 3. We get for generalized exponential trapezoidal fuzzy numbers
R(A) = awla; — 7]+ (1 — a)wlby + G1],

R(B) = awlaz — y2] + (1 — a)wlba + Ba].
and normalize fuzzy numbers

R(A) = afar — ]+ (1 —a)br + B,

R(B) = alaz —72] + (1 — a)[b2 + B2].

Remark 4. The arithmetic operations between two fuzzy numbers is obtained
using the a-cut method [13] and the maximum value of h, that will be common for
both fuzzy numbers, will be obtained by finding the minimum value of the height of
the fuzzy numbers, due to which in w = min{w;,ws} is considered.

Theorem 2. Prove that ranking of generalized exponential fuzzy numbers does
not depend upon the height of fuzzy numbers i.e., if A, B are two generalized expo-
nential fuzzy numbers and C', D are normalize fuzzy numbers, obtained from A, B
respectively, then

(i) A>B iff C>D,
(ii) A<B iff C<D,

(iii) A~B iff C~D,

Proof:Let A = (a1,b1,71,01;w1) and B = (ag,bs,¥2,02;w2) be two any gen-
eralized exponential trapezoidal fuzzy number and let C = (ay,b1,71,01;1) and
D = (ag,be,72,02;1) are normal exponential trapezoidal fuzzy number of A, B re-
spectively and w = min{w;, ws}. Then

(i) Let A > B < R(A) > R(B) & awla; — 1]+ (1 — a)w[by + B1] > awlaz — 2] +
(1 = a)wlbz + fao] & afar — 1]+ (1 —a)[b1 + B1] > alaz — v + (1 — )bz + f2] &
R(C)>R(D) < C>D.

(ii) Let A < B < R(A) < R(B) & awla; — ]+ (1 — a)w[by + f1] < awlaz —y2] +
8
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(1 = @)wlby + Bo] & afar — ]+ (1 —a)by + B1] < alag —y2] + (1 — a)[bs + o] &
R(C) <R(D) < C<D.

(iii) Let A ~ B & R(A) ~ R(B) < awla; — 71|+ (1 —a)wlby + f1] ~ awlag —v2] +
(1 — a)wlby + o] & ajar — 1]+ (1 — )by + (1] ~ alas — 2] + (1 — a)[be + B2] &
R(C)~R(D) < C~D.

6. EXAMPLES AND RESULTS

In this section, the correct ordering of fuzzy numbers, are obtained. Also, in
the Table 1, it is shown that proposed ranking function satisfies the all reasonable
properties of fuzzy quantities proposed by Wang and Kerre [23].

Example 7. Let A = (0.1,0.3,0.3,0.5;1) and B = (0.2,0.3,0.3,0.4;1) be two
generalized trapezoidal fuzzy numbers. Since

x step 1. w = min{wy, wa} = min{l,1} =1

* step 2.
R(A) =af0.1 - 03]+ (1 —a)[0.3+0.5] =08 —«,
and
R(B) =a0.2 —0.3]+ (1 — «)[0.3+0.4] = 0.7 — 0.8 .
For a pessimistic decision maker, with o = 0,
R(A) =0.8,
and
R(B)=0.7.
Then R(A) > R(B)=A>DB.

For a pessimistic decision maker, with o = 1,
R(A) = -0.2,
and
R(B)=-0.1.
Then R(A) <R(B)=A<B.

For a pessimistic decision maker, with o = 0.5,
MR(A) =0.3,
and
R(B)=0.3.
Then R(A) =R(B)=A~DB.

Example 8. Let A = (0.1,0.3,0.3,0.5;0.8) and B = (0.1,0.3,0.3,0.5;1) be two
9
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generalized trapezoidal fuzzy numbers. Since
* step 1. w = min{wy, wa} =min{0.8,1} = 0.8

* step 2.

R(A) = 0.8x¢[0.1 — 0.3] + 0.8(1 — «)[0.3 4+ 0.5] = 0.64 — 0.8« ,
and

R(B) = 0.8[0.1 — 0.3] + 0.8(1 — «)[0.3 + 0.5] = 0.64 — 0.8cx .
Then R(A) =R(B) =Va A~ B .

Example 9. Let A = (-0.8,-0.6,—0.4,—0.2;0.35) and B = (—-0.4,—0.3,—0.2,—0.1;0.7)
be two generalized trapezoidal fuzzy numbers. Since

x step 1. w = min{wy, ws} = min{0.35,0.7} = 0.35

* step 2.
R(A) = 0.35a[—0.8 + 0.4] + 0.35(1 — )[-0.6 — 0.2] = 0.14cx — 0.28 ,
and
R(B) = 0.35a[—0.4 + 0.2] + 0.35(1 — @)[-0.3 — 0.1] = 0.07a — 0.14 .
For a pessimistic decision maker, with o = 0,
R(A) = —-0.28 ,
and
R(B) =-0.14 .
Then R(A) < R(B)= A< B.

For a pessimistic decision maker, with o = 1,
R(A) = -0.14 ,
and
R(B) =-0.07 .
Then R(A) < R(B) =A< B.

For a pessimistic decision maker, with a = 0.5,
R(A) = —-0.21,
and
R(B) = —0.105 .
Then R(A) <R(B) =A< B.

Example 10. Let A = (0.2,0.4,0.6,0.8;0.35) and B = (0.1,0.2,0.3,0.4;0.7) be
two generalized trapezoidal fuzzy numbers. Since
10
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x step 1. w = min{wy, wy} = min{0.35,0.7} = 0.35

* step 2.
R(A) = 0.35¢[0.2 — 0.6] + 0.35(1 — «)[0.4 + 0.8] = 0.42 — 0.56x
and
R(B) = 0.35[0.1 — 0.3] + 0.35(1 — «)[0.2 + 0.4] = 0.21 — 0.28« .
For a pessimistic decision maker, with o = 0,
R(A) = 0.42 ,
and
R(B)=0.21.
Then R(A) >R(B)=A>B.

For a pessimistic decision maker, with o = 1,
R(A) = -0.14,
and
R(B) = -0.07 .
Then R(A) < R(B)= A< B.

For a pessimistic decision maker, with o = 0.5,
R(A) =0.14 |
and
R(B) =0.07 .
Then R(A) > R(B) = A>B.

Example 11. Let A = (1,1,1,1;w;) and B = (1,1,1,1;ws) be two generalized
trapezoidal fuzzy numbers. Since

x step 1. w = min{wy, wa} = w

* step 2.

RA) =aw[l -1+ (1-a)w[l+1]=2w(l-a),
and

R(B) =aw[l —1]+ (1 —a)w[l +1] =2w(l — «) .
Then R(A) =R(B)=Va A~ B .

Example 12. Let A = (-0.4,—-0.2,—0.1,0.7;w;) and B = (—0.4, —0.2,—0.1,0.7; wo)
be two generalized trapezoidal fuzzy numbers. Since

11
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x step 1. w = min{w,ws} =w

* step 2.

and

R(A) = aw[-0.4 + 0.1] + (1 — Q)w[—0.2+ 0.7] = 0.5 — 0.8aw ,

R(B) = aw[-04+0.1] + (1 — @)w[-0.2 +0.7] = 0.5 — 0.8aw .

Then R(A) =R(B) =Va A~ B .

6.1. Testimony of Proposed Ranking Function. Table 1, it is shown that pro-
posed ranking function satisfies the all reasonable properties of fuzzy quantities
proposed by Wang and Kerre [25]

(1]
(2]

(3]
(4]
(5]
[6]
[7]

(8]

Table (1): Fulfilment of the axioms for the ordering in the first and second class [25]

Index A1 A2 A3 A4 Ail A5 AG A% A7
Yy Y| Y[Y[|[Y[Y[Y[N[N|N
Yz Y Y[Y[Y[Y[Y[N[N|N
Y3 Y| Y|[Y[N|N|]Y[N|[N]|N
Yy Y Y[Y[Y[Y[Y[N[N]|N
C Y| Y[Y[N[N[Y[N[N|N

FR Y Y[Y[Y[Y[Y[Y[]Y]|N
CL Y| Y[ Y[Y[Y[Y[Y[]Y|N

Lw? Y| Y[Y[Y[Y[Y[Y[]Y|N

cm} Y|Y|Y|[Y|Y|Y|]Y|Y|N

CMy Y| Y| Y|[Y|Y|Y|[]Y|Y|N
K Y/ Y[Y[N[N[N[N[N|N
W Y/ Y[Y[Y[N[N[N[N|N
JF Y| Y[Y[|[Y[]Y[N[N[N|N

CHF Y| Y[Y[|[Y[]Y[N[N[N|N

KPF Y/ Y[Y[Y[Y[N[N[N|N
a Y Y[Y[Y[Y[Y[Y[]Y|N

Proposed Approach | Y | Y | Y | Y| Y | Y |Y|Y|Y
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